Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/cpu/x86/interp_masm_x86.cpp
41144 views
1
/*
2
* Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "compiler/compiler_globals.hpp"
27
#include "interp_masm_x86.hpp"
28
#include "interpreter/interpreter.hpp"
29
#include "interpreter/interpreterRuntime.hpp"
30
#include "logging/log.hpp"
31
#include "oops/arrayOop.hpp"
32
#include "oops/markWord.hpp"
33
#include "oops/methodData.hpp"
34
#include "oops/method.hpp"
35
#include "prims/jvmtiExport.hpp"
36
#include "prims/jvmtiThreadState.hpp"
37
#include "runtime/basicLock.hpp"
38
#include "runtime/biasedLocking.hpp"
39
#include "runtime/frame.inline.hpp"
40
#include "runtime/safepointMechanism.hpp"
41
#include "runtime/sharedRuntime.hpp"
42
#include "runtime/thread.inline.hpp"
43
#include "utilities/powerOfTwo.hpp"
44
45
// Implementation of InterpreterMacroAssembler
46
47
void InterpreterMacroAssembler::jump_to_entry(address entry) {
48
assert(entry, "Entry must have been generated by now");
49
jump(RuntimeAddress(entry));
50
}
51
52
void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
53
Label update, next, none;
54
55
interp_verify_oop(obj, atos);
56
57
testptr(obj, obj);
58
jccb(Assembler::notZero, update);
59
orptr(mdo_addr, TypeEntries::null_seen);
60
jmpb(next);
61
62
bind(update);
63
Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
64
load_klass(obj, obj, tmp_load_klass);
65
66
xorptr(obj, mdo_addr);
67
testptr(obj, TypeEntries::type_klass_mask);
68
jccb(Assembler::zero, next); // klass seen before, nothing to
69
// do. The unknown bit may have been
70
// set already but no need to check.
71
72
testptr(obj, TypeEntries::type_unknown);
73
jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
74
75
cmpptr(mdo_addr, 0);
76
jccb(Assembler::equal, none);
77
cmpptr(mdo_addr, TypeEntries::null_seen);
78
jccb(Assembler::equal, none);
79
// There is a chance that the checks above (re-reading profiling
80
// data from memory) fail if another thread has just set the
81
// profiling to this obj's klass
82
xorptr(obj, mdo_addr);
83
testptr(obj, TypeEntries::type_klass_mask);
84
jccb(Assembler::zero, next);
85
86
// different than before. Cannot keep accurate profile.
87
orptr(mdo_addr, TypeEntries::type_unknown);
88
jmpb(next);
89
90
bind(none);
91
// first time here. Set profile type.
92
movptr(mdo_addr, obj);
93
94
bind(next);
95
}
96
97
void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
98
if (!ProfileInterpreter) {
99
return;
100
}
101
102
if (MethodData::profile_arguments() || MethodData::profile_return()) {
103
Label profile_continue;
104
105
test_method_data_pointer(mdp, profile_continue);
106
107
int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
108
109
cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
110
jcc(Assembler::notEqual, profile_continue);
111
112
if (MethodData::profile_arguments()) {
113
Label done;
114
int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
115
addptr(mdp, off_to_args);
116
117
for (int i = 0; i < TypeProfileArgsLimit; i++) {
118
if (i > 0 || MethodData::profile_return()) {
119
// If return value type is profiled we may have no argument to profile
120
movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
121
subl(tmp, i*TypeStackSlotEntries::per_arg_count());
122
cmpl(tmp, TypeStackSlotEntries::per_arg_count());
123
jcc(Assembler::less, done);
124
}
125
movptr(tmp, Address(callee, Method::const_offset()));
126
load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
127
// stack offset o (zero based) from the start of the argument
128
// list, for n arguments translates into offset n - o - 1 from
129
// the end of the argument list
130
subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
131
subl(tmp, 1);
132
Address arg_addr = argument_address(tmp);
133
movptr(tmp, arg_addr);
134
135
Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
136
profile_obj_type(tmp, mdo_arg_addr);
137
138
int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
139
addptr(mdp, to_add);
140
off_to_args += to_add;
141
}
142
143
if (MethodData::profile_return()) {
144
movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
145
subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
146
}
147
148
bind(done);
149
150
if (MethodData::profile_return()) {
151
// We're right after the type profile for the last
152
// argument. tmp is the number of cells left in the
153
// CallTypeData/VirtualCallTypeData to reach its end. Non null
154
// if there's a return to profile.
155
assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
156
shll(tmp, log2i_exact((int)DataLayout::cell_size));
157
addptr(mdp, tmp);
158
}
159
movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
160
} else {
161
assert(MethodData::profile_return(), "either profile call args or call ret");
162
update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
163
}
164
165
// mdp points right after the end of the
166
// CallTypeData/VirtualCallTypeData, right after the cells for the
167
// return value type if there's one
168
169
bind(profile_continue);
170
}
171
}
172
173
void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
174
assert_different_registers(mdp, ret, tmp, _bcp_register);
175
if (ProfileInterpreter && MethodData::profile_return()) {
176
Label profile_continue;
177
178
test_method_data_pointer(mdp, profile_continue);
179
180
if (MethodData::profile_return_jsr292_only()) {
181
assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
182
183
// If we don't profile all invoke bytecodes we must make sure
184
// it's a bytecode we indeed profile. We can't go back to the
185
// begining of the ProfileData we intend to update to check its
186
// type because we're right after it and we don't known its
187
// length
188
Label do_profile;
189
cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
190
jcc(Assembler::equal, do_profile);
191
cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
192
jcc(Assembler::equal, do_profile);
193
get_method(tmp);
194
cmpw(Address(tmp, Method::intrinsic_id_offset_in_bytes()), static_cast<int>(vmIntrinsics::_compiledLambdaForm));
195
jcc(Assembler::notEqual, profile_continue);
196
197
bind(do_profile);
198
}
199
200
Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
201
mov(tmp, ret);
202
profile_obj_type(tmp, mdo_ret_addr);
203
204
bind(profile_continue);
205
}
206
}
207
208
void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
209
if (ProfileInterpreter && MethodData::profile_parameters()) {
210
Label profile_continue;
211
212
test_method_data_pointer(mdp, profile_continue);
213
214
// Load the offset of the area within the MDO used for
215
// parameters. If it's negative we're not profiling any parameters
216
movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
217
testl(tmp1, tmp1);
218
jcc(Assembler::negative, profile_continue);
219
220
// Compute a pointer to the area for parameters from the offset
221
// and move the pointer to the slot for the last
222
// parameters. Collect profiling from last parameter down.
223
// mdo start + parameters offset + array length - 1
224
addptr(mdp, tmp1);
225
movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
226
decrement(tmp1, TypeStackSlotEntries::per_arg_count());
227
228
Label loop;
229
bind(loop);
230
231
int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
232
int type_base = in_bytes(ParametersTypeData::type_offset(0));
233
Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
234
Address arg_off(mdp, tmp1, per_arg_scale, off_base);
235
Address arg_type(mdp, tmp1, per_arg_scale, type_base);
236
237
// load offset on the stack from the slot for this parameter
238
movptr(tmp2, arg_off);
239
negptr(tmp2);
240
// read the parameter from the local area
241
movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
242
243
// profile the parameter
244
profile_obj_type(tmp2, arg_type);
245
246
// go to next parameter
247
decrement(tmp1, TypeStackSlotEntries::per_arg_count());
248
jcc(Assembler::positive, loop);
249
250
bind(profile_continue);
251
}
252
}
253
254
void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
255
int number_of_arguments) {
256
// interpreter specific
257
//
258
// Note: No need to save/restore bcp & locals registers
259
// since these are callee saved registers and no blocking/
260
// GC can happen in leaf calls.
261
// Further Note: DO NOT save/restore bcp/locals. If a caller has
262
// already saved them so that it can use rsi/rdi as temporaries
263
// then a save/restore here will DESTROY the copy the caller
264
// saved! There used to be a save_bcp() that only happened in
265
// the ASSERT path (no restore_bcp). Which caused bizarre failures
266
// when jvm built with ASSERTs.
267
#ifdef ASSERT
268
{
269
Label L;
270
cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
271
jcc(Assembler::equal, L);
272
stop("InterpreterMacroAssembler::call_VM_leaf_base:"
273
" last_sp != NULL");
274
bind(L);
275
}
276
#endif
277
// super call
278
MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
279
// interpreter specific
280
// LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
281
// but since they may not have been saved (and we don't want to
282
// save them here (see note above) the assert is invalid.
283
}
284
285
void InterpreterMacroAssembler::call_VM_base(Register oop_result,
286
Register java_thread,
287
Register last_java_sp,
288
address entry_point,
289
int number_of_arguments,
290
bool check_exceptions) {
291
// interpreter specific
292
//
293
// Note: Could avoid restoring locals ptr (callee saved) - however doesn't
294
// really make a difference for these runtime calls, since they are
295
// slow anyway. Btw., bcp must be saved/restored since it may change
296
// due to GC.
297
NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
298
save_bcp();
299
#ifdef ASSERT
300
{
301
Label L;
302
cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
303
jcc(Assembler::equal, L);
304
stop("InterpreterMacroAssembler::call_VM_base:"
305
" last_sp != NULL");
306
bind(L);
307
}
308
#endif /* ASSERT */
309
// super call
310
MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
311
entry_point, number_of_arguments,
312
check_exceptions);
313
// interpreter specific
314
restore_bcp();
315
restore_locals();
316
}
317
318
void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
319
if (JvmtiExport::can_pop_frame()) {
320
Label L;
321
// Initiate popframe handling only if it is not already being
322
// processed. If the flag has the popframe_processing bit set, it
323
// means that this code is called *during* popframe handling - we
324
// don't want to reenter.
325
// This method is only called just after the call into the vm in
326
// call_VM_base, so the arg registers are available.
327
Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
328
LP64_ONLY(c_rarg0);
329
movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
330
testl(pop_cond, JavaThread::popframe_pending_bit);
331
jcc(Assembler::zero, L);
332
testl(pop_cond, JavaThread::popframe_processing_bit);
333
jcc(Assembler::notZero, L);
334
// Call Interpreter::remove_activation_preserving_args_entry() to get the
335
// address of the same-named entrypoint in the generated interpreter code.
336
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
337
jmp(rax);
338
bind(L);
339
NOT_LP64(get_thread(java_thread);)
340
}
341
}
342
343
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
344
Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
345
NOT_LP64(get_thread(thread);)
346
movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
347
const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
348
const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
349
const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
350
#ifdef _LP64
351
switch (state) {
352
case atos: movptr(rax, oop_addr);
353
movptr(oop_addr, (int32_t)NULL_WORD);
354
interp_verify_oop(rax, state); break;
355
case ltos: movptr(rax, val_addr); break;
356
case btos: // fall through
357
case ztos: // fall through
358
case ctos: // fall through
359
case stos: // fall through
360
case itos: movl(rax, val_addr); break;
361
case ftos: load_float(val_addr); break;
362
case dtos: load_double(val_addr); break;
363
case vtos: /* nothing to do */ break;
364
default : ShouldNotReachHere();
365
}
366
// Clean up tos value in the thread object
367
movl(tos_addr, (int) ilgl);
368
movl(val_addr, (int32_t) NULL_WORD);
369
#else
370
const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
371
+ in_ByteSize(wordSize));
372
switch (state) {
373
case atos: movptr(rax, oop_addr);
374
movptr(oop_addr, NULL_WORD);
375
interp_verify_oop(rax, state); break;
376
case ltos:
377
movl(rdx, val_addr1); // fall through
378
case btos: // fall through
379
case ztos: // fall through
380
case ctos: // fall through
381
case stos: // fall through
382
case itos: movl(rax, val_addr); break;
383
case ftos: load_float(val_addr); break;
384
case dtos: load_double(val_addr); break;
385
case vtos: /* nothing to do */ break;
386
default : ShouldNotReachHere();
387
}
388
#endif // _LP64
389
// Clean up tos value in the thread object
390
movl(tos_addr, (int32_t) ilgl);
391
movptr(val_addr, NULL_WORD);
392
NOT_LP64(movptr(val_addr1, NULL_WORD);)
393
}
394
395
396
void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
397
if (JvmtiExport::can_force_early_return()) {
398
Label L;
399
Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
400
Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
401
402
movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
403
testptr(tmp, tmp);
404
jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
405
406
// Initiate earlyret handling only if it is not already being processed.
407
// If the flag has the earlyret_processing bit set, it means that this code
408
// is called *during* earlyret handling - we don't want to reenter.
409
movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
410
cmpl(tmp, JvmtiThreadState::earlyret_pending);
411
jcc(Assembler::notEqual, L);
412
413
// Call Interpreter::remove_activation_early_entry() to get the address of the
414
// same-named entrypoint in the generated interpreter code.
415
NOT_LP64(get_thread(java_thread);)
416
movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
417
#ifdef _LP64
418
movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
419
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
420
#else
421
pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
422
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
423
#endif // _LP64
424
jmp(rax);
425
bind(L);
426
NOT_LP64(get_thread(java_thread);)
427
}
428
}
429
430
void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
431
assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
432
load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
433
bswapl(reg);
434
shrl(reg, 16);
435
}
436
437
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
438
int bcp_offset,
439
size_t index_size) {
440
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
441
if (index_size == sizeof(u2)) {
442
load_unsigned_short(index, Address(_bcp_register, bcp_offset));
443
} else if (index_size == sizeof(u4)) {
444
movl(index, Address(_bcp_register, bcp_offset));
445
// Check if the secondary index definition is still ~x, otherwise
446
// we have to change the following assembler code to calculate the
447
// plain index.
448
assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
449
notl(index); // convert to plain index
450
} else if (index_size == sizeof(u1)) {
451
load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
452
} else {
453
ShouldNotReachHere();
454
}
455
}
456
457
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
458
Register index,
459
int bcp_offset,
460
size_t index_size) {
461
assert_different_registers(cache, index);
462
get_cache_index_at_bcp(index, bcp_offset, index_size);
463
movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
464
assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
465
// convert from field index to ConstantPoolCacheEntry index
466
assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
467
shll(index, 2);
468
}
469
470
void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
471
Register index,
472
Register bytecode,
473
int byte_no,
474
int bcp_offset,
475
size_t index_size) {
476
get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
477
// We use a 32-bit load here since the layout of 64-bit words on
478
// little-endian machines allow us that.
479
movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
480
const int shift_count = (1 + byte_no) * BitsPerByte;
481
assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
482
(byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
483
"correct shift count");
484
shrl(bytecode, shift_count);
485
assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
486
andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
487
}
488
489
void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
490
Register tmp,
491
int bcp_offset,
492
size_t index_size) {
493
assert_different_registers(cache, tmp);
494
495
get_cache_index_at_bcp(tmp, bcp_offset, index_size);
496
assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
497
// convert from field index to ConstantPoolCacheEntry index
498
// and from word offset to byte offset
499
assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
500
shll(tmp, 2 + LogBytesPerWord);
501
movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
502
// skip past the header
503
addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
504
addptr(cache, tmp); // construct pointer to cache entry
505
}
506
507
// Load object from cpool->resolved_references(index)
508
void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result,
509
Register index,
510
Register tmp) {
511
assert_different_registers(result, index);
512
513
get_constant_pool(result);
514
// load pointer for resolved_references[] objArray
515
movptr(result, Address(result, ConstantPool::cache_offset_in_bytes()));
516
movptr(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
517
resolve_oop_handle(result, tmp);
518
load_heap_oop(result, Address(result, index,
519
UseCompressedOops ? Address::times_4 : Address::times_ptr,
520
arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp);
521
}
522
523
// load cpool->resolved_klass_at(index)
524
void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass,
525
Register cpool,
526
Register index) {
527
assert_different_registers(cpool, index);
528
529
movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
530
Register resolved_klasses = cpool;
531
movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes()));
532
movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
533
}
534
535
void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no,
536
Register method,
537
Register cache,
538
Register index) {
539
assert_different_registers(cache, index);
540
541
const int method_offset = in_bytes(
542
ConstantPoolCache::base_offset() +
543
((byte_no == TemplateTable::f2_byte)
544
? ConstantPoolCacheEntry::f2_offset()
545
: ConstantPoolCacheEntry::f1_offset()));
546
547
movptr(method, Address(cache, index, Address::times_ptr, method_offset)); // get f1 Method*
548
}
549
550
// Generate a subtype check: branch to ok_is_subtype if sub_klass is a
551
// subtype of super_klass.
552
//
553
// Args:
554
// rax: superklass
555
// Rsub_klass: subklass
556
//
557
// Kills:
558
// rcx, rdi
559
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
560
Label& ok_is_subtype) {
561
assert(Rsub_klass != rax, "rax holds superklass");
562
LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
563
LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
564
assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
565
assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
566
567
// Profile the not-null value's klass.
568
profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
569
570
// Do the check.
571
check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
572
573
// Profile the failure of the check.
574
profile_typecheck_failed(rcx); // blows rcx
575
}
576
577
578
#ifndef _LP64
579
void InterpreterMacroAssembler::f2ieee() {
580
if (IEEEPrecision) {
581
fstp_s(Address(rsp, 0));
582
fld_s(Address(rsp, 0));
583
}
584
}
585
586
587
void InterpreterMacroAssembler::d2ieee() {
588
if (IEEEPrecision) {
589
fstp_d(Address(rsp, 0));
590
fld_d(Address(rsp, 0));
591
}
592
}
593
#endif // _LP64
594
595
// Java Expression Stack
596
597
void InterpreterMacroAssembler::pop_ptr(Register r) {
598
pop(r);
599
}
600
601
void InterpreterMacroAssembler::push_ptr(Register r) {
602
push(r);
603
}
604
605
void InterpreterMacroAssembler::push_i(Register r) {
606
push(r);
607
}
608
609
void InterpreterMacroAssembler::push_i_or_ptr(Register r) {
610
push(r);
611
}
612
613
void InterpreterMacroAssembler::push_f(XMMRegister r) {
614
subptr(rsp, wordSize);
615
movflt(Address(rsp, 0), r);
616
}
617
618
void InterpreterMacroAssembler::pop_f(XMMRegister r) {
619
movflt(r, Address(rsp, 0));
620
addptr(rsp, wordSize);
621
}
622
623
void InterpreterMacroAssembler::push_d(XMMRegister r) {
624
subptr(rsp, 2 * wordSize);
625
movdbl(Address(rsp, 0), r);
626
}
627
628
void InterpreterMacroAssembler::pop_d(XMMRegister r) {
629
movdbl(r, Address(rsp, 0));
630
addptr(rsp, 2 * Interpreter::stackElementSize);
631
}
632
633
#ifdef _LP64
634
void InterpreterMacroAssembler::pop_i(Register r) {
635
// XXX can't use pop currently, upper half non clean
636
movl(r, Address(rsp, 0));
637
addptr(rsp, wordSize);
638
}
639
640
void InterpreterMacroAssembler::pop_l(Register r) {
641
movq(r, Address(rsp, 0));
642
addptr(rsp, 2 * Interpreter::stackElementSize);
643
}
644
645
void InterpreterMacroAssembler::push_l(Register r) {
646
subptr(rsp, 2 * wordSize);
647
movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r );
648
movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
649
}
650
651
void InterpreterMacroAssembler::pop(TosState state) {
652
switch (state) {
653
case atos: pop_ptr(); break;
654
case btos:
655
case ztos:
656
case ctos:
657
case stos:
658
case itos: pop_i(); break;
659
case ltos: pop_l(); break;
660
case ftos: pop_f(xmm0); break;
661
case dtos: pop_d(xmm0); break;
662
case vtos: /* nothing to do */ break;
663
default: ShouldNotReachHere();
664
}
665
interp_verify_oop(rax, state);
666
}
667
668
void InterpreterMacroAssembler::push(TosState state) {
669
interp_verify_oop(rax, state);
670
switch (state) {
671
case atos: push_ptr(); break;
672
case btos:
673
case ztos:
674
case ctos:
675
case stos:
676
case itos: push_i(); break;
677
case ltos: push_l(); break;
678
case ftos: push_f(xmm0); break;
679
case dtos: push_d(xmm0); break;
680
case vtos: /* nothing to do */ break;
681
default : ShouldNotReachHere();
682
}
683
}
684
#else
685
void InterpreterMacroAssembler::pop_i(Register r) {
686
pop(r);
687
}
688
689
void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
690
pop(lo);
691
pop(hi);
692
}
693
694
void InterpreterMacroAssembler::pop_f() {
695
fld_s(Address(rsp, 0));
696
addptr(rsp, 1 * wordSize);
697
}
698
699
void InterpreterMacroAssembler::pop_d() {
700
fld_d(Address(rsp, 0));
701
addptr(rsp, 2 * wordSize);
702
}
703
704
705
void InterpreterMacroAssembler::pop(TosState state) {
706
switch (state) {
707
case atos: pop_ptr(rax); break;
708
case btos: // fall through
709
case ztos: // fall through
710
case ctos: // fall through
711
case stos: // fall through
712
case itos: pop_i(rax); break;
713
case ltos: pop_l(rax, rdx); break;
714
case ftos:
715
if (UseSSE >= 1) {
716
pop_f(xmm0);
717
} else {
718
pop_f();
719
}
720
break;
721
case dtos:
722
if (UseSSE >= 2) {
723
pop_d(xmm0);
724
} else {
725
pop_d();
726
}
727
break;
728
case vtos: /* nothing to do */ break;
729
default : ShouldNotReachHere();
730
}
731
interp_verify_oop(rax, state);
732
}
733
734
735
void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
736
push(hi);
737
push(lo);
738
}
739
740
void InterpreterMacroAssembler::push_f() {
741
// Do not schedule for no AGI! Never write beyond rsp!
742
subptr(rsp, 1 * wordSize);
743
fstp_s(Address(rsp, 0));
744
}
745
746
void InterpreterMacroAssembler::push_d() {
747
// Do not schedule for no AGI! Never write beyond rsp!
748
subptr(rsp, 2 * wordSize);
749
fstp_d(Address(rsp, 0));
750
}
751
752
753
void InterpreterMacroAssembler::push(TosState state) {
754
interp_verify_oop(rax, state);
755
switch (state) {
756
case atos: push_ptr(rax); break;
757
case btos: // fall through
758
case ztos: // fall through
759
case ctos: // fall through
760
case stos: // fall through
761
case itos: push_i(rax); break;
762
case ltos: push_l(rax, rdx); break;
763
case ftos:
764
if (UseSSE >= 1) {
765
push_f(xmm0);
766
} else {
767
push_f();
768
}
769
break;
770
case dtos:
771
if (UseSSE >= 2) {
772
push_d(xmm0);
773
} else {
774
push_d();
775
}
776
break;
777
case vtos: /* nothing to do */ break;
778
default : ShouldNotReachHere();
779
}
780
}
781
#endif // _LP64
782
783
784
// Helpers for swap and dup
785
void InterpreterMacroAssembler::load_ptr(int n, Register val) {
786
movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
787
}
788
789
void InterpreterMacroAssembler::store_ptr(int n, Register val) {
790
movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
791
}
792
793
794
void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
795
// set sender sp
796
lea(_bcp_register, Address(rsp, wordSize));
797
// record last_sp
798
movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register);
799
}
800
801
802
// Jump to from_interpreted entry of a call unless single stepping is possible
803
// in this thread in which case we must call the i2i entry
804
void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
805
prepare_to_jump_from_interpreted();
806
807
if (JvmtiExport::can_post_interpreter_events()) {
808
Label run_compiled_code;
809
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
810
// compiled code in threads for which the event is enabled. Check here for
811
// interp_only_mode if these events CAN be enabled.
812
// interp_only is an int, on little endian it is sufficient to test the byte only
813
// Is a cmpl faster?
814
LP64_ONLY(temp = r15_thread;)
815
NOT_LP64(get_thread(temp);)
816
cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
817
jccb(Assembler::zero, run_compiled_code);
818
jmp(Address(method, Method::interpreter_entry_offset()));
819
bind(run_compiled_code);
820
}
821
822
jmp(Address(method, Method::from_interpreted_offset()));
823
}
824
825
// The following two routines provide a hook so that an implementation
826
// can schedule the dispatch in two parts. x86 does not do this.
827
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
828
// Nothing x86 specific to be done here
829
}
830
831
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
832
dispatch_next(state, step);
833
}
834
835
void InterpreterMacroAssembler::dispatch_base(TosState state,
836
address* table,
837
bool verifyoop,
838
bool generate_poll) {
839
verify_FPU(1, state);
840
if (VerifyActivationFrameSize) {
841
Label L;
842
mov(rcx, rbp);
843
subptr(rcx, rsp);
844
int32_t min_frame_size =
845
(frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
846
wordSize;
847
cmpptr(rcx, (int32_t)min_frame_size);
848
jcc(Assembler::greaterEqual, L);
849
stop("broken stack frame");
850
bind(L);
851
}
852
if (verifyoop) {
853
interp_verify_oop(rax, state);
854
}
855
856
address* const safepoint_table = Interpreter::safept_table(state);
857
#ifdef _LP64
858
Label no_safepoint, dispatch;
859
if (table != safepoint_table && generate_poll) {
860
NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
861
testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
862
863
jccb(Assembler::zero, no_safepoint);
864
lea(rscratch1, ExternalAddress((address)safepoint_table));
865
jmpb(dispatch);
866
}
867
868
bind(no_safepoint);
869
lea(rscratch1, ExternalAddress((address)table));
870
bind(dispatch);
871
jmp(Address(rscratch1, rbx, Address::times_8));
872
873
#else
874
Address index(noreg, rbx, Address::times_ptr);
875
if (table != safepoint_table && generate_poll) {
876
NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
877
Label no_safepoint;
878
const Register thread = rcx;
879
get_thread(thread);
880
testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
881
882
jccb(Assembler::zero, no_safepoint);
883
ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index);
884
jump(dispatch_addr);
885
bind(no_safepoint);
886
}
887
888
{
889
ArrayAddress dispatch_addr(ExternalAddress((address)table), index);
890
jump(dispatch_addr);
891
}
892
#endif // _LP64
893
}
894
895
void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
896
dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
897
}
898
899
void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
900
dispatch_base(state, Interpreter::normal_table(state));
901
}
902
903
void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
904
dispatch_base(state, Interpreter::normal_table(state), false);
905
}
906
907
908
void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
909
// load next bytecode (load before advancing _bcp_register to prevent AGI)
910
load_unsigned_byte(rbx, Address(_bcp_register, step));
911
// advance _bcp_register
912
increment(_bcp_register, step);
913
dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
914
}
915
916
void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
917
// load current bytecode
918
load_unsigned_byte(rbx, Address(_bcp_register, 0));
919
dispatch_base(state, table);
920
}
921
922
void InterpreterMacroAssembler::narrow(Register result) {
923
924
// Get method->_constMethod->_result_type
925
movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
926
movptr(rcx, Address(rcx, Method::const_offset()));
927
load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
928
929
Label done, notBool, notByte, notChar;
930
931
// common case first
932
cmpl(rcx, T_INT);
933
jcc(Assembler::equal, done);
934
935
// mask integer result to narrower return type.
936
cmpl(rcx, T_BOOLEAN);
937
jcc(Assembler::notEqual, notBool);
938
andl(result, 0x1);
939
jmp(done);
940
941
bind(notBool);
942
cmpl(rcx, T_BYTE);
943
jcc(Assembler::notEqual, notByte);
944
LP64_ONLY(movsbl(result, result);)
945
NOT_LP64(shll(result, 24);) // truncate upper 24 bits
946
NOT_LP64(sarl(result, 24);) // and sign-extend byte
947
jmp(done);
948
949
bind(notByte);
950
cmpl(rcx, T_CHAR);
951
jcc(Assembler::notEqual, notChar);
952
LP64_ONLY(movzwl(result, result);)
953
NOT_LP64(andl(result, 0xFFFF);) // truncate upper 16 bits
954
jmp(done);
955
956
bind(notChar);
957
// cmpl(rcx, T_SHORT); // all that's left
958
// jcc(Assembler::notEqual, done);
959
LP64_ONLY(movswl(result, result);)
960
NOT_LP64(shll(result, 16);) // truncate upper 16 bits
961
NOT_LP64(sarl(result, 16);) // and sign-extend short
962
963
// Nothing to do for T_INT
964
bind(done);
965
}
966
967
// remove activation
968
//
969
// Apply stack watermark barrier.
970
// Unlock the receiver if this is a synchronized method.
971
// Unlock any Java monitors from syncronized blocks.
972
// Remove the activation from the stack.
973
//
974
// If there are locked Java monitors
975
// If throw_monitor_exception
976
// throws IllegalMonitorStateException
977
// Else if install_monitor_exception
978
// installs IllegalMonitorStateException
979
// Else
980
// no error processing
981
void InterpreterMacroAssembler::remove_activation(
982
TosState state,
983
Register ret_addr,
984
bool throw_monitor_exception,
985
bool install_monitor_exception,
986
bool notify_jvmdi) {
987
// Note: Registers rdx xmm0 may be in use for the
988
// result check if synchronized method
989
Label unlocked, unlock, no_unlock;
990
991
const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
992
const Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
993
const Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
994
// monitor pointers need different register
995
// because rdx may have the result in it
996
NOT_LP64(get_thread(rthread);)
997
998
// The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
999
// that would normally not be safe to use. Such bad returns into unsafe territory of
1000
// the stack, will call InterpreterRuntime::at_unwind.
1001
Label slow_path;
1002
Label fast_path;
1003
safepoint_poll(slow_path, rthread, true /* at_return */, false /* in_nmethod */);
1004
jmp(fast_path);
1005
bind(slow_path);
1006
push(state);
1007
set_last_Java_frame(rthread, noreg, rbp, (address)pc());
1008
super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
1009
NOT_LP64(get_thread(rthread);) // call_VM clobbered it, restore
1010
reset_last_Java_frame(rthread, true);
1011
pop(state);
1012
bind(fast_path);
1013
1014
// get the value of _do_not_unlock_if_synchronized into rdx
1015
const Address do_not_unlock_if_synchronized(rthread,
1016
in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1017
movbool(rbx, do_not_unlock_if_synchronized);
1018
movbool(do_not_unlock_if_synchronized, false); // reset the flag
1019
1020
// get method access flags
1021
movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
1022
movl(rcx, Address(rcx, Method::access_flags_offset()));
1023
testl(rcx, JVM_ACC_SYNCHRONIZED);
1024
jcc(Assembler::zero, unlocked);
1025
1026
// Don't unlock anything if the _do_not_unlock_if_synchronized flag
1027
// is set.
1028
testbool(rbx);
1029
jcc(Assembler::notZero, no_unlock);
1030
1031
// unlock monitor
1032
push(state); // save result
1033
1034
// BasicObjectLock will be first in list, since this is a
1035
// synchronized method. However, need to check that the object has
1036
// not been unlocked by an explicit monitorexit bytecode.
1037
const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
1038
wordSize - (int) sizeof(BasicObjectLock));
1039
// We use c_rarg1/rdx so that if we go slow path it will be the correct
1040
// register for unlock_object to pass to VM directly
1041
lea(robj, monitor); // address of first monitor
1042
1043
movptr(rax, Address(robj, BasicObjectLock::obj_offset_in_bytes()));
1044
testptr(rax, rax);
1045
jcc(Assembler::notZero, unlock);
1046
1047
pop(state);
1048
if (throw_monitor_exception) {
1049
// Entry already unlocked, need to throw exception
1050
NOT_LP64(empty_FPU_stack();) // remove possible return value from FPU-stack, otherwise stack could overflow
1051
call_VM(noreg, CAST_FROM_FN_PTR(address,
1052
InterpreterRuntime::throw_illegal_monitor_state_exception));
1053
should_not_reach_here();
1054
} else {
1055
// Monitor already unlocked during a stack unroll. If requested,
1056
// install an illegal_monitor_state_exception. Continue with
1057
// stack unrolling.
1058
if (install_monitor_exception) {
1059
NOT_LP64(empty_FPU_stack();)
1060
call_VM(noreg, CAST_FROM_FN_PTR(address,
1061
InterpreterRuntime::new_illegal_monitor_state_exception));
1062
}
1063
jmp(unlocked);
1064
}
1065
1066
bind(unlock);
1067
unlock_object(robj);
1068
pop(state);
1069
1070
// Check that for block-structured locking (i.e., that all locked
1071
// objects has been unlocked)
1072
bind(unlocked);
1073
1074
// rax, rdx: Might contain return value
1075
1076
// Check that all monitors are unlocked
1077
{
1078
Label loop, exception, entry, restart;
1079
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1080
const Address monitor_block_top(
1081
rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1082
const Address monitor_block_bot(
1083
rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
1084
1085
bind(restart);
1086
// We use c_rarg1 so that if we go slow path it will be the correct
1087
// register for unlock_object to pass to VM directly
1088
movptr(rmon, monitor_block_top); // points to current entry, starting
1089
// with top-most entry
1090
lea(rbx, monitor_block_bot); // points to word before bottom of
1091
// monitor block
1092
jmp(entry);
1093
1094
// Entry already locked, need to throw exception
1095
bind(exception);
1096
1097
if (throw_monitor_exception) {
1098
// Throw exception
1099
NOT_LP64(empty_FPU_stack();)
1100
MacroAssembler::call_VM(noreg,
1101
CAST_FROM_FN_PTR(address, InterpreterRuntime::
1102
throw_illegal_monitor_state_exception));
1103
should_not_reach_here();
1104
} else {
1105
// Stack unrolling. Unlock object and install illegal_monitor_exception.
1106
// Unlock does not block, so don't have to worry about the frame.
1107
// We don't have to preserve c_rarg1 since we are going to throw an exception.
1108
1109
push(state);
1110
mov(robj, rmon); // nop if robj and rmon are the same
1111
unlock_object(robj);
1112
pop(state);
1113
1114
if (install_monitor_exception) {
1115
NOT_LP64(empty_FPU_stack();)
1116
call_VM(noreg, CAST_FROM_FN_PTR(address,
1117
InterpreterRuntime::
1118
new_illegal_monitor_state_exception));
1119
}
1120
1121
jmp(restart);
1122
}
1123
1124
bind(loop);
1125
// check if current entry is used
1126
cmpptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
1127
jcc(Assembler::notEqual, exception);
1128
1129
addptr(rmon, entry_size); // otherwise advance to next entry
1130
bind(entry);
1131
cmpptr(rmon, rbx); // check if bottom reached
1132
jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1133
}
1134
1135
bind(no_unlock);
1136
1137
// jvmti support
1138
if (notify_jvmdi) {
1139
notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
1140
} else {
1141
notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1142
}
1143
1144
// remove activation
1145
// get sender sp
1146
movptr(rbx,
1147
Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1148
if (StackReservedPages > 0) {
1149
// testing if reserved zone needs to be re-enabled
1150
Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1151
Label no_reserved_zone_enabling;
1152
1153
NOT_LP64(get_thread(rthread);)
1154
1155
cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled);
1156
jcc(Assembler::equal, no_reserved_zone_enabling);
1157
1158
cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1159
jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1160
1161
call_VM_leaf(
1162
CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1163
call_VM(noreg, CAST_FROM_FN_PTR(address,
1164
InterpreterRuntime::throw_delayed_StackOverflowError));
1165
should_not_reach_here();
1166
1167
bind(no_reserved_zone_enabling);
1168
}
1169
leave(); // remove frame anchor
1170
pop(ret_addr); // get return address
1171
mov(rsp, rbx); // set sp to sender sp
1172
}
1173
1174
void InterpreterMacroAssembler::get_method_counters(Register method,
1175
Register mcs, Label& skip) {
1176
Label has_counters;
1177
movptr(mcs, Address(method, Method::method_counters_offset()));
1178
testptr(mcs, mcs);
1179
jcc(Assembler::notZero, has_counters);
1180
call_VM(noreg, CAST_FROM_FN_PTR(address,
1181
InterpreterRuntime::build_method_counters), method);
1182
movptr(mcs, Address(method,Method::method_counters_offset()));
1183
testptr(mcs, mcs);
1184
jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1185
bind(has_counters);
1186
}
1187
1188
1189
// Lock object
1190
//
1191
// Args:
1192
// rdx, c_rarg1: BasicObjectLock to be used for locking
1193
//
1194
// Kills:
1195
// rax, rbx
1196
void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1197
assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1198
"The argument is only for looks. It must be c_rarg1");
1199
1200
if (UseHeavyMonitors) {
1201
call_VM(noreg,
1202
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1203
lock_reg);
1204
} else {
1205
Label done;
1206
1207
const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1208
const Register tmp_reg = rbx; // Will be passed to biased_locking_enter to avoid a
1209
// problematic case where tmp_reg = no_reg.
1210
const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1211
const Register rklass_decode_tmp = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1212
1213
const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
1214
const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
1215
const int mark_offset = lock_offset +
1216
BasicLock::displaced_header_offset_in_bytes();
1217
1218
Label slow_case;
1219
1220
// Load object pointer into obj_reg
1221
movptr(obj_reg, Address(lock_reg, obj_offset));
1222
1223
if (DiagnoseSyncOnValueBasedClasses != 0) {
1224
load_klass(tmp_reg, obj_reg, rklass_decode_tmp);
1225
movl(tmp_reg, Address(tmp_reg, Klass::access_flags_offset()));
1226
testl(tmp_reg, JVM_ACC_IS_VALUE_BASED_CLASS);
1227
jcc(Assembler::notZero, slow_case);
1228
}
1229
1230
if (UseBiasedLocking) {
1231
biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp_reg, rklass_decode_tmp, false, done, &slow_case);
1232
}
1233
1234
// Load immediate 1 into swap_reg %rax
1235
movl(swap_reg, (int32_t)1);
1236
1237
// Load (object->mark() | 1) into swap_reg %rax
1238
orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1239
1240
// Save (object->mark() | 1) into BasicLock's displaced header
1241
movptr(Address(lock_reg, mark_offset), swap_reg);
1242
1243
assert(lock_offset == 0,
1244
"displaced header must be first word in BasicObjectLock");
1245
1246
lock();
1247
cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1248
if (PrintBiasedLockingStatistics) {
1249
cond_inc32(Assembler::zero,
1250
ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1251
}
1252
jcc(Assembler::zero, done);
1253
1254
const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1255
1256
// Fast check for recursive lock.
1257
//
1258
// Can apply the optimization only if this is a stack lock
1259
// allocated in this thread. For efficiency, we can focus on
1260
// recently allocated stack locks (instead of reading the stack
1261
// base and checking whether 'mark' points inside the current
1262
// thread stack):
1263
// 1) (mark & zero_bits) == 0, and
1264
// 2) rsp <= mark < mark + os::pagesize()
1265
//
1266
// Warning: rsp + os::pagesize can overflow the stack base. We must
1267
// neither apply the optimization for an inflated lock allocated
1268
// just above the thread stack (this is why condition 1 matters)
1269
// nor apply the optimization if the stack lock is inside the stack
1270
// of another thread. The latter is avoided even in case of overflow
1271
// because we have guard pages at the end of all stacks. Hence, if
1272
// we go over the stack base and hit the stack of another thread,
1273
// this should not be in a writeable area that could contain a
1274
// stack lock allocated by that thread. As a consequence, a stack
1275
// lock less than page size away from rsp is guaranteed to be
1276
// owned by the current thread.
1277
//
1278
// These 3 tests can be done by evaluating the following
1279
// expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1280
// assuming both stack pointer and pagesize have their
1281
// least significant bits clear.
1282
// NOTE: the mark is in swap_reg %rax as the result of cmpxchg
1283
subptr(swap_reg, rsp);
1284
andptr(swap_reg, zero_bits - os::vm_page_size());
1285
1286
// Save the test result, for recursive case, the result is zero
1287
movptr(Address(lock_reg, mark_offset), swap_reg);
1288
1289
if (PrintBiasedLockingStatistics) {
1290
cond_inc32(Assembler::zero,
1291
ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
1292
}
1293
jcc(Assembler::zero, done);
1294
1295
bind(slow_case);
1296
1297
// Call the runtime routine for slow case
1298
call_VM(noreg,
1299
CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1300
lock_reg);
1301
1302
bind(done);
1303
}
1304
}
1305
1306
1307
// Unlocks an object. Used in monitorexit bytecode and
1308
// remove_activation. Throws an IllegalMonitorException if object is
1309
// not locked by current thread.
1310
//
1311
// Args:
1312
// rdx, c_rarg1: BasicObjectLock for lock
1313
//
1314
// Kills:
1315
// rax
1316
// c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1317
// rscratch1 (scratch reg)
1318
// rax, rbx, rcx, rdx
1319
void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1320
assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1321
"The argument is only for looks. It must be c_rarg1");
1322
1323
if (UseHeavyMonitors) {
1324
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1325
} else {
1326
Label done;
1327
1328
const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1329
const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx); // Will contain the old oopMark
1330
const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1331
1332
save_bcp(); // Save in case of exception
1333
1334
// Convert from BasicObjectLock structure to object and BasicLock
1335
// structure Store the BasicLock address into %rax
1336
lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
1337
1338
// Load oop into obj_reg(%c_rarg3)
1339
movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
1340
1341
// Free entry
1342
movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
1343
1344
if (UseBiasedLocking) {
1345
biased_locking_exit(obj_reg, header_reg, done);
1346
}
1347
1348
// Load the old header from BasicLock structure
1349
movptr(header_reg, Address(swap_reg,
1350
BasicLock::displaced_header_offset_in_bytes()));
1351
1352
// Test for recursion
1353
testptr(header_reg, header_reg);
1354
1355
// zero for recursive case
1356
jcc(Assembler::zero, done);
1357
1358
// Atomic swap back the old header
1359
lock();
1360
cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1361
1362
// zero for simple unlock of a stack-lock case
1363
jcc(Assembler::zero, done);
1364
1365
1366
// Call the runtime routine for slow case.
1367
movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
1368
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1369
1370
bind(done);
1371
1372
restore_bcp();
1373
}
1374
}
1375
1376
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1377
Label& zero_continue) {
1378
assert(ProfileInterpreter, "must be profiling interpreter");
1379
movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1380
testptr(mdp, mdp);
1381
jcc(Assembler::zero, zero_continue);
1382
}
1383
1384
1385
// Set the method data pointer for the current bcp.
1386
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1387
assert(ProfileInterpreter, "must be profiling interpreter");
1388
Label set_mdp;
1389
push(rax);
1390
push(rbx);
1391
1392
get_method(rbx);
1393
// Test MDO to avoid the call if it is NULL.
1394
movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1395
testptr(rax, rax);
1396
jcc(Assembler::zero, set_mdp);
1397
// rbx: method
1398
// _bcp_register: bcp
1399
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1400
// rax: mdi
1401
// mdo is guaranteed to be non-zero here, we checked for it before the call.
1402
movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1403
addptr(rbx, in_bytes(MethodData::data_offset()));
1404
addptr(rax, rbx);
1405
bind(set_mdp);
1406
movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1407
pop(rbx);
1408
pop(rax);
1409
}
1410
1411
void InterpreterMacroAssembler::verify_method_data_pointer() {
1412
assert(ProfileInterpreter, "must be profiling interpreter");
1413
#ifdef ASSERT
1414
Label verify_continue;
1415
push(rax);
1416
push(rbx);
1417
Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1418
Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1419
push(arg3_reg);
1420
push(arg2_reg);
1421
test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1422
get_method(rbx);
1423
1424
// If the mdp is valid, it will point to a DataLayout header which is
1425
// consistent with the bcp. The converse is highly probable also.
1426
load_unsigned_short(arg2_reg,
1427
Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1428
addptr(arg2_reg, Address(rbx, Method::const_offset()));
1429
lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1430
cmpptr(arg2_reg, _bcp_register);
1431
jcc(Assembler::equal, verify_continue);
1432
// rbx: method
1433
// _bcp_register: bcp
1434
// c_rarg3: mdp
1435
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1436
rbx, _bcp_register, arg3_reg);
1437
bind(verify_continue);
1438
pop(arg2_reg);
1439
pop(arg3_reg);
1440
pop(rbx);
1441
pop(rax);
1442
#endif // ASSERT
1443
}
1444
1445
1446
void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1447
int constant,
1448
Register value) {
1449
assert(ProfileInterpreter, "must be profiling interpreter");
1450
Address data(mdp_in, constant);
1451
movptr(data, value);
1452
}
1453
1454
1455
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1456
int constant,
1457
bool decrement) {
1458
// Counter address
1459
Address data(mdp_in, constant);
1460
1461
increment_mdp_data_at(data, decrement);
1462
}
1463
1464
void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1465
bool decrement) {
1466
assert(ProfileInterpreter, "must be profiling interpreter");
1467
// %%% this does 64bit counters at best it is wasting space
1468
// at worst it is a rare bug when counters overflow
1469
1470
if (decrement) {
1471
// Decrement the register. Set condition codes.
1472
addptr(data, (int32_t) -DataLayout::counter_increment);
1473
// If the decrement causes the counter to overflow, stay negative
1474
Label L;
1475
jcc(Assembler::negative, L);
1476
addptr(data, (int32_t) DataLayout::counter_increment);
1477
bind(L);
1478
} else {
1479
assert(DataLayout::counter_increment == 1,
1480
"flow-free idiom only works with 1");
1481
// Increment the register. Set carry flag.
1482
addptr(data, DataLayout::counter_increment);
1483
// If the increment causes the counter to overflow, pull back by 1.
1484
sbbptr(data, (int32_t)0);
1485
}
1486
}
1487
1488
1489
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1490
Register reg,
1491
int constant,
1492
bool decrement) {
1493
Address data(mdp_in, reg, Address::times_1, constant);
1494
1495
increment_mdp_data_at(data, decrement);
1496
}
1497
1498
void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1499
int flag_byte_constant) {
1500
assert(ProfileInterpreter, "must be profiling interpreter");
1501
int header_offset = in_bytes(DataLayout::flags_offset());
1502
int header_bits = flag_byte_constant;
1503
// Set the flag
1504
orb(Address(mdp_in, header_offset), header_bits);
1505
}
1506
1507
1508
1509
void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1510
int offset,
1511
Register value,
1512
Register test_value_out,
1513
Label& not_equal_continue) {
1514
assert(ProfileInterpreter, "must be profiling interpreter");
1515
if (test_value_out == noreg) {
1516
cmpptr(value, Address(mdp_in, offset));
1517
} else {
1518
// Put the test value into a register, so caller can use it:
1519
movptr(test_value_out, Address(mdp_in, offset));
1520
cmpptr(test_value_out, value);
1521
}
1522
jcc(Assembler::notEqual, not_equal_continue);
1523
}
1524
1525
1526
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1527
int offset_of_disp) {
1528
assert(ProfileInterpreter, "must be profiling interpreter");
1529
Address disp_address(mdp_in, offset_of_disp);
1530
addptr(mdp_in, disp_address);
1531
movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1532
}
1533
1534
1535
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1536
Register reg,
1537
int offset_of_disp) {
1538
assert(ProfileInterpreter, "must be profiling interpreter");
1539
Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1540
addptr(mdp_in, disp_address);
1541
movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1542
}
1543
1544
1545
void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1546
int constant) {
1547
assert(ProfileInterpreter, "must be profiling interpreter");
1548
addptr(mdp_in, constant);
1549
movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1550
}
1551
1552
1553
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1554
assert(ProfileInterpreter, "must be profiling interpreter");
1555
push(return_bci); // save/restore across call_VM
1556
call_VM(noreg,
1557
CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1558
return_bci);
1559
pop(return_bci);
1560
}
1561
1562
1563
void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1564
Register bumped_count) {
1565
if (ProfileInterpreter) {
1566
Label profile_continue;
1567
1568
// If no method data exists, go to profile_continue.
1569
// Otherwise, assign to mdp
1570
test_method_data_pointer(mdp, profile_continue);
1571
1572
// We are taking a branch. Increment the taken count.
1573
// We inline increment_mdp_data_at to return bumped_count in a register
1574
//increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1575
Address data(mdp, in_bytes(JumpData::taken_offset()));
1576
movptr(bumped_count, data);
1577
assert(DataLayout::counter_increment == 1,
1578
"flow-free idiom only works with 1");
1579
addptr(bumped_count, DataLayout::counter_increment);
1580
sbbptr(bumped_count, 0);
1581
movptr(data, bumped_count); // Store back out
1582
1583
// The method data pointer needs to be updated to reflect the new target.
1584
update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1585
bind(profile_continue);
1586
}
1587
}
1588
1589
1590
void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1591
if (ProfileInterpreter) {
1592
Label profile_continue;
1593
1594
// If no method data exists, go to profile_continue.
1595
test_method_data_pointer(mdp, profile_continue);
1596
1597
// We are taking a branch. Increment the not taken count.
1598
increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1599
1600
// The method data pointer needs to be updated to correspond to
1601
// the next bytecode
1602
update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1603
bind(profile_continue);
1604
}
1605
}
1606
1607
void InterpreterMacroAssembler::profile_call(Register mdp) {
1608
if (ProfileInterpreter) {
1609
Label profile_continue;
1610
1611
// If no method data exists, go to profile_continue.
1612
test_method_data_pointer(mdp, profile_continue);
1613
1614
// We are making a call. Increment the count.
1615
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1616
1617
// The method data pointer needs to be updated to reflect the new target.
1618
update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1619
bind(profile_continue);
1620
}
1621
}
1622
1623
1624
void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1625
if (ProfileInterpreter) {
1626
Label profile_continue;
1627
1628
// If no method data exists, go to profile_continue.
1629
test_method_data_pointer(mdp, profile_continue);
1630
1631
// We are making a call. Increment the count.
1632
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1633
1634
// The method data pointer needs to be updated to reflect the new target.
1635
update_mdp_by_constant(mdp,
1636
in_bytes(VirtualCallData::
1637
virtual_call_data_size()));
1638
bind(profile_continue);
1639
}
1640
}
1641
1642
1643
void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1644
Register mdp,
1645
Register reg2,
1646
bool receiver_can_be_null) {
1647
if (ProfileInterpreter) {
1648
Label profile_continue;
1649
1650
// If no method data exists, go to profile_continue.
1651
test_method_data_pointer(mdp, profile_continue);
1652
1653
Label skip_receiver_profile;
1654
if (receiver_can_be_null) {
1655
Label not_null;
1656
testptr(receiver, receiver);
1657
jccb(Assembler::notZero, not_null);
1658
// We are making a call. Increment the count for null receiver.
1659
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1660
jmp(skip_receiver_profile);
1661
bind(not_null);
1662
}
1663
1664
// Record the receiver type.
1665
record_klass_in_profile(receiver, mdp, reg2, true);
1666
bind(skip_receiver_profile);
1667
1668
// The method data pointer needs to be updated to reflect the new target.
1669
update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1670
bind(profile_continue);
1671
}
1672
}
1673
1674
// This routine creates a state machine for updating the multi-row
1675
// type profile at a virtual call site (or other type-sensitive bytecode).
1676
// The machine visits each row (of receiver/count) until the receiver type
1677
// is found, or until it runs out of rows. At the same time, it remembers
1678
// the location of the first empty row. (An empty row records null for its
1679
// receiver, and can be allocated for a newly-observed receiver type.)
1680
// Because there are two degrees of freedom in the state, a simple linear
1681
// search will not work; it must be a decision tree. Hence this helper
1682
// function is recursive, to generate the required tree structured code.
1683
// It's the interpreter, so we are trading off code space for speed.
1684
// See below for example code.
1685
void InterpreterMacroAssembler::record_klass_in_profile_helper(
1686
Register receiver, Register mdp,
1687
Register reg2, int start_row,
1688
Label& done, bool is_virtual_call) {
1689
if (TypeProfileWidth == 0) {
1690
if (is_virtual_call) {
1691
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1692
}
1693
#if INCLUDE_JVMCI
1694
else if (EnableJVMCI) {
1695
increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1696
}
1697
#endif // INCLUDE_JVMCI
1698
} else {
1699
int non_profiled_offset = -1;
1700
if (is_virtual_call) {
1701
non_profiled_offset = in_bytes(CounterData::count_offset());
1702
}
1703
#if INCLUDE_JVMCI
1704
else if (EnableJVMCI) {
1705
non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1706
}
1707
#endif // INCLUDE_JVMCI
1708
1709
record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1710
&VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1711
}
1712
}
1713
1714
void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1715
Register reg2, int start_row, Label& done, int total_rows,
1716
OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1717
int non_profiled_offset) {
1718
int last_row = total_rows - 1;
1719
assert(start_row <= last_row, "must be work left to do");
1720
// Test this row for both the item and for null.
1721
// Take any of three different outcomes:
1722
// 1. found item => increment count and goto done
1723
// 2. found null => keep looking for case 1, maybe allocate this cell
1724
// 3. found something else => keep looking for cases 1 and 2
1725
// Case 3 is handled by a recursive call.
1726
for (int row = start_row; row <= last_row; row++) {
1727
Label next_test;
1728
bool test_for_null_also = (row == start_row);
1729
1730
// See if the item is item[n].
1731
int item_offset = in_bytes(item_offset_fn(row));
1732
test_mdp_data_at(mdp, item_offset, item,
1733
(test_for_null_also ? reg2 : noreg),
1734
next_test);
1735
// (Reg2 now contains the item from the CallData.)
1736
1737
// The item is item[n]. Increment count[n].
1738
int count_offset = in_bytes(item_count_offset_fn(row));
1739
increment_mdp_data_at(mdp, count_offset);
1740
jmp(done);
1741
bind(next_test);
1742
1743
if (test_for_null_also) {
1744
// Failed the equality check on item[n]... Test for null.
1745
testptr(reg2, reg2);
1746
if (start_row == last_row) {
1747
// The only thing left to do is handle the null case.
1748
if (non_profiled_offset >= 0) {
1749
Label found_null;
1750
jccb(Assembler::zero, found_null);
1751
// Item did not match any saved item and there is no empty row for it.
1752
// Increment total counter to indicate polymorphic case.
1753
increment_mdp_data_at(mdp, non_profiled_offset);
1754
jmp(done);
1755
bind(found_null);
1756
} else {
1757
jcc(Assembler::notZero, done);
1758
}
1759
break;
1760
}
1761
Label found_null;
1762
// Since null is rare, make it be the branch-taken case.
1763
jcc(Assembler::zero, found_null);
1764
1765
// Put all the "Case 3" tests here.
1766
record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1767
item_offset_fn, item_count_offset_fn, non_profiled_offset);
1768
1769
// Found a null. Keep searching for a matching item,
1770
// but remember that this is an empty (unused) slot.
1771
bind(found_null);
1772
}
1773
}
1774
1775
// In the fall-through case, we found no matching item, but we
1776
// observed the item[start_row] is NULL.
1777
1778
// Fill in the item field and increment the count.
1779
int item_offset = in_bytes(item_offset_fn(start_row));
1780
set_mdp_data_at(mdp, item_offset, item);
1781
int count_offset = in_bytes(item_count_offset_fn(start_row));
1782
movl(reg2, DataLayout::counter_increment);
1783
set_mdp_data_at(mdp, count_offset, reg2);
1784
if (start_row > 0) {
1785
jmp(done);
1786
}
1787
}
1788
1789
// Example state machine code for three profile rows:
1790
// // main copy of decision tree, rooted at row[1]
1791
// if (row[0].rec == rec) { row[0].incr(); goto done; }
1792
// if (row[0].rec != NULL) {
1793
// // inner copy of decision tree, rooted at row[1]
1794
// if (row[1].rec == rec) { row[1].incr(); goto done; }
1795
// if (row[1].rec != NULL) {
1796
// // degenerate decision tree, rooted at row[2]
1797
// if (row[2].rec == rec) { row[2].incr(); goto done; }
1798
// if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1799
// row[2].init(rec); goto done;
1800
// } else {
1801
// // remember row[1] is empty
1802
// if (row[2].rec == rec) { row[2].incr(); goto done; }
1803
// row[1].init(rec); goto done;
1804
// }
1805
// } else {
1806
// // remember row[0] is empty
1807
// if (row[1].rec == rec) { row[1].incr(); goto done; }
1808
// if (row[2].rec == rec) { row[2].incr(); goto done; }
1809
// row[0].init(rec); goto done;
1810
// }
1811
// done:
1812
1813
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1814
Register mdp, Register reg2,
1815
bool is_virtual_call) {
1816
assert(ProfileInterpreter, "must be profiling");
1817
Label done;
1818
1819
record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1820
1821
bind (done);
1822
}
1823
1824
void InterpreterMacroAssembler::profile_ret(Register return_bci,
1825
Register mdp) {
1826
if (ProfileInterpreter) {
1827
Label profile_continue;
1828
uint row;
1829
1830
// If no method data exists, go to profile_continue.
1831
test_method_data_pointer(mdp, profile_continue);
1832
1833
// Update the total ret count.
1834
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1835
1836
for (row = 0; row < RetData::row_limit(); row++) {
1837
Label next_test;
1838
1839
// See if return_bci is equal to bci[n]:
1840
test_mdp_data_at(mdp,
1841
in_bytes(RetData::bci_offset(row)),
1842
return_bci, noreg,
1843
next_test);
1844
1845
// return_bci is equal to bci[n]. Increment the count.
1846
increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1847
1848
// The method data pointer needs to be updated to reflect the new target.
1849
update_mdp_by_offset(mdp,
1850
in_bytes(RetData::bci_displacement_offset(row)));
1851
jmp(profile_continue);
1852
bind(next_test);
1853
}
1854
1855
update_mdp_for_ret(return_bci);
1856
1857
bind(profile_continue);
1858
}
1859
}
1860
1861
1862
void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1863
if (ProfileInterpreter) {
1864
Label profile_continue;
1865
1866
// If no method data exists, go to profile_continue.
1867
test_method_data_pointer(mdp, profile_continue);
1868
1869
set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1870
1871
// The method data pointer needs to be updated.
1872
int mdp_delta = in_bytes(BitData::bit_data_size());
1873
if (TypeProfileCasts) {
1874
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1875
}
1876
update_mdp_by_constant(mdp, mdp_delta);
1877
1878
bind(profile_continue);
1879
}
1880
}
1881
1882
1883
void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1884
if (ProfileInterpreter && TypeProfileCasts) {
1885
Label profile_continue;
1886
1887
// If no method data exists, go to profile_continue.
1888
test_method_data_pointer(mdp, profile_continue);
1889
1890
int count_offset = in_bytes(CounterData::count_offset());
1891
// Back up the address, since we have already bumped the mdp.
1892
count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1893
1894
// *Decrement* the counter. We expect to see zero or small negatives.
1895
increment_mdp_data_at(mdp, count_offset, true);
1896
1897
bind (profile_continue);
1898
}
1899
}
1900
1901
1902
void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1903
if (ProfileInterpreter) {
1904
Label profile_continue;
1905
1906
// If no method data exists, go to profile_continue.
1907
test_method_data_pointer(mdp, profile_continue);
1908
1909
// The method data pointer needs to be updated.
1910
int mdp_delta = in_bytes(BitData::bit_data_size());
1911
if (TypeProfileCasts) {
1912
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1913
1914
// Record the object type.
1915
record_klass_in_profile(klass, mdp, reg2, false);
1916
NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
1917
NOT_LP64(restore_locals();) // Restore EDI
1918
}
1919
update_mdp_by_constant(mdp, mdp_delta);
1920
1921
bind(profile_continue);
1922
}
1923
}
1924
1925
1926
void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1927
if (ProfileInterpreter) {
1928
Label profile_continue;
1929
1930
// If no method data exists, go to profile_continue.
1931
test_method_data_pointer(mdp, profile_continue);
1932
1933
// Update the default case count
1934
increment_mdp_data_at(mdp,
1935
in_bytes(MultiBranchData::default_count_offset()));
1936
1937
// The method data pointer needs to be updated.
1938
update_mdp_by_offset(mdp,
1939
in_bytes(MultiBranchData::
1940
default_displacement_offset()));
1941
1942
bind(profile_continue);
1943
}
1944
}
1945
1946
1947
void InterpreterMacroAssembler::profile_switch_case(Register index,
1948
Register mdp,
1949
Register reg2) {
1950
if (ProfileInterpreter) {
1951
Label profile_continue;
1952
1953
// If no method data exists, go to profile_continue.
1954
test_method_data_pointer(mdp, profile_continue);
1955
1956
// Build the base (index * per_case_size_in_bytes()) +
1957
// case_array_offset_in_bytes()
1958
movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1959
imulptr(index, reg2); // XXX l ?
1960
addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1961
1962
// Update the case count
1963
increment_mdp_data_at(mdp,
1964
index,
1965
in_bytes(MultiBranchData::relative_count_offset()));
1966
1967
// The method data pointer needs to be updated.
1968
update_mdp_by_offset(mdp,
1969
index,
1970
in_bytes(MultiBranchData::
1971
relative_displacement_offset()));
1972
1973
bind(profile_continue);
1974
}
1975
}
1976
1977
1978
1979
void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1980
if (state == atos) {
1981
MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1982
}
1983
}
1984
1985
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1986
#ifndef _LP64
1987
if ((state == ftos && UseSSE < 1) ||
1988
(state == dtos && UseSSE < 2)) {
1989
MacroAssembler::verify_FPU(stack_depth);
1990
}
1991
#endif
1992
}
1993
1994
// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1995
void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1996
int increment, Address mask,
1997
Register scratch, bool preloaded,
1998
Condition cond, Label* where) {
1999
if (!preloaded) {
2000
movl(scratch, counter_addr);
2001
}
2002
incrementl(scratch, increment);
2003
movl(counter_addr, scratch);
2004
andl(scratch, mask);
2005
if (where != NULL) {
2006
jcc(cond, *where);
2007
}
2008
}
2009
2010
void InterpreterMacroAssembler::notify_method_entry() {
2011
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2012
// track stack depth. If it is possible to enter interp_only_mode we add
2013
// the code to check if the event should be sent.
2014
Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2015
Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2016
if (JvmtiExport::can_post_interpreter_events()) {
2017
Label L;
2018
NOT_LP64(get_thread(rthread);)
2019
movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2020
testl(rdx, rdx);
2021
jcc(Assembler::zero, L);
2022
call_VM(noreg, CAST_FROM_FN_PTR(address,
2023
InterpreterRuntime::post_method_entry));
2024
bind(L);
2025
}
2026
2027
{
2028
SkipIfEqual skip(this, &DTraceMethodProbes, false);
2029
NOT_LP64(get_thread(rthread);)
2030
get_method(rarg);
2031
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2032
rthread, rarg);
2033
}
2034
2035
// RedefineClasses() tracing support for obsolete method entry
2036
if (log_is_enabled(Trace, redefine, class, obsolete)) {
2037
NOT_LP64(get_thread(rthread);)
2038
get_method(rarg);
2039
call_VM_leaf(
2040
CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2041
rthread, rarg);
2042
}
2043
}
2044
2045
2046
void InterpreterMacroAssembler::notify_method_exit(
2047
TosState state, NotifyMethodExitMode mode) {
2048
// Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2049
// track stack depth. If it is possible to enter interp_only_mode we add
2050
// the code to check if the event should be sent.
2051
Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2052
Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2053
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2054
Label L;
2055
// Note: frame::interpreter_frame_result has a dependency on how the
2056
// method result is saved across the call to post_method_exit. If this
2057
// is changed then the interpreter_frame_result implementation will
2058
// need to be updated too.
2059
2060
// template interpreter will leave the result on the top of the stack.
2061
push(state);
2062
NOT_LP64(get_thread(rthread);)
2063
movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2064
testl(rdx, rdx);
2065
jcc(Assembler::zero, L);
2066
call_VM(noreg,
2067
CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2068
bind(L);
2069
pop(state);
2070
}
2071
2072
{
2073
SkipIfEqual skip(this, &DTraceMethodProbes, false);
2074
push(state);
2075
NOT_LP64(get_thread(rthread);)
2076
get_method(rarg);
2077
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2078
rthread, rarg);
2079
pop(state);
2080
}
2081
}
2082
2083