Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ManuSanchez02
GitHub Repository: ManuSanchez02/7506R-2c2022-GRUPO09
Path: blob/main/tp2/7506R_TP2_GRUPO09_ENTREGA_N2_(redes_neuronales).ipynb
91 views
Kernel: Python 3

Open In Colab

Configuración inicial

Importamos e instalamos las bibliotecas necesarias.

!pip install keras_tuner
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/ Requirement already satisfied: keras_tuner in /usr/local/lib/python3.8/dist-packages (1.1.3) Requirement already satisfied: numpy in /usr/local/lib/python3.8/dist-packages (from keras_tuner) (1.21.6) Requirement already satisfied: packaging in /usr/local/lib/python3.8/dist-packages (from keras_tuner) (21.3) Requirement already satisfied: kt-legacy in /usr/local/lib/python3.8/dist-packages (from keras_tuner) (1.0.4) Requirement already satisfied: tensorboard in /usr/local/lib/python3.8/dist-packages (from keras_tuner) (2.9.1) Requirement already satisfied: requests in /usr/local/lib/python3.8/dist-packages (from keras_tuner) (2.23.0) Requirement already satisfied: ipython in /usr/local/lib/python3.8/dist-packages (from keras_tuner) (7.9.0) Requirement already satisfied: pygments in /usr/local/lib/python3.8/dist-packages (from ipython->keras_tuner) (2.6.1) Requirement already satisfied: jedi>=0.10 in /usr/local/lib/python3.8/dist-packages (from ipython->keras_tuner) (0.18.2) Requirement already satisfied: backcall in /usr/local/lib/python3.8/dist-packages (from ipython->keras_tuner) (0.2.0) Requirement already satisfied: prompt-toolkit<2.1.0,>=2.0.0 in /usr/local/lib/python3.8/dist-packages (from ipython->keras_tuner) (2.0.10) Requirement already satisfied: pexpect in /usr/local/lib/python3.8/dist-packages (from ipython->keras_tuner) (4.8.0) Requirement already satisfied: decorator in /usr/local/lib/python3.8/dist-packages (from ipython->keras_tuner) (4.4.2) Requirement already satisfied: pickleshare in /usr/local/lib/python3.8/dist-packages (from ipython->keras_tuner) (0.7.5) Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.8/dist-packages (from ipython->keras_tuner) (5.1.1) Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.8/dist-packages (from ipython->keras_tuner) (57.4.0) Requirement already satisfied: parso<0.9.0,>=0.8.0 in /usr/local/lib/python3.8/dist-packages (from jedi>=0.10->ipython->keras_tuner) (0.8.3) Requirement already satisfied: wcwidth in /usr/local/lib/python3.8/dist-packages (from prompt-toolkit<2.1.0,>=2.0.0->ipython->keras_tuner) (0.2.5) Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.8/dist-packages (from prompt-toolkit<2.1.0,>=2.0.0->ipython->keras_tuner) (1.15.0) Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.8/dist-packages (from packaging->keras_tuner) (3.0.9) Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.8/dist-packages (from pexpect->ipython->keras_tuner) (0.7.0) Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.8/dist-packages (from requests->keras_tuner) (3.0.4) Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.8/dist-packages (from requests->keras_tuner) (1.24.3) Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist-packages (from requests->keras_tuner) (2022.9.24) Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packages (from requests->keras_tuner) (2.10) Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.8/dist-packages (from tensorboard->keras_tuner) (1.8.1) Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.8/dist-packages (from tensorboard->keras_tuner) (1.0.1) Requirement already satisfied: tensorboard-data-server<0.7.0,>=0.6.0 in /usr/local/lib/python3.8/dist-packages (from tensorboard->keras_tuner) (0.6.1) Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.8/dist-packages (from tensorboard->keras_tuner) (1.50.0) Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.8/dist-packages (from tensorboard->keras_tuner) (2.14.1) Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.8/dist-packages (from tensorboard->keras_tuner) (0.38.4) Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.8/dist-packages (from tensorboard->keras_tuner) (1.3.0) Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.8/dist-packages (from tensorboard->keras_tuner) (0.4.6) Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.8/dist-packages (from tensorboard->keras_tuner) (3.4.1) Requirement already satisfied: protobuf<3.20,>=3.9.2 in /usr/local/lib/python3.8/dist-packages (from tensorboard->keras_tuner) (3.19.6) Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.8/dist-packages (from google-auth<3,>=1.6.3->tensorboard->keras_tuner) (5.2.0) Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.8/dist-packages (from google-auth<3,>=1.6.3->tensorboard->keras_tuner) (0.2.8) Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.8/dist-packages (from google-auth<3,>=1.6.3->tensorboard->keras_tuner) (4.9) Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.8/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard->keras_tuner) (1.3.1) Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/lib/python3.8/dist-packages (from markdown>=2.6.8->tensorboard->keras_tuner) (4.13.0) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.8/dist-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard->keras_tuner) (3.10.0) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.8/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->keras_tuner) (0.4.8) Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.8/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard->keras_tuner) (3.2.2)
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.preprocessing import StandardScaler from sklearn import preprocessing import tensorflow as tf from tensorflow import keras import keras_tuner as kt from keras.models import Sequential from keras.layers.core import Dense from sklearn.metrics import ( confusion_matrix, recall_score, accuracy_score, f1_score, mean_squared_error, r2_score, ) from sklearn.model_selection import KFold from keras.losses import sparse_categorical_crossentropy from keras.optimizers import Adam np.random.seed(1) tf.random.set_seed(1)

Funciones útiles

def graficar_matriz_de_confusion(y_test, y_pred, labels): cm = confusion_matrix(y_test, y_pred) fig = plt.figure(figsize = (12, 10)) sns.heatmap( cm, annot=True, xticklabels=labels, yticklabels=labels, cmap="GnBu", fmt="g" ) plt.title("Matriz de confusión") plt.xlabel("Predichos") plt.ylabel("Verdaderos") plt.show() def imprimir_metricas_de_clasificacion(y_test, y_pred): accuracy = accuracy_score(y_test, y_pred) recall = recall_score(y_test, y_pred, average="weighted") f1 = f1_score(y_test, y_pred, average="weighted") print("\nMétricas de clasificación\n") print("Accuracy: " + str(accuracy)) print("Recall: " + str(recall)) print("F1 score: " + str(f1)) def imprimir_metricas_de_regresion(target_test, precios_predichos): # Error cuadrático medio mse = mean_squared_error( y_true=target_test, y_pred=precios_predichos, squared=True ) # Raíz del error cuadrático medio rmse = mean_squared_error( y_true=target_test, y_pred=precios_predichos, squared=False ) # Score R2 r2 = r2_score(target_test, precios_predichos) print("\nMétricas de regresión\n") print(f"El error (mse) de test es: {mse}") print(f"El error (rmse) de test es: {rmse}") print(f"El score R2 es: {r2}")

Importamos los datasets que se utilizarán para trabajar.

dataset_train_clasificacion = pd.read_csv("https://github.com/ManuSanchez02/7506R-2c2022-GRUPO09/blob/main/tp2/datasets/clasificacion_train_feature.csv?raw=True") dataset_test_clasificacion = pd.read_csv("https://github.com/ManuSanchez02/7506R-2c2022-GRUPO09/blob/main/tp2/datasets/clasificacion_test_feature.csv?raw=True") dataset_train_regresion = pd.read_csv("https://github.com/ManuSanchez02/7506R-2c2022-GRUPO09/blob/main/tp2/datasets/regresion_train_feature.csv?raw=True") dataset_test_regresion = pd.read_csv("https://github.com/ManuSanchez02/7506R-2c2022-GRUPO09/blob/main/tp2/datasets/regresion_test_feature.csv?raw=True")
y_train_clasificacion_categorico = pd.read_csv("https://github.com/ManuSanchez02/7506R-2c2022-GRUPO09/blob/main/tp2/datasets/clasificacion_train_target.csv?raw=True") y_test_clasificacion_categorico = pd.read_csv("https://github.com/ManuSanchez02/7506R-2c2022-GRUPO09/blob/main/tp2/datasets/clasificacion_test_target.csv?raw=True") y_train_regresion = pd.read_csv("https://github.com/ManuSanchez02/7506R-2c2022-GRUPO09/blob/main/tp2/datasets/regresion_train_target.csv?raw=True") y_test_regresion = pd.read_csv("https://github.com/ManuSanchez02/7506R-2c2022-GRUPO09/blob/main/tp2/datasets/regresion_test_target.csv?raw=True")
def preparar_dataset(dataset): dataset.drop("Unnamed: 0", axis = 1, inplace=True) dataset.drop("id", axis = 1, inplace=True) return dataset def preparar_target(target): target.drop("Unnamed: 0", axis = 1, inplace=True) return target dataset_train_clasificacion = preparar_dataset(dataset_train_clasificacion) dataset_test_clasificacion = preparar_dataset(dataset_test_clasificacion) dataset_train_regresion = preparar_dataset(dataset_train_regresion) dataset_test_regresion = preparar_dataset(dataset_test_regresion) y_train_clasificacion_categorico = preparar_target(y_train_clasificacion_categorico) y_test_clasificacion_categorico = preparar_target(y_test_clasificacion_categorico) y_train_regresion = preparar_target(y_train_regresion) y_test_regresion = preparar_target(y_test_regresion)

Convertimos las categorías del target de clasificación en categorías numéricas para poder utilizarlas en la red neuronal.

le = preprocessing.LabelEncoder() y_train_clasificacion = le.fit_transform(y_train_clasificacion_categorico) y_test_clasificacion = le.transform(y_test_clasificacion_categorico)
/usr/local/lib/python3.8/dist-packages/sklearn/preprocessing/_label.py:115: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel(). y = column_or_1d(y, warn=True) /usr/local/lib/python3.8/dist-packages/sklearn/preprocessing/_label.py:133: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel(). y = column_or_1d(y, warn=True)

Redes neuronales

Escalamos los datos para que performe mejor.

scaler_clasificacion = StandardScaler() scaler_clasificacion.fit(dataset_train_clasificacion) scaler_regresion = StandardScaler() scaler_regresion.fit(dataset_train_regresion)
StandardScaler()
x_train_clasificacion = scaler_clasificacion.transform(dataset_train_clasificacion) x_test_clasificacion = scaler_clasificacion.transform(dataset_test_clasificacion) x_train_regresion = scaler_regresion.transform(dataset_train_regresion) x_test_regresion = scaler_regresion.transform(dataset_test_regresion)

Clasificación

Definimos las salidas del modelo.

outputs = { "bajo": 0, "medio": 1, "alto": 2, }

Creamos el modelo secuencial de Keras.

def build_model(hp): model = keras.Sequential() model.add(keras.layers.Dense( hp.Int('units', min_value=32, max_value=512, step=16), activation=hp.Choice("activation", ["relu", "tanh"]))) model.add(keras.layers.Dense(10, activation="tanh")) model.add(keras.layers.Dense(3, activation="softmax")) learning_rate = hp.Float("lr", min_value=1e-4, max_value=1e-1, sampling="log") model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits = False), optimizer=keras.optimizers.Adam(learning_rate=learning_rate), metrics=["accuracy"]) return model

Hacemos un Randomized Search para buscar los mejores hiperparámetros.

tuner = kt.RandomSearch( build_model, objective='loss', max_trials=10, project_name="Clasificacion", overwrite=True)
stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=1) tuner.search(x_train_clasificacion, y_train_clasificacion, epochs=100, validation_split=0.2, callbacks=[stop_early]) best_model = tuner.get_best_models()[0]
Trial 10 Complete [00h 00m 31s] loss: 0.8263664841651917 Best loss So Far: 0.8020757436752319 Total elapsed time: 00h 06m 13s

Imprimimos los resultados del mejor modelo obtenido.

best_hps = tuner.get_best_hyperparameters()[0] best_hps.values
{'units': 496, 'activation': 'tanh', 'lr': 0.00046002804367732453}
best_model = build_model(best_hps) best_model.fit(x=x_train_clasificacion, y=y_train_clasificacion, epochs=500)
Epoch 1/500 2163/2163 [==============================] - 7s 2ms/step - loss: 0.8633 - accuracy: 0.5845 Epoch 2/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.8333 - accuracy: 0.5998 Epoch 3/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.8243 - accuracy: 0.6036 Epoch 4/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.8171 - accuracy: 0.6073 Epoch 5/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.8122 - accuracy: 0.6077 Epoch 6/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.8082 - accuracy: 0.6105 Epoch 7/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.8054 - accuracy: 0.6107 Epoch 8/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.8036 - accuracy: 0.6121 Epoch 9/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.8013 - accuracy: 0.6113 Epoch 10/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7998 - accuracy: 0.6128 Epoch 11/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7984 - accuracy: 0.6146 Epoch 12/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7967 - accuracy: 0.6147 Epoch 13/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7955 - accuracy: 0.6150 Epoch 14/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7937 - accuracy: 0.6149 Epoch 15/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7923 - accuracy: 0.6155 Epoch 16/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7918 - accuracy: 0.6171 Epoch 17/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7896 - accuracy: 0.6173 Epoch 18/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7893 - accuracy: 0.6190 Epoch 19/500 2163/2163 [==============================] - 10s 5ms/step - loss: 0.7878 - accuracy: 0.6202 Epoch 20/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7865 - accuracy: 0.6195 Epoch 21/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7854 - accuracy: 0.6196 Epoch 22/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7849 - accuracy: 0.6200 Epoch 23/500 2163/2163 [==============================] - 8s 4ms/step - loss: 0.7837 - accuracy: 0.6215 Epoch 24/500 2163/2163 [==============================] - 12s 5ms/step - loss: 0.7832 - accuracy: 0.6212 Epoch 25/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7820 - accuracy: 0.6230 Epoch 26/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7809 - accuracy: 0.6246 Epoch 27/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7803 - accuracy: 0.6231 Epoch 28/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7802 - accuracy: 0.6230 Epoch 29/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7782 - accuracy: 0.6246 Epoch 30/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7780 - accuracy: 0.6247 Epoch 31/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7775 - accuracy: 0.6253 Epoch 32/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7765 - accuracy: 0.6258 Epoch 33/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7756 - accuracy: 0.6259 Epoch 34/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7749 - accuracy: 0.6263 Epoch 35/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7744 - accuracy: 0.6275 Epoch 36/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7734 - accuracy: 0.6269 Epoch 37/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7729 - accuracy: 0.6282 Epoch 38/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7723 - accuracy: 0.6283 Epoch 39/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7716 - accuracy: 0.6277 Epoch 40/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7707 - accuracy: 0.6295 Epoch 41/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7704 - accuracy: 0.6280 Epoch 42/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7696 - accuracy: 0.6294 Epoch 43/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7682 - accuracy: 0.6301 Epoch 44/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7683 - accuracy: 0.6307 Epoch 45/500 2163/2163 [==============================] - 10s 4ms/step - loss: 0.7672 - accuracy: 0.6308 Epoch 46/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7669 - accuracy: 0.6308 Epoch 47/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7658 - accuracy: 0.6317 Epoch 48/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7655 - accuracy: 0.6322 Epoch 49/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7651 - accuracy: 0.6328 Epoch 50/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7639 - accuracy: 0.6325 Epoch 51/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7632 - accuracy: 0.6325 Epoch 52/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7621 - accuracy: 0.6344 Epoch 53/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7626 - accuracy: 0.6339 Epoch 54/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7617 - accuracy: 0.6338 Epoch 55/500 2163/2163 [==============================] - 12s 5ms/step - loss: 0.7611 - accuracy: 0.6343 Epoch 56/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7609 - accuracy: 0.6346 Epoch 57/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7600 - accuracy: 0.6344 Epoch 58/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7591 - accuracy: 0.6349 Epoch 59/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7588 - accuracy: 0.6350 Epoch 60/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7578 - accuracy: 0.6364 Epoch 61/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7578 - accuracy: 0.6362 Epoch 62/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7576 - accuracy: 0.6351 Epoch 63/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7560 - accuracy: 0.6366 Epoch 64/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7560 - accuracy: 0.6376 Epoch 65/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7556 - accuracy: 0.6375 Epoch 66/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7552 - accuracy: 0.6396 Epoch 67/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7544 - accuracy: 0.6379 Epoch 68/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7539 - accuracy: 0.6395 Epoch 69/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7534 - accuracy: 0.6382 Epoch 70/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7527 - accuracy: 0.6391 Epoch 71/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7525 - accuracy: 0.6394 Epoch 72/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7520 - accuracy: 0.6394 Epoch 73/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7517 - accuracy: 0.6392 Epoch 74/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7511 - accuracy: 0.6397 Epoch 75/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7512 - accuracy: 0.6401 Epoch 76/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7502 - accuracy: 0.6404 Epoch 77/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7499 - accuracy: 0.6404 Epoch 78/500 2163/2163 [==============================] - 8s 4ms/step - loss: 0.7496 - accuracy: 0.6406 Epoch 79/500 2163/2163 [==============================] - 9s 4ms/step - loss: 0.7487 - accuracy: 0.6418 Epoch 80/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7485 - accuracy: 0.6434 Epoch 81/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7480 - accuracy: 0.6423 Epoch 82/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7471 - accuracy: 0.6425 Epoch 83/500 2163/2163 [==============================] - 9s 4ms/step - loss: 0.7468 - accuracy: 0.6428 Epoch 84/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7466 - accuracy: 0.6422 Epoch 85/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7457 - accuracy: 0.6433 Epoch 86/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7457 - accuracy: 0.6434 Epoch 87/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7451 - accuracy: 0.6429 Epoch 88/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7442 - accuracy: 0.6447 Epoch 89/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7441 - accuracy: 0.6437 Epoch 90/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7439 - accuracy: 0.6442 Epoch 91/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7438 - accuracy: 0.6440 Epoch 92/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7432 - accuracy: 0.6435 Epoch 93/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7426 - accuracy: 0.6452 Epoch 94/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7421 - accuracy: 0.6458 Epoch 95/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7419 - accuracy: 0.6445 Epoch 96/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7418 - accuracy: 0.6455 Epoch 97/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7412 - accuracy: 0.6460 Epoch 98/500 2163/2163 [==============================] - 8s 4ms/step - loss: 0.7407 - accuracy: 0.6467 Epoch 99/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7404 - accuracy: 0.6457 Epoch 100/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7397 - accuracy: 0.6462 Epoch 101/500 2163/2163 [==============================] - 15s 7ms/step - loss: 0.7396 - accuracy: 0.6466 Epoch 102/500 2163/2163 [==============================] - 10s 5ms/step - loss: 0.7391 - accuracy: 0.6462 Epoch 103/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7388 - accuracy: 0.6473 Epoch 104/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7379 - accuracy: 0.6481 Epoch 105/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7380 - accuracy: 0.6471 Epoch 106/500 2163/2163 [==============================] - 9s 4ms/step - loss: 0.7373 - accuracy: 0.6487 Epoch 107/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7369 - accuracy: 0.6481 Epoch 108/500 2163/2163 [==============================] - 9s 4ms/step - loss: 0.7366 - accuracy: 0.6495 Epoch 109/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7366 - accuracy: 0.6490 Epoch 110/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7361 - accuracy: 0.6483 Epoch 111/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7352 - accuracy: 0.6498 Epoch 112/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7345 - accuracy: 0.6491 Epoch 113/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7345 - accuracy: 0.6499 Epoch 114/500 2163/2163 [==============================] - 8s 4ms/step - loss: 0.7338 - accuracy: 0.6493 Epoch 115/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7339 - accuracy: 0.6500 Epoch 116/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7336 - accuracy: 0.6506 Epoch 117/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7331 - accuracy: 0.6508 Epoch 118/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7328 - accuracy: 0.6495 Epoch 119/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7330 - accuracy: 0.6502 Epoch 120/500 2163/2163 [==============================] - 9s 4ms/step - loss: 0.7314 - accuracy: 0.6518 Epoch 121/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7321 - accuracy: 0.6507 Epoch 122/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7313 - accuracy: 0.6524 Epoch 123/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7313 - accuracy: 0.6528 Epoch 124/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7307 - accuracy: 0.6524 Epoch 125/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7298 - accuracy: 0.6523 Epoch 126/500 2163/2163 [==============================] - 8s 4ms/step - loss: 0.7295 - accuracy: 0.6538 Epoch 127/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7295 - accuracy: 0.6521 Epoch 128/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7291 - accuracy: 0.6534 Epoch 129/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7284 - accuracy: 0.6527 Epoch 130/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7286 - accuracy: 0.6540 Epoch 131/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7284 - accuracy: 0.6531 Epoch 132/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7278 - accuracy: 0.6545 Epoch 133/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7268 - accuracy: 0.6557 Epoch 134/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7269 - accuracy: 0.6547 Epoch 135/500 2163/2163 [==============================] - 10s 5ms/step - loss: 0.7268 - accuracy: 0.6556 Epoch 136/500 2163/2163 [==============================] - 9s 4ms/step - loss: 0.7264 - accuracy: 0.6539 Epoch 137/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7263 - accuracy: 0.6549 Epoch 138/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7256 - accuracy: 0.6562 Epoch 139/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7260 - accuracy: 0.6548 Epoch 140/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7255 - accuracy: 0.6550 Epoch 141/500 2163/2163 [==============================] - 9s 4ms/step - loss: 0.7247 - accuracy: 0.6556 Epoch 142/500 2163/2163 [==============================] - 9s 4ms/step - loss: 0.7247 - accuracy: 0.6552 Epoch 143/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7241 - accuracy: 0.6568 Epoch 144/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7239 - accuracy: 0.6553 Epoch 145/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7240 - accuracy: 0.6568 Epoch 146/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7232 - accuracy: 0.6572 Epoch 147/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7228 - accuracy: 0.6561 Epoch 148/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7227 - accuracy: 0.6563 Epoch 149/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7221 - accuracy: 0.6582 Epoch 150/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7221 - accuracy: 0.6578 Epoch 151/500 2163/2163 [==============================] - 8s 4ms/step - loss: 0.7218 - accuracy: 0.6572 Epoch 152/500 2163/2163 [==============================] - 9s 4ms/step - loss: 0.7212 - accuracy: 0.6587 Epoch 153/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7210 - accuracy: 0.6567 Epoch 154/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7207 - accuracy: 0.6581 Epoch 155/500 2163/2163 [==============================] - 8s 4ms/step - loss: 0.7207 - accuracy: 0.6574 Epoch 156/500 2163/2163 [==============================] - 8s 4ms/step - loss: 0.7198 - accuracy: 0.6590 Epoch 157/500 2163/2163 [==============================] - 10s 5ms/step - loss: 0.7200 - accuracy: 0.6583 Epoch 158/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7195 - accuracy: 0.6584 Epoch 159/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7194 - accuracy: 0.6585 Epoch 160/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7190 - accuracy: 0.6590 Epoch 161/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7190 - accuracy: 0.6588 Epoch 162/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7183 - accuracy: 0.6595 Epoch 163/500 2163/2163 [==============================] - 11s 5ms/step - loss: 0.7181 - accuracy: 0.6592 Epoch 164/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7179 - accuracy: 0.6590 Epoch 165/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7174 - accuracy: 0.6589 Epoch 166/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7172 - accuracy: 0.6618 Epoch 167/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7167 - accuracy: 0.6596 Epoch 168/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7162 - accuracy: 0.6614 Epoch 169/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7169 - accuracy: 0.6605 Epoch 170/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7162 - accuracy: 0.6604 Epoch 171/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7159 - accuracy: 0.6615 Epoch 172/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7157 - accuracy: 0.6609 Epoch 173/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7154 - accuracy: 0.6613 Epoch 174/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7146 - accuracy: 0.6615 Epoch 175/500 2163/2163 [==============================] - 8s 4ms/step - loss: 0.7148 - accuracy: 0.6621 Epoch 176/500 2163/2163 [==============================] - 14s 6ms/step - loss: 0.7149 - accuracy: 0.6619 Epoch 177/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7145 - accuracy: 0.6617 Epoch 178/500 2163/2163 [==============================] - 8s 4ms/step - loss: 0.7139 - accuracy: 0.6613 Epoch 179/500 2163/2163 [==============================] - 11s 5ms/step - loss: 0.7143 - accuracy: 0.6618 Epoch 180/500 2163/2163 [==============================] - 10s 5ms/step - loss: 0.7133 - accuracy: 0.6623 Epoch 181/500 2163/2163 [==============================] - 8s 4ms/step - loss: 0.7130 - accuracy: 0.6626 Epoch 182/500 2163/2163 [==============================] - 8s 4ms/step - loss: 0.7133 - accuracy: 0.6629 Epoch 183/500 2163/2163 [==============================] - 8s 4ms/step - loss: 0.7132 - accuracy: 0.6618 Epoch 184/500 2163/2163 [==============================] - 8s 3ms/step - loss: 0.7125 - accuracy: 0.6623 Epoch 185/500 2163/2163 [==============================] - 8s 4ms/step - loss: 0.7117 - accuracy: 0.6624 Epoch 186/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7116 - accuracy: 0.6631 Epoch 187/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7116 - accuracy: 0.6632 Epoch 188/500 2163/2163 [==============================] - 9s 4ms/step - loss: 0.7110 - accuracy: 0.6625 Epoch 189/500 2163/2163 [==============================] - 9s 4ms/step - loss: 0.7111 - accuracy: 0.6633 Epoch 190/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7106 - accuracy: 0.6652 Epoch 191/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7106 - accuracy: 0.6637 Epoch 192/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7110 - accuracy: 0.6645 Epoch 193/500 2163/2163 [==============================] - 9s 4ms/step - loss: 0.7103 - accuracy: 0.6636 Epoch 194/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7104 - accuracy: 0.6638 Epoch 195/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7096 - accuracy: 0.6637 Epoch 196/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7093 - accuracy: 0.6648 Epoch 197/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7090 - accuracy: 0.6653 Epoch 198/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7088 - accuracy: 0.6651 Epoch 199/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7083 - accuracy: 0.6641 Epoch 200/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7092 - accuracy: 0.6642 Epoch 201/500 2163/2163 [==============================] - 10s 4ms/step - loss: 0.7083 - accuracy: 0.6647 Epoch 202/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7078 - accuracy: 0.6642 Epoch 203/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7080 - accuracy: 0.6660 Epoch 204/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7070 - accuracy: 0.6650 Epoch 205/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7079 - accuracy: 0.6656 Epoch 206/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7067 - accuracy: 0.6648 Epoch 207/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7068 - accuracy: 0.6662 Epoch 208/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7066 - accuracy: 0.6658 Epoch 209/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7064 - accuracy: 0.6659 Epoch 210/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7061 - accuracy: 0.6674 Epoch 211/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7058 - accuracy: 0.6659 Epoch 212/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7055 - accuracy: 0.6674 Epoch 213/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7059 - accuracy: 0.6661 Epoch 214/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7053 - accuracy: 0.6663 Epoch 215/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7051 - accuracy: 0.6656 Epoch 216/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7045 - accuracy: 0.6665 Epoch 217/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7045 - accuracy: 0.6673 Epoch 218/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7041 - accuracy: 0.6669 Epoch 219/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7042 - accuracy: 0.6678 Epoch 220/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7035 - accuracy: 0.6672 Epoch 221/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7037 - accuracy: 0.6690 Epoch 222/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7039 - accuracy: 0.6665 Epoch 223/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7034 - accuracy: 0.6678 Epoch 224/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7032 - accuracy: 0.6679 Epoch 225/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7026 - accuracy: 0.6680 Epoch 226/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7022 - accuracy: 0.6694 Epoch 227/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7022 - accuracy: 0.6689 Epoch 228/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7021 - accuracy: 0.6689 Epoch 229/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7018 - accuracy: 0.6690 Epoch 230/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7023 - accuracy: 0.6676 Epoch 231/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.7018 - accuracy: 0.6690 Epoch 232/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7017 - accuracy: 0.6685 Epoch 233/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7010 - accuracy: 0.6699 Epoch 234/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.7013 - accuracy: 0.6702 Epoch 235/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.7009 - accuracy: 0.6686 Epoch 236/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7009 - accuracy: 0.6703 Epoch 237/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7002 - accuracy: 0.6709 Epoch 238/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.7002 - accuracy: 0.6696 Epoch 239/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6995 - accuracy: 0.6699 Epoch 240/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6999 - accuracy: 0.6714 Epoch 241/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6996 - accuracy: 0.6702 Epoch 242/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6992 - accuracy: 0.6687 Epoch 243/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6987 - accuracy: 0.6704 Epoch 244/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6987 - accuracy: 0.6710 Epoch 245/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6987 - accuracy: 0.6727 Epoch 246/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6984 - accuracy: 0.6704 Epoch 247/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6975 - accuracy: 0.6696 Epoch 248/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6983 - accuracy: 0.6708 Epoch 249/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6981 - accuracy: 0.6694 Epoch 250/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6975 - accuracy: 0.6701 Epoch 251/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6972 - accuracy: 0.6716 Epoch 252/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6968 - accuracy: 0.6701 Epoch 253/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6966 - accuracy: 0.6720 Epoch 254/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6966 - accuracy: 0.6713 Epoch 255/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6963 - accuracy: 0.6717 Epoch 256/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6965 - accuracy: 0.6720 Epoch 257/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6965 - accuracy: 0.6723 Epoch 258/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6958 - accuracy: 0.6715 Epoch 259/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6957 - accuracy: 0.6721 Epoch 260/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6953 - accuracy: 0.6721 Epoch 261/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6948 - accuracy: 0.6717 Epoch 262/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6955 - accuracy: 0.6709 Epoch 263/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6949 - accuracy: 0.6721 Epoch 264/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6946 - accuracy: 0.6722 Epoch 265/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6941 - accuracy: 0.6726 Epoch 266/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6952 - accuracy: 0.6718 Epoch 267/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6942 - accuracy: 0.6714 Epoch 268/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6939 - accuracy: 0.6738 Epoch 269/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6941 - accuracy: 0.6729 Epoch 270/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6929 - accuracy: 0.6732 Epoch 271/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6935 - accuracy: 0.6725 Epoch 272/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6935 - accuracy: 0.6726 Epoch 273/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6934 - accuracy: 0.6737 Epoch 274/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6929 - accuracy: 0.6731 Epoch 275/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6935 - accuracy: 0.6720 Epoch 276/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6933 - accuracy: 0.6746 Epoch 277/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6925 - accuracy: 0.6734 Epoch 278/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6925 - accuracy: 0.6727 Epoch 279/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6920 - accuracy: 0.6735 Epoch 280/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6919 - accuracy: 0.6739 Epoch 281/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6921 - accuracy: 0.6742 Epoch 282/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6912 - accuracy: 0.6749 Epoch 283/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6913 - accuracy: 0.6745 Epoch 284/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6912 - accuracy: 0.6746 Epoch 285/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6909 - accuracy: 0.6741 Epoch 286/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.6912 - accuracy: 0.6745 Epoch 287/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6906 - accuracy: 0.6759 Epoch 288/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6912 - accuracy: 0.6751 Epoch 289/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6904 - accuracy: 0.6753 Epoch 290/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6908 - accuracy: 0.6752 Epoch 291/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6897 - accuracy: 0.6773 Epoch 292/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6901 - accuracy: 0.6756 Epoch 293/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6900 - accuracy: 0.6750 Epoch 294/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6901 - accuracy: 0.6745 Epoch 295/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6896 - accuracy: 0.6754 Epoch 296/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6892 - accuracy: 0.6749 Epoch 297/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6896 - accuracy: 0.6752 Epoch 298/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6890 - accuracy: 0.6763 Epoch 299/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6894 - accuracy: 0.6761 Epoch 300/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6883 - accuracy: 0.6756 Epoch 301/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6888 - accuracy: 0.6750 Epoch 302/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6885 - accuracy: 0.6765 Epoch 303/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6884 - accuracy: 0.6765 Epoch 304/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6884 - accuracy: 0.6774 Epoch 305/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6885 - accuracy: 0.6748 Epoch 306/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6878 - accuracy: 0.6760 Epoch 307/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6877 - accuracy: 0.6764 Epoch 308/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6879 - accuracy: 0.6751 Epoch 309/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6878 - accuracy: 0.6758 Epoch 310/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6877 - accuracy: 0.6756 Epoch 311/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6872 - accuracy: 0.6763 Epoch 312/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6867 - accuracy: 0.6769 Epoch 313/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6867 - accuracy: 0.6774 Epoch 314/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6868 - accuracy: 0.6758 Epoch 315/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6865 - accuracy: 0.6760 Epoch 316/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6865 - accuracy: 0.6773 Epoch 317/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6857 - accuracy: 0.6791 Epoch 318/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6858 - accuracy: 0.6767 Epoch 319/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6859 - accuracy: 0.6764 Epoch 320/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6862 - accuracy: 0.6767 Epoch 321/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6849 - accuracy: 0.6777 Epoch 322/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6857 - accuracy: 0.6772 Epoch 323/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6849 - accuracy: 0.6791 Epoch 324/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6854 - accuracy: 0.6776 Epoch 325/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6846 - accuracy: 0.6770 Epoch 326/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6847 - accuracy: 0.6779 Epoch 327/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6850 - accuracy: 0.6784 Epoch 328/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6838 - accuracy: 0.6775 Epoch 329/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6842 - accuracy: 0.6776 Epoch 330/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6847 - accuracy: 0.6769 Epoch 331/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6843 - accuracy: 0.6783 Epoch 332/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6838 - accuracy: 0.6777 Epoch 333/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6841 - accuracy: 0.6768 Epoch 334/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6833 - accuracy: 0.6781 Epoch 335/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6832 - accuracy: 0.6793 Epoch 336/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6831 - accuracy: 0.6790 Epoch 337/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6834 - accuracy: 0.6770 Epoch 338/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6832 - accuracy: 0.6793 Epoch 339/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6829 - accuracy: 0.6781 Epoch 340/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6828 - accuracy: 0.6788 Epoch 341/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6824 - accuracy: 0.6796 Epoch 342/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6824 - accuracy: 0.6787 Epoch 343/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6823 - accuracy: 0.6780 Epoch 344/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6823 - accuracy: 0.6793 Epoch 345/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6822 - accuracy: 0.6781 Epoch 346/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6818 - accuracy: 0.6797 Epoch 347/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6819 - accuracy: 0.6804 Epoch 348/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6818 - accuracy: 0.6790 Epoch 349/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6815 - accuracy: 0.6794 Epoch 350/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6815 - accuracy: 0.6791 Epoch 351/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6816 - accuracy: 0.6791 Epoch 352/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6812 - accuracy: 0.6791 Epoch 353/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6811 - accuracy: 0.6801 Epoch 354/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6804 - accuracy: 0.6813 Epoch 355/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6810 - accuracy: 0.6796 Epoch 356/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6805 - accuracy: 0.6801 Epoch 357/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6806 - accuracy: 0.6789 Epoch 358/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6800 - accuracy: 0.6807 Epoch 359/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6795 - accuracy: 0.6822 Epoch 360/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6798 - accuracy: 0.6804 Epoch 361/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6794 - accuracy: 0.6795 Epoch 362/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6799 - accuracy: 0.6819 Epoch 363/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6791 - accuracy: 0.6802 Epoch 364/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6794 - accuracy: 0.6809 Epoch 365/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6790 - accuracy: 0.6801 Epoch 366/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6791 - accuracy: 0.6808 Epoch 367/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6788 - accuracy: 0.6809 Epoch 368/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6790 - accuracy: 0.6809 Epoch 369/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6787 - accuracy: 0.6813 Epoch 370/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6785 - accuracy: 0.6804 Epoch 371/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6785 - accuracy: 0.6828 Epoch 372/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6784 - accuracy: 0.6819 Epoch 373/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6779 - accuracy: 0.6818 Epoch 374/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6779 - accuracy: 0.6792 Epoch 375/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6786 - accuracy: 0.6813 Epoch 376/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6773 - accuracy: 0.6827 Epoch 377/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6781 - accuracy: 0.6803 Epoch 378/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6772 - accuracy: 0.6824 Epoch 379/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6775 - accuracy: 0.6816 Epoch 380/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6776 - accuracy: 0.6816 Epoch 381/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6767 - accuracy: 0.6816 Epoch 382/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6774 - accuracy: 0.6821 Epoch 383/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6767 - accuracy: 0.6818 Epoch 384/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6765 - accuracy: 0.6833 Epoch 385/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6764 - accuracy: 0.6825 Epoch 386/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6768 - accuracy: 0.6822 Epoch 387/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6758 - accuracy: 0.6829 Epoch 388/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6767 - accuracy: 0.6834 Epoch 389/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6770 - accuracy: 0.6816 Epoch 390/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6758 - accuracy: 0.6819 Epoch 391/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6763 - accuracy: 0.6830 Epoch 392/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6759 - accuracy: 0.6827 Epoch 393/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6756 - accuracy: 0.6832 Epoch 394/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6759 - accuracy: 0.6827 Epoch 395/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6749 - accuracy: 0.6827 Epoch 396/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6758 - accuracy: 0.6826 Epoch 397/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6755 - accuracy: 0.6821 Epoch 398/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6750 - accuracy: 0.6832 Epoch 399/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6750 - accuracy: 0.6839 Epoch 400/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6745 - accuracy: 0.6839 Epoch 401/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6752 - accuracy: 0.6830 Epoch 402/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6743 - accuracy: 0.6841 Epoch 403/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6743 - accuracy: 0.6830 Epoch 404/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6745 - accuracy: 0.6836 Epoch 405/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6741 - accuracy: 0.6839 Epoch 406/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6740 - accuracy: 0.6834 Epoch 407/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6742 - accuracy: 0.6832 Epoch 408/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6740 - accuracy: 0.6833 Epoch 409/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6736 - accuracy: 0.6857 Epoch 410/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6737 - accuracy: 0.6838 Epoch 411/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6734 - accuracy: 0.6841 Epoch 412/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6733 - accuracy: 0.6833 Epoch 413/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6735 - accuracy: 0.6830 Epoch 414/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6729 - accuracy: 0.6847 Epoch 415/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6730 - accuracy: 0.6838 Epoch 416/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6726 - accuracy: 0.6849 Epoch 417/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6727 - accuracy: 0.6844 Epoch 418/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6720 - accuracy: 0.6857 Epoch 419/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6726 - accuracy: 0.6845 Epoch 420/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6723 - accuracy: 0.6857 Epoch 421/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6724 - accuracy: 0.6845 Epoch 422/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6726 - accuracy: 0.6837 Epoch 423/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6719 - accuracy: 0.6846 Epoch 424/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6719 - accuracy: 0.6838 Epoch 425/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6711 - accuracy: 0.6848 Epoch 426/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6723 - accuracy: 0.6850 Epoch 427/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6713 - accuracy: 0.6837 Epoch 428/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6720 - accuracy: 0.6838 Epoch 429/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6717 - accuracy: 0.6851 Epoch 430/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6710 - accuracy: 0.6857 Epoch 431/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6714 - accuracy: 0.6851 Epoch 432/500 2163/2163 [==============================] - 5s 2ms/step - loss: 0.6716 - accuracy: 0.6856 Epoch 433/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6707 - accuracy: 0.6850 Epoch 434/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6709 - accuracy: 0.6852 Epoch 435/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6711 - accuracy: 0.6860 Epoch 436/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6704 - accuracy: 0.6852 Epoch 437/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6706 - accuracy: 0.6852 Epoch 438/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6697 - accuracy: 0.6857 Epoch 439/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6705 - accuracy: 0.6858 Epoch 440/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6702 - accuracy: 0.6856 Epoch 441/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6696 - accuracy: 0.6872 Epoch 442/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6702 - accuracy: 0.6858 Epoch 443/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6691 - accuracy: 0.6857 Epoch 444/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6705 - accuracy: 0.6860 Epoch 445/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6701 - accuracy: 0.6863 Epoch 446/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6692 - accuracy: 0.6867 Epoch 447/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6692 - accuracy: 0.6864 Epoch 448/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6695 - accuracy: 0.6855 Epoch 449/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6689 - accuracy: 0.6873 Epoch 450/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6688 - accuracy: 0.6865 Epoch 451/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6693 - accuracy: 0.6848 Epoch 452/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6685 - accuracy: 0.6872 Epoch 453/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6685 - accuracy: 0.6881 Epoch 454/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6686 - accuracy: 0.6864 Epoch 455/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6680 - accuracy: 0.6879 Epoch 456/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6679 - accuracy: 0.6886 Epoch 457/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6688 - accuracy: 0.6873 Epoch 458/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6676 - accuracy: 0.6874 Epoch 459/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6678 - accuracy: 0.6862 Epoch 460/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6683 - accuracy: 0.6874 Epoch 461/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6669 - accuracy: 0.6890 Epoch 462/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6675 - accuracy: 0.6885 Epoch 463/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6682 - accuracy: 0.6871 Epoch 464/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6680 - accuracy: 0.6874 Epoch 465/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6667 - accuracy: 0.6877 Epoch 466/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6671 - accuracy: 0.6885 Epoch 467/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6672 - accuracy: 0.6870 Epoch 468/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6665 - accuracy: 0.6880 Epoch 469/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6674 - accuracy: 0.6875 Epoch 470/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6668 - accuracy: 0.6869 Epoch 471/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6663 - accuracy: 0.6894 Epoch 472/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6664 - accuracy: 0.6892 Epoch 473/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6664 - accuracy: 0.6890 Epoch 474/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6668 - accuracy: 0.6880 Epoch 475/500 2163/2163 [==============================] - 5s 3ms/step - loss: 0.6668 - accuracy: 0.6878 Epoch 476/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6663 - accuracy: 0.6897 Epoch 477/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6659 - accuracy: 0.6891 Epoch 478/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6664 - accuracy: 0.6873 Epoch 479/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6656 - accuracy: 0.6889 Epoch 480/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6657 - accuracy: 0.6884 Epoch 481/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6655 - accuracy: 0.6890 Epoch 482/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6659 - accuracy: 0.6888 Epoch 483/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6652 - accuracy: 0.6892 Epoch 484/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6656 - accuracy: 0.6889 Epoch 485/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6662 - accuracy: 0.6884 Epoch 486/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6655 - accuracy: 0.6876 Epoch 487/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6647 - accuracy: 0.6893 Epoch 488/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6652 - accuracy: 0.6893 Epoch 489/500 2163/2163 [==============================] - 7s 3ms/step - loss: 0.6651 - accuracy: 0.6890 Epoch 490/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6645 - accuracy: 0.6903 Epoch 491/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6644 - accuracy: 0.6901 Epoch 492/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6646 - accuracy: 0.6901 Epoch 493/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6644 - accuracy: 0.6898 Epoch 494/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6641 - accuracy: 0.6904 Epoch 495/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6643 - accuracy: 0.6903 Epoch 496/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6641 - accuracy: 0.6884 Epoch 497/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6646 - accuracy: 0.6899 Epoch 498/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6640 - accuracy: 0.6892 Epoch 499/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6641 - accuracy: 0.6902 Epoch 500/500 2163/2163 [==============================] - 6s 3ms/step - loss: 0.6639 - accuracy: 0.6909
<keras.callbacks.History at 0x7f5bf53a63a0>

Generamos las predicciones para train y vemos cómo performa.

def clasificar_propiedad(model, entrada): prediccion = model.predict(entrada) arg_max = np.argmax(prediccion, axis=1) return arg_max
y_pred = clasificar_propiedad(best_model, x_train_clasificacion) graficar_matriz_de_confusion(y_train_clasificacion, y_pred, outputs.keys()) imprimir_metricas_de_clasificacion(y_train_clasificacion, y_pred)
2163/2163 [==============================] - 3s 1ms/step
Image in a Jupyter notebook
Métricas de clasificación Accuracy: 0.6928990491604289 Recall: 0.6928990491604289 F1 score: 0.6931316050718525

Vemos cómo performa con los datos de test.

y_pred = clasificar_propiedad(best_model, x_test_clasificacion) graficar_matriz_de_confusion(y_test_clasificacion, y_pred, outputs.keys()) imprimir_metricas_de_clasificacion(y_test_clasificacion, y_pred)
540/540 [==============================] - 1s 1ms/step
Image in a Jupyter notebook
Métricas de clasificación Accuracy: 0.6342565766600997 Recall: 0.6342565766600997 F1 score: 0.6340227995538984

Regresión

Construimos el modelo.

d_in = x_train_regresion.shape[1] d_out = 1
def build_model(hp): model = keras.Sequential() model.add(keras.layers.Dense( hp.Int('units', min_value=32, max_value=512, step=16), activation=hp.Choice("activation", ["relu", "tanh"]), input_shape=(d_in,))) model.add(Dense(128, activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(d_out)) learning_rate = hp.Float("lr", min_value=1e-4, max_value=1e-1, sampling="log") model.compile(optimizer=keras.optimizers.Adam(learning_rate=learning_rate), loss = 'mse', metrics = ['mse'],) return model

Buscamos los mejores hiperparámetros.

tuner = kt.RandomSearch( build_model, objective='loss', max_trials=10, project_name="Regresion", overwrite=True)
stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=1) tuner.search(x_train_clasificacion, y_train_clasificacion, epochs=100, validation_split=0.2, callbacks=[stop_early]) best_model = tuner.get_best_models()[0]
Trial 10 Complete [00h 00m 29s] loss: 0.5874912738800049 Best loss So Far: 0.587153971195221 Total elapsed time: 00h 03m 50s

Imprimimos los mejores hiperparámetros encontrados y entrenamos nuevamente al modelo.

best_hps = tuner.get_best_hyperparameters()[0] best_hps.values
{'units': 224, 'activation': 'relu', 'lr': 0.00010700549249923322}
best_model = build_model(best_hps) best_model.fit(x=x_train_regresion, y=y_train_regresion, epochs=500)
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://www.tensorflow.org/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function. WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer.iter WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer.beta_1 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer.beta_2 WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer.decay WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer.learning_rate
Epoch 1/500 2163/2163 [==============================] - 6s 3ms/step - loss: 32732413952.0000 - mse: 32732413952.0000 Epoch 2/500 2163/2163 [==============================] - 5s 2ms/step - loss: 6488169984.0000 - mse: 6488169984.0000 Epoch 3/500 2163/2163 [==============================] - 6s 3ms/step - loss: 3065523968.0000 - mse: 3065523968.0000 Epoch 4/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2878243584.0000 - mse: 2878243584.0000 Epoch 5/500 2163/2163 [==============================] - 5s 3ms/step - loss: 2804150016.0000 - mse: 2804150016.0000 Epoch 6/500 2163/2163 [==============================] - 5s 3ms/step - loss: 2758620160.0000 - mse: 2758620160.0000 Epoch 7/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2727923712.0000 - mse: 2727923712.0000 Epoch 8/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2705176320.0000 - mse: 2705176320.0000 Epoch 9/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2687800832.0000 - mse: 2687800832.0000 Epoch 10/500 2163/2163 [==============================] - 5s 3ms/step - loss: 2673324288.0000 - mse: 2673324288.0000 Epoch 11/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2661199616.0000 - mse: 2661199616.0000 Epoch 12/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2651013888.0000 - mse: 2651013888.0000 Epoch 13/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2642069248.0000 - mse: 2642069248.0000 Epoch 14/500 2163/2163 [==============================] - 5s 3ms/step - loss: 2634811392.0000 - mse: 2634811392.0000 Epoch 15/500 2163/2163 [==============================] - 5s 2ms/step - loss: 2628414976.0000 - mse: 2628414976.0000 Epoch 16/500 2163/2163 [==============================] - 5s 3ms/step - loss: 2622315264.0000 - mse: 2622315264.0000 Epoch 17/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2616353280.0000 - mse: 2616353280.0000 Epoch 18/500 2163/2163 [==============================] - 5s 2ms/step - loss: 2611685120.0000 - mse: 2611685120.0000 Epoch 19/500 2163/2163 [==============================] - 5s 2ms/step - loss: 2606664448.0000 - mse: 2606664448.0000 Epoch 20/500 2163/2163 [==============================] - 5s 3ms/step - loss: 2603040000.0000 - mse: 2603040000.0000 Epoch 21/500 2163/2163 [==============================] - 5s 2ms/step - loss: 2598931968.0000 - mse: 2598931968.0000 Epoch 22/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2595731712.0000 - mse: 2595731712.0000 Epoch 23/500 2163/2163 [==============================] - 5s 3ms/step - loss: 2592449280.0000 - mse: 2592449280.0000 Epoch 24/500 2163/2163 [==============================] - 5s 3ms/step - loss: 2589044224.0000 - mse: 2589044224.0000 Epoch 25/500 2163/2163 [==============================] - 5s 2ms/step - loss: 2586116608.0000 - mse: 2586116608.0000 Epoch 26/500 2163/2163 [==============================] - 5s 2ms/step - loss: 2583699712.0000 - mse: 2583699712.0000 Epoch 27/500 2163/2163 [==============================] - 5s 2ms/step - loss: 2580941568.0000 - mse: 2580941568.0000 Epoch 28/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2579114752.0000 - mse: 2579114752.0000 Epoch 29/500 2163/2163 [==============================] - 5s 3ms/step - loss: 2576287488.0000 - mse: 2576287488.0000 Epoch 30/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2574503680.0000 - mse: 2574503680.0000 Epoch 31/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2571964416.0000 - mse: 2571964416.0000 Epoch 32/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2569635072.0000 - mse: 2569635072.0000 Epoch 33/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2568297984.0000 - mse: 2568297984.0000 Epoch 34/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2566500864.0000 - mse: 2566500864.0000 Epoch 35/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2564893952.0000 - mse: 2564893952.0000 Epoch 36/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2563148032.0000 - mse: 2563148032.0000 Epoch 37/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2561884416.0000 - mse: 2561884416.0000 Epoch 38/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2559502848.0000 - mse: 2559502848.0000 Epoch 39/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2558888448.0000 - mse: 2558888448.0000 Epoch 40/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2557254400.0000 - mse: 2557254400.0000 Epoch 41/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2555282944.0000 - mse: 2555282944.0000 Epoch 42/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2554207232.0000 - mse: 2554207232.0000 Epoch 43/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2552147968.0000 - mse: 2552147968.0000 Epoch 44/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2551307264.0000 - mse: 2551307264.0000 Epoch 45/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2549370112.0000 - mse: 2549370112.0000 Epoch 46/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2548667648.0000 - mse: 2548667648.0000 Epoch 47/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2547274496.0000 - mse: 2547274496.0000 Epoch 48/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2545530624.0000 - mse: 2545530624.0000 Epoch 49/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2544046080.0000 - mse: 2544046080.0000 Epoch 50/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2543001088.0000 - mse: 2543001088.0000 Epoch 51/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2541800704.0000 - mse: 2541800704.0000 Epoch 52/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2540523264.0000 - mse: 2540523264.0000 Epoch 53/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2539549184.0000 - mse: 2539549184.0000 Epoch 54/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2537867008.0000 - mse: 2537867008.0000 Epoch 55/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2536996864.0000 - mse: 2536996864.0000 Epoch 56/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2535478784.0000 - mse: 2535478784.0000 Epoch 57/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2533908736.0000 - mse: 2533908736.0000 Epoch 58/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2533269248.0000 - mse: 2533269248.0000 Epoch 59/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2531567872.0000 - mse: 2531567872.0000 Epoch 60/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2530421504.0000 - mse: 2530421504.0000 Epoch 61/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2528589312.0000 - mse: 2528589312.0000 Epoch 62/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2527364608.0000 - mse: 2527364608.0000 Epoch 63/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2526354688.0000 - mse: 2526354688.0000 Epoch 64/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2525059840.0000 - mse: 2525059840.0000 Epoch 65/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2523678208.0000 - mse: 2523678208.0000 Epoch 66/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2522267392.0000 - mse: 2522267392.0000 Epoch 67/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2521103872.0000 - mse: 2521103872.0000 Epoch 68/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2519354368.0000 - mse: 2519354368.0000 Epoch 69/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2517817088.0000 - mse: 2517817088.0000 Epoch 70/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2516071424.0000 - mse: 2516071424.0000 Epoch 71/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2514662656.0000 - mse: 2514662656.0000 Epoch 72/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2513143552.0000 - mse: 2513143552.0000 Epoch 73/500 2163/2163 [==============================] - 8s 4ms/step - loss: 2511861760.0000 - mse: 2511861760.0000 Epoch 74/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2510546688.0000 - mse: 2510546688.0000 Epoch 75/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2508431360.0000 - mse: 2508431360.0000 Epoch 76/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2506638080.0000 - mse: 2506638080.0000 Epoch 77/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2504494336.0000 - mse: 2504494336.0000 Epoch 78/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2502560256.0000 - mse: 2502560256.0000 Epoch 79/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2501280000.0000 - mse: 2501280000.0000 Epoch 80/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2499499264.0000 - mse: 2499499264.0000 Epoch 81/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2497174272.0000 - mse: 2497174272.0000 Epoch 82/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2495312128.0000 - mse: 2495312128.0000 Epoch 83/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2492897024.0000 - mse: 2492897024.0000 Epoch 84/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2490497792.0000 - mse: 2490497792.0000 Epoch 85/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2488095744.0000 - mse: 2488095744.0000 Epoch 86/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2485402112.0000 - mse: 2485402112.0000 Epoch 87/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2483392512.0000 - mse: 2483392512.0000 Epoch 88/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2480520448.0000 - mse: 2480520448.0000 Epoch 89/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2477408768.0000 - mse: 2477408768.0000 Epoch 90/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2475335680.0000 - mse: 2475335680.0000 Epoch 91/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2472004864.0000 - mse: 2472004864.0000 Epoch 92/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2470129408.0000 - mse: 2470129408.0000 Epoch 93/500 2163/2163 [==============================] - 8s 4ms/step - loss: 2466523648.0000 - mse: 2466523648.0000 Epoch 94/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2463677696.0000 - mse: 2463677696.0000 Epoch 95/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2459663360.0000 - mse: 2459663360.0000 Epoch 96/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2457854976.0000 - mse: 2457854976.0000 Epoch 97/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2454249472.0000 - mse: 2454249472.0000 Epoch 98/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2451349248.0000 - mse: 2451349248.0000 Epoch 99/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2447956480.0000 - mse: 2447956480.0000 Epoch 100/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2444744192.0000 - mse: 2444744192.0000 Epoch 101/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2441849344.0000 - mse: 2441849344.0000 Epoch 102/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2438049536.0000 - mse: 2438049536.0000 Epoch 103/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2435214848.0000 - mse: 2435214848.0000 Epoch 104/500 2163/2163 [==============================] - 8s 4ms/step - loss: 2431680512.0000 - mse: 2431680512.0000 Epoch 105/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2428575488.0000 - mse: 2428575488.0000 Epoch 106/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2424966144.0000 - mse: 2424966144.0000 Epoch 107/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2421763328.0000 - mse: 2421763328.0000 Epoch 108/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2418650368.0000 - mse: 2418650368.0000 Epoch 109/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2415320576.0000 - mse: 2415320576.0000 Epoch 110/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2411934720.0000 - mse: 2411934720.0000 Epoch 111/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2408559616.0000 - mse: 2408559616.0000 Epoch 112/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2405138176.0000 - mse: 2405138176.0000 Epoch 113/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2401988352.0000 - mse: 2401988352.0000 Epoch 114/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2398920192.0000 - mse: 2398920192.0000 Epoch 115/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2396034816.0000 - mse: 2396034816.0000 Epoch 116/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2392830976.0000 - mse: 2392830976.0000 Epoch 117/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2390137856.0000 - mse: 2390137856.0000 Epoch 118/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2387352064.0000 - mse: 2387352064.0000 Epoch 119/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2384671744.0000 - mse: 2384671744.0000 Epoch 120/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2381797120.0000 - mse: 2381797120.0000 Epoch 121/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2378999808.0000 - mse: 2378999808.0000 Epoch 122/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2376595968.0000 - mse: 2376595968.0000 Epoch 123/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2373659648.0000 - mse: 2373659648.0000 Epoch 124/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2371530752.0000 - mse: 2371530752.0000 Epoch 125/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2368811008.0000 - mse: 2368811008.0000 Epoch 126/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2366212352.0000 - mse: 2366212352.0000 Epoch 127/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2362543360.0000 - mse: 2362543360.0000 Epoch 128/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2361534976.0000 - mse: 2361534976.0000 Epoch 129/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2358573056.0000 - mse: 2358573056.0000 Epoch 130/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2356213504.0000 - mse: 2356213504.0000 Epoch 131/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2353868800.0000 - mse: 2353868800.0000 Epoch 132/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2351515904.0000 - mse: 2351515904.0000 Epoch 133/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2349476352.0000 - mse: 2349476352.0000 Epoch 134/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2346836480.0000 - mse: 2346836480.0000 Epoch 135/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2345253888.0000 - mse: 2345253888.0000 Epoch 136/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2343099648.0000 - mse: 2343099648.0000 Epoch 137/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2341102592.0000 - mse: 2341102592.0000 Epoch 138/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2338604544.0000 - mse: 2338604544.0000 Epoch 139/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2336492800.0000 - mse: 2336492800.0000 Epoch 140/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2334276608.0000 - mse: 2334276608.0000 Epoch 141/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2332720640.0000 - mse: 2332720640.0000 Epoch 142/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2330574336.0000 - mse: 2330574336.0000 Epoch 143/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2328431104.0000 - mse: 2328431104.0000 Epoch 144/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2325844992.0000 - mse: 2325844992.0000 Epoch 145/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2323933696.0000 - mse: 2323933696.0000 Epoch 146/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2323211776.0000 - mse: 2323211776.0000 Epoch 147/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2321231616.0000 - mse: 2321231616.0000 Epoch 148/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2319376640.0000 - mse: 2319376640.0000 Epoch 149/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2317438208.0000 - mse: 2317438208.0000 Epoch 150/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2316134144.0000 - mse: 2316134144.0000 Epoch 151/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2314102272.0000 - mse: 2314102272.0000 Epoch 152/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2311626240.0000 - mse: 2311626240.0000 Epoch 153/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2310930688.0000 - mse: 2310930688.0000 Epoch 154/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2308738048.0000 - mse: 2308738048.0000 Epoch 155/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2307095040.0000 - mse: 2307095040.0000 Epoch 156/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2305234688.0000 - mse: 2305234688.0000 Epoch 157/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2303770112.0000 - mse: 2303770112.0000 Epoch 158/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2301957632.0000 - mse: 2301957632.0000 Epoch 159/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2300369664.0000 - mse: 2300369664.0000 Epoch 160/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2298743040.0000 - mse: 2298743040.0000 Epoch 161/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2297137664.0000 - mse: 2297137664.0000 Epoch 162/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2295391488.0000 - mse: 2295391488.0000 Epoch 163/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2293946624.0000 - mse: 2293946624.0000 Epoch 164/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2291612928.0000 - mse: 2291612928.0000 Epoch 165/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2289646592.0000 - mse: 2289646592.0000 Epoch 166/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2288915200.0000 - mse: 2288915200.0000 Epoch 167/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2287650816.0000 - mse: 2287650816.0000 Epoch 168/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2285879040.0000 - mse: 2285879040.0000 Epoch 169/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2283743744.0000 - mse: 2283743744.0000 Epoch 170/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2282806016.0000 - mse: 2282806016.0000 Epoch 171/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2281210368.0000 - mse: 2281210368.0000 Epoch 172/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2279241984.0000 - mse: 2279241984.0000 Epoch 173/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2277723136.0000 - mse: 2277723136.0000 Epoch 174/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2275785984.0000 - mse: 2275785984.0000 Epoch 175/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2274328832.0000 - mse: 2274328832.0000 Epoch 176/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2273187072.0000 - mse: 2273187072.0000 Epoch 177/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2270886656.0000 - mse: 2270886656.0000 Epoch 178/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2269403648.0000 - mse: 2269403648.0000 Epoch 179/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2267573248.0000 - mse: 2267573248.0000 Epoch 180/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2266040320.0000 - mse: 2266040320.0000 Epoch 181/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2264138240.0000 - mse: 2264138240.0000 Epoch 182/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2262481920.0000 - mse: 2262481920.0000 Epoch 183/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2260829952.0000 - mse: 2260829952.0000 Epoch 184/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2258974464.0000 - mse: 2258974464.0000 Epoch 185/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2256883200.0000 - mse: 2256883200.0000 Epoch 186/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2255362304.0000 - mse: 2255362304.0000 Epoch 187/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2252989440.0000 - mse: 2252989440.0000 Epoch 188/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2251091968.0000 - mse: 2251091968.0000 Epoch 189/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2249382656.0000 - mse: 2249382656.0000 Epoch 190/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2247369728.0000 - mse: 2247369728.0000 Epoch 191/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2244731392.0000 - mse: 2244731392.0000 Epoch 192/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2243359232.0000 - mse: 2243359232.0000 Epoch 193/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2240570624.0000 - mse: 2240570624.0000 Epoch 194/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2239549952.0000 - mse: 2239549952.0000 Epoch 195/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2237370112.0000 - mse: 2237370112.0000 Epoch 196/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2235218944.0000 - mse: 2235218944.0000 Epoch 197/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2232405760.0000 - mse: 2232405760.0000 Epoch 198/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2230899968.0000 - mse: 2230899968.0000 Epoch 199/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2229107968.0000 - mse: 2229107968.0000 Epoch 200/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2227221504.0000 - mse: 2227221504.0000 Epoch 201/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2224955904.0000 - mse: 2224955904.0000 Epoch 202/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2222689024.0000 - mse: 2222689024.0000 Epoch 203/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2220928512.0000 - mse: 2220928512.0000 Epoch 204/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2218331392.0000 - mse: 2218331392.0000 Epoch 205/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2216781568.0000 - mse: 2216781568.0000 Epoch 206/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2214934528.0000 - mse: 2214934528.0000 Epoch 207/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2212673792.0000 - mse: 2212673792.0000 Epoch 208/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2210515712.0000 - mse: 2210515712.0000 Epoch 209/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2208527360.0000 - mse: 2208527360.0000 Epoch 210/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2206739456.0000 - mse: 2206739456.0000 Epoch 211/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2204417536.0000 - mse: 2204417536.0000 Epoch 212/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2202453504.0000 - mse: 2202453504.0000 Epoch 213/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2199995648.0000 - mse: 2199995648.0000 Epoch 214/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2197742336.0000 - mse: 2197742336.0000 Epoch 215/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2196084224.0000 - mse: 2196084224.0000 Epoch 216/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2193434880.0000 - mse: 2193434880.0000 Epoch 217/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2190644992.0000 - mse: 2190644992.0000 Epoch 218/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2188349696.0000 - mse: 2188349696.0000 Epoch 219/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2185961728.0000 - mse: 2185961728.0000 Epoch 220/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2183688960.0000 - mse: 2183688960.0000 Epoch 221/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2181942016.0000 - mse: 2181942016.0000 Epoch 222/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2178946560.0000 - mse: 2178946560.0000 Epoch 223/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2176656384.0000 - mse: 2176656384.0000 Epoch 224/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2174544384.0000 - mse: 2174544384.0000 Epoch 225/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2172067840.0000 - mse: 2172067840.0000 Epoch 226/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2169718272.0000 - mse: 2169718272.0000 Epoch 227/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2167760896.0000 - mse: 2167760896.0000 Epoch 228/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2165219584.0000 - mse: 2165219584.0000 Epoch 229/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2162918656.0000 - mse: 2162918656.0000 Epoch 230/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2160761088.0000 - mse: 2160761088.0000 Epoch 231/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2157750784.0000 - mse: 2157750784.0000 Epoch 232/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2155457024.0000 - mse: 2155457024.0000 Epoch 233/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2153140480.0000 - mse: 2153140480.0000 Epoch 234/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2151234304.0000 - mse: 2151234304.0000 Epoch 235/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2149476608.0000 - mse: 2149476608.0000 Epoch 236/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2147162880.0000 - mse: 2147162880.0000 Epoch 237/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2145323520.0000 - mse: 2145323520.0000 Epoch 238/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2143689216.0000 - mse: 2143689216.0000 Epoch 239/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2141670912.0000 - mse: 2141670912.0000 Epoch 240/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2140091264.0000 - mse: 2140091264.0000 Epoch 241/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2138448256.0000 - mse: 2138448256.0000 Epoch 242/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2136956672.0000 - mse: 2136956672.0000 Epoch 243/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2135331968.0000 - mse: 2135331968.0000 Epoch 244/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2133418368.0000 - mse: 2133418368.0000 Epoch 245/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2132027008.0000 - mse: 2132027008.0000 Epoch 246/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2130913664.0000 - mse: 2130913664.0000 Epoch 247/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2128594560.0000 - mse: 2128594560.0000 Epoch 248/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2127545472.0000 - mse: 2127545472.0000 Epoch 249/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2125839232.0000 - mse: 2125839232.0000 Epoch 250/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2124123520.0000 - mse: 2124123520.0000 Epoch 251/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2122974080.0000 - mse: 2122974080.0000 Epoch 252/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2121911296.0000 - mse: 2121911296.0000 Epoch 253/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2120468480.0000 - mse: 2120468480.0000 Epoch 254/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2118862336.0000 - mse: 2118862336.0000 Epoch 255/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2117618176.0000 - mse: 2117618176.0000 Epoch 256/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2117063936.0000 - mse: 2117063936.0000 Epoch 257/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2115476480.0000 - mse: 2115476480.0000 Epoch 258/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2114498688.0000 - mse: 2114498688.0000 Epoch 259/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2113769984.0000 - mse: 2113769984.0000 Epoch 260/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2112615936.0000 - mse: 2112615936.0000 Epoch 261/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2111396224.0000 - mse: 2111396224.0000 Epoch 262/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2110364160.0000 - mse: 2110364160.0000 Epoch 263/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2109166080.0000 - mse: 2109166080.0000 Epoch 264/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2108489600.0000 - mse: 2108489600.0000 Epoch 265/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2107309696.0000 - mse: 2107309696.0000 Epoch 266/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2106131200.0000 - mse: 2106131200.0000 Epoch 267/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2104596608.0000 - mse: 2104596608.0000 Epoch 268/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2104349696.0000 - mse: 2104349696.0000 Epoch 269/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2103064320.0000 - mse: 2103064320.0000 Epoch 270/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2102227456.0000 - mse: 2102227456.0000 Epoch 271/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2101116160.0000 - mse: 2101116160.0000 Epoch 272/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2100165248.0000 - mse: 2100165248.0000 Epoch 273/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2099200640.0000 - mse: 2099200640.0000 Epoch 274/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2097852928.0000 - mse: 2097852928.0000 Epoch 275/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2097716864.0000 - mse: 2097716864.0000 Epoch 276/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2095800832.0000 - mse: 2095800832.0000 Epoch 277/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2095388288.0000 - mse: 2095388288.0000 Epoch 278/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2094837888.0000 - mse: 2094837888.0000 Epoch 279/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2094057216.0000 - mse: 2094057216.0000 Epoch 280/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2092701312.0000 - mse: 2092701312.0000 Epoch 281/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2091678208.0000 - mse: 2091678208.0000 Epoch 282/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2091098752.0000 - mse: 2091098752.0000 Epoch 283/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2089991808.0000 - mse: 2089991808.0000 Epoch 284/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2088961920.0000 - mse: 2088961920.0000 Epoch 285/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2088597120.0000 - mse: 2088597120.0000 Epoch 286/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2087990784.0000 - mse: 2087990784.0000 Epoch 287/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2086846976.0000 - mse: 2086846976.0000 Epoch 288/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2085781888.0000 - mse: 2085781888.0000 Epoch 289/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2085000320.0000 - mse: 2085000320.0000 Epoch 290/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2084291072.0000 - mse: 2084291072.0000 Epoch 291/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2083326208.0000 - mse: 2083326208.0000 Epoch 292/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2082906368.0000 - mse: 2082906368.0000 Epoch 293/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2082359168.0000 - mse: 2082359168.0000 Epoch 294/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2081659904.0000 - mse: 2081659904.0000 Epoch 295/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2080017152.0000 - mse: 2080017152.0000 Epoch 296/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2079872896.0000 - mse: 2079872896.0000 Epoch 297/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2078719616.0000 - mse: 2078719616.0000 Epoch 298/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2078270208.0000 - mse: 2078270208.0000 Epoch 299/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2077491200.0000 - mse: 2077491200.0000 Epoch 300/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2076549888.0000 - mse: 2076549888.0000 Epoch 301/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2076395904.0000 - mse: 2076395904.0000 Epoch 302/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2075286912.0000 - mse: 2075286912.0000 Epoch 303/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2074562048.0000 - mse: 2074562048.0000 Epoch 304/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2074218752.0000 - mse: 2074218752.0000 Epoch 305/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2073260416.0000 - mse: 2073260416.0000 Epoch 306/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2072327552.0000 - mse: 2072327552.0000 Epoch 307/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2071856768.0000 - mse: 2071856768.0000 Epoch 308/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2070459008.0000 - mse: 2070459008.0000 Epoch 309/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2070356992.0000 - mse: 2070356992.0000 Epoch 310/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2069599360.0000 - mse: 2069599360.0000 Epoch 311/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2069073024.0000 - mse: 2069073024.0000 Epoch 312/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2067941632.0000 - mse: 2067941632.0000 Epoch 313/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2067634176.0000 - mse: 2067634176.0000 Epoch 314/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2066787072.0000 - mse: 2066787072.0000 Epoch 315/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2066710912.0000 - mse: 2066710912.0000 Epoch 316/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2065188992.0000 - mse: 2065188992.0000 Epoch 317/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2064588672.0000 - mse: 2064588672.0000 Epoch 318/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2064127744.0000 - mse: 2064127744.0000 Epoch 319/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2063104256.0000 - mse: 2063104256.0000 Epoch 320/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2062897408.0000 - mse: 2062897408.0000 Epoch 321/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2061904640.0000 - mse: 2061904640.0000 Epoch 322/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2061803264.0000 - mse: 2061803264.0000 Epoch 323/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2060518144.0000 - mse: 2060518144.0000 Epoch 324/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2060257792.0000 - mse: 2060257792.0000 Epoch 325/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2059518336.0000 - mse: 2059518336.0000 Epoch 326/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2058759424.0000 - mse: 2058759424.0000 Epoch 327/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2057922816.0000 - mse: 2057922816.0000 Epoch 328/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2057270912.0000 - mse: 2057270912.0000 Epoch 329/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2057008384.0000 - mse: 2057008384.0000 Epoch 330/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2055609216.0000 - mse: 2055609216.0000 Epoch 331/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2055638016.0000 - mse: 2055638016.0000 Epoch 332/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2054640256.0000 - mse: 2054640256.0000 Epoch 333/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2054021248.0000 - mse: 2054021248.0000 Epoch 334/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2053634816.0000 - mse: 2053634816.0000 Epoch 335/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2052874496.0000 - mse: 2052874496.0000 Epoch 336/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2052269696.0000 - mse: 2052269696.0000 Epoch 337/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2051739136.0000 - mse: 2051739136.0000 Epoch 338/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2051123840.0000 - mse: 2051123840.0000 Epoch 339/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2050267392.0000 - mse: 2050267392.0000 Epoch 340/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2049518464.0000 - mse: 2049518464.0000 Epoch 341/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2049112320.0000 - mse: 2049112320.0000 Epoch 342/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2047985024.0000 - mse: 2047985024.0000 Epoch 343/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2047634176.0000 - mse: 2047634176.0000 Epoch 344/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2047021568.0000 - mse: 2047021568.0000 Epoch 345/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2046436608.0000 - mse: 2046436608.0000 Epoch 346/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2045575936.0000 - mse: 2045575936.0000 Epoch 347/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2045228288.0000 - mse: 2045228288.0000 Epoch 348/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2044561536.0000 - mse: 2044561536.0000 Epoch 349/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2044165120.0000 - mse: 2044165120.0000 Epoch 350/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2043304320.0000 - mse: 2043304320.0000 Epoch 351/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2043119232.0000 - mse: 2043119232.0000 Epoch 352/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2042302720.0000 - mse: 2042302720.0000 Epoch 353/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2041371520.0000 - mse: 2041371520.0000 Epoch 354/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2041420544.0000 - mse: 2041420544.0000 Epoch 355/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2040527104.0000 - mse: 2040527104.0000 Epoch 356/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2039593472.0000 - mse: 2039593472.0000 Epoch 357/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2039214336.0000 - mse: 2039214336.0000 Epoch 358/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2039300352.0000 - mse: 2039300352.0000 Epoch 359/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2038657664.0000 - mse: 2038657664.0000 Epoch 360/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2037669760.0000 - mse: 2037669760.0000 Epoch 361/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2037539584.0000 - mse: 2037539584.0000 Epoch 362/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2036517248.0000 - mse: 2036517248.0000 Epoch 363/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2035881984.0000 - mse: 2035881984.0000 Epoch 364/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2035748480.0000 - mse: 2035748480.0000 Epoch 365/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2034717312.0000 - mse: 2034717312.0000 Epoch 366/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2034252800.0000 - mse: 2034252800.0000 Epoch 367/500 2163/2163 [==============================] - 7s 3ms/step - loss: 2033885568.0000 - mse: 2033885568.0000 Epoch 368/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2033089152.0000 - mse: 2033089152.0000 Epoch 369/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2033026432.0000 - mse: 2033026432.0000 Epoch 370/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2032561280.0000 - mse: 2032561280.0000 Epoch 371/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2031345792.0000 - mse: 2031345792.0000 Epoch 372/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2031750528.0000 - mse: 2031750528.0000 Epoch 373/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2030470656.0000 - mse: 2030470656.0000 Epoch 374/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2030168192.0000 - mse: 2030168192.0000 Epoch 375/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2029815936.0000 - mse: 2029815936.0000 Epoch 376/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2029331712.0000 - mse: 2029331712.0000 Epoch 377/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2028473472.0000 - mse: 2028473472.0000 Epoch 378/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2028176256.0000 - mse: 2028176256.0000 Epoch 379/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2027708160.0000 - mse: 2027708160.0000 Epoch 380/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2026744960.0000 - mse: 2026744960.0000 Epoch 381/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2026845568.0000 - mse: 2026845568.0000 Epoch 382/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2025995520.0000 - mse: 2025995520.0000 Epoch 383/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2024545408.0000 - mse: 2024545408.0000 Epoch 384/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2024927104.0000 - mse: 2024927104.0000 Epoch 385/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2024144640.0000 - mse: 2024144640.0000 Epoch 386/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2023972480.0000 - mse: 2023972480.0000 Epoch 387/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2022915840.0000 - mse: 2022915840.0000 Epoch 388/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2022712064.0000 - mse: 2022712064.0000 Epoch 389/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2022108928.0000 - mse: 2022108928.0000 Epoch 390/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2021739776.0000 - mse: 2021739776.0000 Epoch 391/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2021405184.0000 - mse: 2021405184.0000 Epoch 392/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2021406208.0000 - mse: 2021406208.0000 Epoch 393/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2020467456.0000 - mse: 2020467456.0000 Epoch 394/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2019744256.0000 - mse: 2019744256.0000 Epoch 395/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2019272064.0000 - mse: 2019272064.0000 Epoch 396/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2018926592.0000 - mse: 2018926592.0000 Epoch 397/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2018640512.0000 - mse: 2018640512.0000 Epoch 398/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2017386240.0000 - mse: 2017386240.0000 Epoch 399/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2017445632.0000 - mse: 2017445632.0000 Epoch 400/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2016327552.0000 - mse: 2016327552.0000 Epoch 401/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2016413696.0000 - mse: 2016413696.0000 Epoch 402/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2016065664.0000 - mse: 2016065664.0000 Epoch 403/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2015186432.0000 - mse: 2015186432.0000 Epoch 404/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2014348544.0000 - mse: 2014348544.0000 Epoch 405/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2013836032.0000 - mse: 2013836032.0000 Epoch 406/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2013958656.0000 - mse: 2013958656.0000 Epoch 407/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2012827904.0000 - mse: 2012827904.0000 Epoch 408/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2011954176.0000 - mse: 2011954176.0000 Epoch 409/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2012296704.0000 - mse: 2012296704.0000 Epoch 410/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2011863552.0000 - mse: 2011863552.0000 Epoch 411/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2011214720.0000 - mse: 2011214720.0000 Epoch 412/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2010453632.0000 - mse: 2010453632.0000 Epoch 413/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2010195072.0000 - mse: 2010195072.0000 Epoch 414/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2008566272.0000 - mse: 2008566272.0000 Epoch 415/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2008842880.0000 - mse: 2008842880.0000 Epoch 416/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2008287872.0000 - mse: 2008287872.0000 Epoch 417/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2007309312.0000 - mse: 2007309312.0000 Epoch 418/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2007162752.0000 - mse: 2007162752.0000 Epoch 419/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2006625280.0000 - mse: 2006625280.0000 Epoch 420/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2005723520.0000 - mse: 2005723520.0000 Epoch 421/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2005281792.0000 - mse: 2005281792.0000 Epoch 422/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2006061952.0000 - mse: 2006061952.0000 Epoch 423/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2004874752.0000 - mse: 2004874752.0000 Epoch 424/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2004610304.0000 - mse: 2004610304.0000 Epoch 425/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2004032512.0000 - mse: 2004032512.0000 Epoch 426/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2002935040.0000 - mse: 2002935040.0000 Epoch 427/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2002384128.0000 - mse: 2002384128.0000 Epoch 428/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2002178560.0000 - mse: 2002178560.0000 Epoch 429/500 2163/2163 [==============================] - 8s 4ms/step - loss: 2001542016.0000 - mse: 2001542016.0000 Epoch 430/500 2163/2163 [==============================] - 8s 4ms/step - loss: 2000992896.0000 - mse: 2000992896.0000 Epoch 431/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2000921472.0000 - mse: 2000921472.0000 Epoch 432/500 2163/2163 [==============================] - 6s 3ms/step - loss: 2000393600.0000 - mse: 2000393600.0000 Epoch 433/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1999758592.0000 - mse: 1999758592.0000 Epoch 434/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1999191424.0000 - mse: 1999191424.0000 Epoch 435/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1998681984.0000 - mse: 1998681984.0000 Epoch 436/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1998474240.0000 - mse: 1998474240.0000 Epoch 437/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1998102144.0000 - mse: 1998102144.0000 Epoch 438/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1997153792.0000 - mse: 1997153792.0000 Epoch 439/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1996696704.0000 - mse: 1996696704.0000 Epoch 440/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1996844800.0000 - mse: 1996844800.0000 Epoch 441/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1996585472.0000 - mse: 1996585472.0000 Epoch 442/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1995675904.0000 - mse: 1995675904.0000 Epoch 443/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1994835712.0000 - mse: 1994835712.0000 Epoch 444/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1994020736.0000 - mse: 1994020736.0000 Epoch 445/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1993544960.0000 - mse: 1993544960.0000 Epoch 446/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1993480320.0000 - mse: 1993480320.0000 Epoch 447/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1993120512.0000 - mse: 1993120512.0000 Epoch 448/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1992767232.0000 - mse: 1992767232.0000 Epoch 449/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1992621440.0000 - mse: 1992621440.0000 Epoch 450/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1991967104.0000 - mse: 1991967104.0000 Epoch 451/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1991883264.0000 - mse: 1991883264.0000 Epoch 452/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1991063040.0000 - mse: 1991063040.0000 Epoch 453/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1990682368.0000 - mse: 1990682368.0000 Epoch 454/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1989977216.0000 - mse: 1989977216.0000 Epoch 455/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1989668352.0000 - mse: 1989668352.0000 Epoch 456/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1989548928.0000 - mse: 1989548928.0000 Epoch 457/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1988149376.0000 - mse: 1988149376.0000 Epoch 458/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1988414848.0000 - mse: 1988414848.0000 Epoch 459/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1987443968.0000 - mse: 1987443968.0000 Epoch 460/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1986937600.0000 - mse: 1986937600.0000 Epoch 461/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1986810368.0000 - mse: 1986810368.0000 Epoch 462/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1985968512.0000 - mse: 1985968512.0000 Epoch 463/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1985556736.0000 - mse: 1985556736.0000 Epoch 464/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1985214464.0000 - mse: 1985214464.0000 Epoch 465/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1985339136.0000 - mse: 1985339136.0000 Epoch 466/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1984574976.0000 - mse: 1984574976.0000 Epoch 467/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1983832448.0000 - mse: 1983832448.0000 Epoch 468/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1983630976.0000 - mse: 1983630976.0000 Epoch 469/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1983239168.0000 - mse: 1983239168.0000 Epoch 470/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1982715904.0000 - mse: 1982715904.0000 Epoch 471/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1982576896.0000 - mse: 1982576896.0000 Epoch 472/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1982456064.0000 - mse: 1982456064.0000 Epoch 473/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1981919232.0000 - mse: 1981919232.0000 Epoch 474/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1981184128.0000 - mse: 1981184128.0000 Epoch 475/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1981062144.0000 - mse: 1981062144.0000 Epoch 476/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1979913216.0000 - mse: 1979913216.0000 Epoch 477/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1979885696.0000 - mse: 1979885696.0000 Epoch 478/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1979623296.0000 - mse: 1979623296.0000 Epoch 479/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1978377728.0000 - mse: 1978377728.0000 Epoch 480/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1978752000.0000 - mse: 1978752000.0000 Epoch 481/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1977744128.0000 - mse: 1977744128.0000 Epoch 482/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1977124992.0000 - mse: 1977124992.0000 Epoch 483/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1977038464.0000 - mse: 1977038464.0000 Epoch 484/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1976687872.0000 - mse: 1976687872.0000 Epoch 485/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1975982080.0000 - mse: 1975982080.0000 Epoch 486/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1975365376.0000 - mse: 1975365376.0000 Epoch 487/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1975362048.0000 - mse: 1975362048.0000 Epoch 488/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1974885376.0000 - mse: 1974885376.0000 Epoch 489/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1974827392.0000 - mse: 1974827392.0000 Epoch 490/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1974362752.0000 - mse: 1974362752.0000 Epoch 491/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1972717568.0000 - mse: 1972717568.0000 Epoch 492/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1973244160.0000 - mse: 1973244160.0000 Epoch 493/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1972879616.0000 - mse: 1972879616.0000 Epoch 494/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1972418816.0000 - mse: 1972418816.0000 Epoch 495/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1972549120.0000 - mse: 1972549120.0000 Epoch 496/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1971509888.0000 - mse: 1971509888.0000 Epoch 497/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1971847936.0000 - mse: 1971847936.0000 Epoch 498/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1971114112.0000 - mse: 1971114112.0000 Epoch 499/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1970574592.0000 - mse: 1970574592.0000 Epoch 500/500 2163/2163 [==============================] - 6s 3ms/step - loss: 1970048384.0000 - mse: 1970048384.0000
<keras.callbacks.History at 0x7f5bf384eb20>

Generamos las predicciones para train y vemos cómo performa.

y_pred_regresion = best_model.predict(x_train_regresion) imprimir_metricas_de_regresion(y_train_regresion, y_pred_regresion)
2163/2163 [==============================] - 3s 1ms/step Métricas de regresión El error (mse) de test es: 1965073952.8753333 El error (rmse) de test es: 44329.1546600579 El score R2 es: 0.8167946762967582

Ahora lo probamos con los datos de test.

y_pred_regresion = best_model.predict(x_test_regresion) imprimir_metricas_de_regresion(y_test_regresion, y_pred_regresion)
540/540 [==============================] - 1s 1ms/step Métricas de regresión El error (mse) de test es: 2076981265.8100636 El error (rmse) de test es: 45573.90992453976 El score R2 es: 0.8044855283509453

Conclusiones

Las redes neuronales son muy poderosas pero el hecho de que su entrenamiento sea lento y la búsqueda de hiperparámetros tenga que ser manual hace que no podamos sacarle el provecho completo.

En comparación, XGBoost tiene mejores métricas en menos tiempo, y nos permite hacer una mejor búsqueda de hiperparámetros, por lo que para nuestros objetivos nos sirve más.