Path: blob/main/tp1/gradientBoosting.joblib
91 views
�csklearn.ensemble._gb GradientBoostingRegressor q )�q}q(X n_estimatorsqKAX learning_rateqcnumpy.core.multiarray scalar qcnumpy dtype qX f8q���qRq (KX <q NNNJ����J����K tqbC �?q�q RqX lossqX squared_errorqX criterionqX friedman_mseqX min_samples_splitqKX min_samples_leafqKX min_weight_fraction_leafqG X subsampleqG?� X max_featuresqNX max_depthqKX min_impurity_decreaseqG X ccp_alphaqG X initqNX random_stateqK X alphaqG?�������X verboseqK X max_leaf_nodesqNX warm_startq �X validation_fractionq!G?�������X n_iter_no_changeq"NX tolq#G?6��C-X feature_names_in_q$cjoblib.numpy_pickle NumpyArrayWrapper q%)�q&}q'(X subclassq(cnumpy ndarray q)X shapeq*K@�q+X orderq,X Cq-X dtypeq.hX O8q/���q0Rq1(KX |q2NNNJ����J����K?tq3bX allow_mmapq4�X numpy_array_alignment_bytesq5Kub�cnumpy.core.multiarray _reconstruct q cnumpy ndarray qK �qc_codecs encode qX bqX latin1q�qRq�qRq (KK@�q cnumpy dtype qX O8q���q Rq(KX |qNNNJ����J����K?tqb�]q(X latitudqX longitudqX property_roomsqX property_bedroomsqX property_surface_totalqX property_surface_coveredqX barrio_AgronomíaqX barrio_AlmagroqX barrio_BalvaneraqX barrio_BarracasqX barrio_Barrio NorteqX barrio_BelgranoqX barrio_BocaqX barrio_BoedoqX barrio_Caballitoq X barrio_Catalinasq!X barrio_Centro / Microcentroq"X barrio_Chacaritaq#X barrio_Coghlanq$X barrio_Colegialesq%X barrio_Congresoq&X barrio_Constituciónq'X barrio_Floresq(X barrio_Florestaq)X barrio_Las Cañitasq*X barrio_Liniersq+X barrio_Mataderosq,X barrio_Monserratq-X barrio_Monte Castroq.X barrio_Nuñezq/X barrio_Onceq0X barrio_Palermoq1X barrio_Parque Avellanedaq2X barrio_Parque Centenarioq3X barrio_Parque Chacabucoq4X barrio_Parque Chasq5X barrio_Parque Patriciosq6X barrio_Paternalq7X barrio_Pompeyaq8X barrio_Puerto Maderoq9X barrio_Recoletaq:X barrio_Retiroq;X barrio_Saavedraq<X barrio_San Cristobalq=X barrio_San Nicolásq>X barrio_San Telmoq?X barrio_Tribunalesq@X barrio_Velez SarsfieldqAX barrio_VersallesqBX barrio_Villa CrespoqCX barrio_Villa DevotoqDX barrio_Villa General MitreqEX barrio_Villa LuganoqFX barrio_Villa LuroqGX barrio_Villa OrtuzarqHX barrio_Villa PueyrredónqIX barrio_Villa RealqJX barrio_Villa RiachueloqKX barrio_Villa Santa RitaqLX barrio_Villa SoldatiqMX barrio_Villa UrquizaqNX barrio_Villa del ParqueqOX property_type_departamentoqPX property_type_phqQetqRb.X n_features_in_q6K@X loss_q7csklearn.ensemble._gb_losses LeastSquaresError q8)�q9}q:X Kq;KsbX max_features_q<K@X estimators_q=h%)�q>}q?(h(h)h*KAK�q@h,h-h.h1h4�h5Kub�cnumpy.core.multiarray _reconstruct q cnumpy ndarray qK �qc_codecs encode qX bqX latin1q�qRq�qRq (KKAK�q cnumpy dtype qX O8q���q Rq(KX |qNNNJ����J����K?tqb�]q(csklearn.tree._classes DecisionTreeRegressor q)�q}q(X criterionqX friedman_mseqX splitterqX bestqX max_depthqKX min_samples_splitqKX min_samples_leafqKX min_weight_fraction_leafqG X max_featuresqNX max_leaf_nodesqNX random_stateqcnumpy.random._pickle __randomstate_ctor q X MT19937q!�q"Rq#}q$(X bit_generatorq%h!X stateq&}q'(X keyq(h hK �q)h�q*Rq+(KMp�q,hX u4q-���q.Rq/(KX <q0NNNJ����J����K tq1b�hX� ¡ì.AT%÷oz}¡à®Au3¿è×XV(FÄH|¸bý>Ê=ãaEylXî¿ ÂýÌÿ_Åb"ݾÑÞ_9\©>*ÝâNT¨-#yÞc}BÀÐP½d³)^8 Ìøídí!q^' ~³þÝ)§XË|Ì«ÈÄqÇ¡;t/Ý$r×Ú]T<I=É*Z2z ûú`Ù¸ò=.KV'»Õ¯!õ}²5DýÝÀ³Zãðõ44ô4È`CÊ)ñ ta+SVvddJµ7RQ¸0U}1õ\f]Äò· ¸{]%1 ½P2hÒοïñ{5O1j <Ë »^gpÛ}ê+CGpÝä+\Xus^ZO}®[nS@[VÄͽűix -yÃÚx>Èo¸ÿóÜcÆã<¦î=&À?= :Ì']3ÐðaÙ+¦áésû+ôZ NDPó(r^ +=êZ>jºMhÄ/qôF3 >gfÆàùR'9!EÃúÕlã£Á~TóG,ç¼9ÓE©¿ ë[+»y¹l£ýÓÕAA¦na ©zzFù|£cÓË.Å+*¸MÞ[SMzEå[% UuÂ3fËLxOñF)Ñ+¿3r+:UõÀ¦ÿiE«ÿa:±cÛ:yÍxb5Â1ÖÎDåý«m¦oùïmJ®| ôáúß¾ÑVsâ({~{âþ!/Ó¹Àbk,±æL~F^ÝøZnu^öb^ñL ßÏ{f S«×8]Ê#I8¡²³qI°ßùV.õØç¼ë»»W¦Ù §ÆaÙM ø®ª¯¦ó½Ê/ÁRkq/â¬-w«oɪ¬|ü컮 BDÁcÎä¿sÁ'Móùõtç¥Ð!6G¢K$}CÞ[ýÎúª'÷`<m4ɨì}ÝÖÓΠеæ0Üûm{=!á×o¨XU]Wt0(m@)I¨ ó`-¯Pü]!>¯ì5$Jqe¢ ù[©°× ukµ@U½ãuÖÙOßpÁdtyù/÷`Y"!a½ÇWÄüÅÅù÷æ*³ÂSÓR~Bmõ§Q®£ÇèŸ@iº|£ªå!øè/:r Ý`ðèÞW·Oú-ÿzøBØ0³\QH/#}TÊ$<åf:?ýªV«8±ò%=2tM~áYüòɦ*÷lu!ÌFÅ6èÄ1#R·õ]·áµó%Þ1è8GGQE®ý4u®°lüC88<ÂÔ}enQèqGw._Oż¼/'iÈ^ë#£ ÝÞ)¢$ÿã®MØØª6ÊòT=û\hm9EÔ]{Õ]¹¦ ÚG¿y+_° ?þÞp?»¤¼~Em¡Ý4¡¨¦ñô{T6Á.:çVQq =ü/vºY¯óÐR±1¼4}C#)µwh8Àu0M}íʤ)npI|zñ)-¾gÆGªº@ðÒß¹÷ªÌ$®>ÓRb]Ò컪«o©Þ}SYÍãÃlCîùü3쯬ÉÙvÌèÜ,²CîÏðñUQVK|Ç Ñ(¼ø+ð.ù"YxÅ¡<ä$(Ì7à ¶ÀŹäç*²ô;/&Ø{XSî¢RÖF@Ϩªâh\®\{)n>ãê:×±7~Ï~.é´©¡â1ü(aq!lôÄc:ԳǼo+P ëÅqè ÿ&yèHâ_èw®z q5×$Æ'Íø&®Lgé¯Â ÊÞÊèJár*þgÐXÌ·©-{ÁQ:tM-z1~ÿÎælè[0Õl¤qÅ ³.¡GT6{7uZ©Û˲ée%F¿èsɽJÛ¶tkÔ+¸¯¶@þÖ»æ¨#ï@Oië%·U:SÒ8>¥Øíµ¿KöòÒOl'3f²ã$íÚ] mÿf¹ G;¾B'Xé1lÿú§ÓpeRfÝ£ÒW½aïYÏ8³Ù/¼Büáá÷XvƬ¤Í`%1Ú\aUæE3w Ã&2µÇr× §ð²ºLM@¤IAyÀe}þ:åñs®» Þð¡5±ä¾+=!Emkí¾®5jËã8Üá¢jéHE¾÷cÕ RX¿c_Åÿ©1µa){s9£Ï³ó~ÇëÁº¥Õr}!ÕfÅqϱ¦n¸sk235ñæ>InejQXóq¿ÜDâ³v¾J¦T8A;£p¿ «o|¼Ù#ä 5³ÂËLuÅQ ¾ t <Tç¢-ù\¨_,^£]s\#{'i}óò~¼æÌ~0ÈÕa8 Ñ,ô±Z/eæÐ<¡CÁªµ×>|¡± ¢9ÕÍVvϸÕctiÀ2ÅR¢8 >>å#5¥!a¯8Ph iÕtH65XMkæEáoÅ0Qµ*x`é"ªcö¿ j¢ÉÂîàVs Ãã¤ò·Ü^põM¶ûõfnÇÞg¦Ì¿ºxãóá)¡¾7yøª^DïB#ùbt× n^,Ðæºúc§AgFòuÐù§õ¹6?ÿµ2ìuUó*è[ÿ£Ög¸ ¡èüGöao@3 "·Ç"ø¸ýÓYõ] b0Ï}ÑþôóªzÊ>ÙölÁî$n¾òD¨ñ±fÖ®ìKÅó´¦ì*/ÌÒF³+ éÞ"ÛÄ&WÏhRsiÃæ¥°QvR±>ͽ#pV$-ç·ðÁxÑodÕ 0ti¹7ê ´k³Rzå.Ïïî É'Ç#¡Ú¼©þ)ó a4+ö£Æ.öÊÝ^¨í<µ³QÑu f°0iBS³Yö|-~Ûʺ»à°¾Þ¼ V<ì}èöÇrðârÏÚV`®ÇÖ-ÖVêáÒ¶dq2h�q3Rq4tq5bX posq6KAuX has_gaussq7K X gaussq8G ubX min_impurity_decreaseq9G X class_weightq:NX ccp_alphaq;G X n_features_in_q<K@X n_outputs_q=KX max_features_q>K@X tree_q?csklearn.tree._tree Tree q@K@h hK �qAh�qBRqC(KK�qDhX i8qE���qFRqG(Kh0NNNJ����J����K tqHb�hX qIh�qJRqKtqLbK�qMRqN}qO(hKX node_countqPKX nodesqQh hK �qRh�qSRqT(KK�qUhX V56qV���qWRqX(KhN(X left_childqYX right_childqZX featureq[X thresholdq\X impurityq]X n_node_samplesq^X weighted_n_node_samplesq_tq`}qa(hYhX i8qb���qcRqd(Kh0NNNJ����J����K tqebK �qfhZhdK�qgh[hdK�qhh\hX f8qi���qjRqk(Kh0NNNJ����J����K tqlbK�qmh]hkK �qnh^hdK(�qoh_hkK0�qpuK8KKtqqb�hX % @ `S@Ä^XNéBê Þð@ ! ÀJ@îÊ2ÇéAÉ 3é@ ÀD@¨Eï7YÎAÓa ÀtØ@ wLAÀµÞ¢ ÀAn/ ·Ç@ '