Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/adlc/output_c.cpp
41144 views
1
/*
2
* Copyright (c) 1998, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
// output_c.cpp - Class CPP file output routines for architecture definition
26
27
#include "adlc.hpp"
28
29
// Utilities to characterize effect statements
30
static bool is_def(int usedef) {
31
switch(usedef) {
32
case Component::DEF:
33
case Component::USE_DEF: return true; break;
34
}
35
return false;
36
}
37
38
// Define an array containing the machine register names, strings.
39
static void defineRegNames(FILE *fp, RegisterForm *registers) {
40
if (registers) {
41
fprintf(fp,"\n");
42
fprintf(fp,"// An array of character pointers to machine register names.\n");
43
fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
44
45
// Output the register name for each register in the allocation classes
46
RegDef *reg_def = NULL;
47
RegDef *next = NULL;
48
registers->reset_RegDefs();
49
for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
50
next = registers->iter_RegDefs();
51
const char *comma = (next != NULL) ? "," : " // no trailing comma";
52
fprintf(fp," \"%s\"%s\n", reg_def->_regname, comma);
53
}
54
55
// Finish defining enumeration
56
fprintf(fp,"};\n");
57
58
fprintf(fp,"\n");
59
fprintf(fp,"// An array of character pointers to machine register names.\n");
60
fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
61
reg_def = NULL;
62
next = NULL;
63
registers->reset_RegDefs();
64
for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
65
next = registers->iter_RegDefs();
66
const char *comma = (next != NULL) ? "," : " // no trailing comma";
67
fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
68
}
69
// Finish defining array
70
fprintf(fp,"\t};\n");
71
fprintf(fp,"\n");
72
73
fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
74
75
}
76
}
77
78
// Define an array containing the machine register encoding values
79
static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
80
if (registers) {
81
fprintf(fp,"\n");
82
fprintf(fp,"// An array of the machine register encode values\n");
83
fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
84
85
// Output the register encoding for each register in the allocation classes
86
RegDef *reg_def = NULL;
87
RegDef *next = NULL;
88
registers->reset_RegDefs();
89
for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
90
next = registers->iter_RegDefs();
91
const char* register_encode = reg_def->register_encode();
92
const char *comma = (next != NULL) ? "," : " // no trailing comma";
93
int encval;
94
if (!ADLParser::is_int_token(register_encode, encval)) {
95
fprintf(fp," %s%s // %s\n", register_encode, comma, reg_def->_regname);
96
} else {
97
// Output known constants in hex char format (backward compatibility).
98
assert(encval < 256, "Exceeded supported width for register encoding");
99
fprintf(fp," (unsigned char)'\\x%X'%s // %s\n", encval, comma, reg_def->_regname);
100
}
101
}
102
// Finish defining enumeration
103
fprintf(fp,"};\n");
104
105
} // Done defining array
106
}
107
108
// Output an enumeration of register class names
109
static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
110
if (registers) {
111
// Output an enumeration of register class names
112
fprintf(fp,"\n");
113
fprintf(fp,"// Enumeration of register class names\n");
114
fprintf(fp, "enum machRegisterClass {\n");
115
registers->_rclasses.reset();
116
for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
117
const char * class_name_to_upper = toUpper(class_name);
118
fprintf(fp," %s,\n", class_name_to_upper);
119
delete[] class_name_to_upper;
120
}
121
// Finish defining enumeration
122
fprintf(fp, " _last_Mach_Reg_Class\n");
123
fprintf(fp, "};\n");
124
}
125
}
126
127
// Declare an enumeration of user-defined register classes
128
// and a list of register masks, one for each class.
129
void ArchDesc::declare_register_masks(FILE *fp_hpp) {
130
const char *rc_name;
131
132
if (_register) {
133
// Build enumeration of user-defined register classes.
134
defineRegClassEnum(fp_hpp, _register);
135
136
// Generate a list of register masks, one for each class.
137
fprintf(fp_hpp,"\n");
138
fprintf(fp_hpp,"// Register masks, one for each register class.\n");
139
_register->_rclasses.reset();
140
for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
141
RegClass *reg_class = _register->getRegClass(rc_name);
142
assert(reg_class, "Using an undefined register class");
143
reg_class->declare_register_masks(fp_hpp);
144
}
145
}
146
}
147
148
// Generate an enumeration of user-defined register classes
149
// and a list of register masks, one for each class.
150
void ArchDesc::build_register_masks(FILE *fp_cpp) {
151
const char *rc_name;
152
153
if (_register) {
154
// Generate a list of register masks, one for each class.
155
fprintf(fp_cpp,"\n");
156
fprintf(fp_cpp,"// Register masks, one for each register class.\n");
157
_register->_rclasses.reset();
158
for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
159
RegClass *reg_class = _register->getRegClass(rc_name);
160
assert(reg_class, "Using an undefined register class");
161
reg_class->build_register_masks(fp_cpp);
162
}
163
}
164
}
165
166
// Compute an index for an array in the pipeline_reads_NNN arrays
167
static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
168
{
169
int templen = 1;
170
int paramcount = 0;
171
const char *paramname;
172
173
if (pipeclass->_parameters.count() == 0)
174
return -1;
175
176
pipeclass->_parameters.reset();
177
paramname = pipeclass->_parameters.iter();
178
const PipeClassOperandForm *pipeopnd =
179
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
180
if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
181
pipeclass->_parameters.reset();
182
183
while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
184
const PipeClassOperandForm *tmppipeopnd =
185
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
186
187
if (tmppipeopnd)
188
templen += 10 + (int)strlen(tmppipeopnd->_stage);
189
else
190
templen += 19;
191
192
paramcount++;
193
}
194
195
// See if the count is zero
196
if (paramcount == 0) {
197
return -1;
198
}
199
200
char *operand_stages = new char [templen];
201
operand_stages[0] = 0;
202
int i = 0;
203
templen = 0;
204
205
pipeclass->_parameters.reset();
206
paramname = pipeclass->_parameters.iter();
207
pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
208
if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
209
pipeclass->_parameters.reset();
210
211
while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
212
const PipeClassOperandForm *tmppipeopnd =
213
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
214
templen += sprintf(&operand_stages[templen], " stage_%s%c\n",
215
tmppipeopnd ? tmppipeopnd->_stage : "undefined",
216
(++i < paramcount ? ',' : ' ') );
217
}
218
219
// See if the same string is in the table
220
int ndx = pipeline_reads.index(operand_stages);
221
222
// No, add it to the table
223
if (ndx < 0) {
224
pipeline_reads.addName(operand_stages);
225
ndx = pipeline_reads.index(operand_stages);
226
227
fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
228
ndx+1, paramcount, operand_stages);
229
}
230
else
231
delete [] operand_stages;
232
233
return (ndx);
234
}
235
236
// Compute an index for an array in the pipeline_res_stages_NNN arrays
237
static int pipeline_res_stages_initializer(
238
FILE *fp_cpp,
239
PipelineForm *pipeline,
240
NameList &pipeline_res_stages,
241
PipeClassForm *pipeclass)
242
{
243
const PipeClassResourceForm *piperesource;
244
int * res_stages = new int [pipeline->_rescount];
245
int i;
246
247
for (i = 0; i < pipeline->_rescount; i++)
248
res_stages[i] = 0;
249
250
for (pipeclass->_resUsage.reset();
251
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
252
int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
253
for (i = 0; i < pipeline->_rescount; i++)
254
if ((1 << i) & used_mask) {
255
int stage = pipeline->_stages.index(piperesource->_stage);
256
if (res_stages[i] < stage+1)
257
res_stages[i] = stage+1;
258
}
259
}
260
261
// Compute the length needed for the resource list
262
int commentlen = 0;
263
int max_stage = 0;
264
for (i = 0; i < pipeline->_rescount; i++) {
265
if (res_stages[i] == 0) {
266
if (max_stage < 9)
267
max_stage = 9;
268
}
269
else {
270
int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
271
if (max_stage < stagelen)
272
max_stage = stagelen;
273
}
274
275
commentlen += (int)strlen(pipeline->_reslist.name(i));
276
}
277
278
int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
279
280
// Allocate space for the resource list
281
char * resource_stages = new char [templen];
282
283
templen = 0;
284
for (i = 0; i < pipeline->_rescount; i++) {
285
const char * const resname =
286
res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
287
288
templen += sprintf(&resource_stages[templen], " stage_%s%-*s // %s\n",
289
resname, max_stage - (int)strlen(resname) + 1,
290
(i < pipeline->_rescount-1) ? "," : "",
291
pipeline->_reslist.name(i));
292
}
293
294
// See if the same string is in the table
295
int ndx = pipeline_res_stages.index(resource_stages);
296
297
// No, add it to the table
298
if (ndx < 0) {
299
pipeline_res_stages.addName(resource_stages);
300
ndx = pipeline_res_stages.index(resource_stages);
301
302
fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
303
ndx+1, pipeline->_rescount, resource_stages);
304
}
305
else
306
delete [] resource_stages;
307
308
delete [] res_stages;
309
310
return (ndx);
311
}
312
313
// Compute an index for an array in the pipeline_res_cycles_NNN arrays
314
static int pipeline_res_cycles_initializer(
315
FILE *fp_cpp,
316
PipelineForm *pipeline,
317
NameList &pipeline_res_cycles,
318
PipeClassForm *pipeclass)
319
{
320
const PipeClassResourceForm *piperesource;
321
int * res_cycles = new int [pipeline->_rescount];
322
int i;
323
324
for (i = 0; i < pipeline->_rescount; i++)
325
res_cycles[i] = 0;
326
327
for (pipeclass->_resUsage.reset();
328
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
329
int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
330
for (i = 0; i < pipeline->_rescount; i++)
331
if ((1 << i) & used_mask) {
332
int cycles = piperesource->_cycles;
333
if (res_cycles[i] < cycles)
334
res_cycles[i] = cycles;
335
}
336
}
337
338
// Pre-compute the string length
339
int templen;
340
int cyclelen = 0, commentlen = 0;
341
int max_cycles = 0;
342
char temp[32];
343
344
for (i = 0; i < pipeline->_rescount; i++) {
345
if (max_cycles < res_cycles[i])
346
max_cycles = res_cycles[i];
347
templen = sprintf(temp, "%d", res_cycles[i]);
348
if (cyclelen < templen)
349
cyclelen = templen;
350
commentlen += (int)strlen(pipeline->_reslist.name(i));
351
}
352
353
templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
354
355
// Allocate space for the resource list
356
char * resource_cycles = new char [templen];
357
358
templen = 0;
359
360
for (i = 0; i < pipeline->_rescount; i++) {
361
templen += sprintf(&resource_cycles[templen], " %*d%c // %s\n",
362
cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
363
}
364
365
// See if the same string is in the table
366
int ndx = pipeline_res_cycles.index(resource_cycles);
367
368
// No, add it to the table
369
if (ndx < 0) {
370
pipeline_res_cycles.addName(resource_cycles);
371
ndx = pipeline_res_cycles.index(resource_cycles);
372
373
fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
374
ndx+1, pipeline->_rescount, resource_cycles);
375
}
376
else
377
delete [] resource_cycles;
378
379
delete [] res_cycles;
380
381
return (ndx);
382
}
383
384
//typedef unsigned long long uint64_t;
385
386
// Compute an index for an array in the pipeline_res_mask_NNN arrays
387
static int pipeline_res_mask_initializer(
388
FILE *fp_cpp,
389
PipelineForm *pipeline,
390
NameList &pipeline_res_mask,
391
NameList &pipeline_res_args,
392
PipeClassForm *pipeclass)
393
{
394
const PipeClassResourceForm *piperesource;
395
const uint rescount = pipeline->_rescount;
396
const uint maxcycleused = pipeline->_maxcycleused;
397
const uint cyclemasksize = (maxcycleused + 31) >> 5;
398
399
int i, j;
400
int element_count = 0;
401
uint *res_mask = new uint [cyclemasksize];
402
uint resources_used = 0;
403
uint resources_used_exclusively = 0;
404
405
for (pipeclass->_resUsage.reset();
406
(piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
407
element_count++;
408
}
409
410
// Pre-compute the string length
411
int templen;
412
int commentlen = 0;
413
int max_cycles = 0;
414
415
int cyclelen = ((maxcycleused + 3) >> 2);
416
int masklen = (rescount + 3) >> 2;
417
418
int cycledigit = 0;
419
for (i = maxcycleused; i > 0; i /= 10)
420
cycledigit++;
421
422
int maskdigit = 0;
423
for (i = rescount; i > 0; i /= 10)
424
maskdigit++;
425
426
static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
427
static const char* pipeline_use_element = "Pipeline_Use_Element";
428
429
templen = 1 +
430
(int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
431
(cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
432
433
// Allocate space for the resource list
434
char * resource_mask = new char [templen];
435
char * last_comma = NULL;
436
437
templen = 0;
438
439
for (pipeclass->_resUsage.reset();
440
(piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
441
int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
442
443
if (!used_mask) {
444
fprintf(stderr, "*** used_mask is 0 ***\n");
445
}
446
447
resources_used |= used_mask;
448
449
uint lb, ub;
450
451
for (lb = 0; (used_mask & (1 << lb)) == 0; lb++);
452
for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
453
454
if (lb == ub) {
455
resources_used_exclusively |= used_mask;
456
}
457
458
int formatlen =
459
sprintf(&resource_mask[templen], " %s(0x%0*x, %*d, %*d, %s %s(",
460
pipeline_use_element,
461
masklen, used_mask,
462
cycledigit, lb, cycledigit, ub,
463
((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
464
pipeline_use_cycle_mask);
465
466
templen += formatlen;
467
468
memset(res_mask, 0, cyclemasksize * sizeof(uint));
469
470
int cycles = piperesource->_cycles;
471
uint stage = pipeline->_stages.index(piperesource->_stage);
472
if ((uint)NameList::Not_in_list == stage) {
473
fprintf(stderr,
474
"pipeline_res_mask_initializer: "
475
"semantic error: "
476
"pipeline stage undeclared: %s\n",
477
piperesource->_stage);
478
exit(1);
479
}
480
uint upper_limit = stage + cycles - 1;
481
uint lower_limit = stage - 1;
482
uint upper_idx = upper_limit >> 5;
483
uint lower_idx = lower_limit >> 5;
484
uint upper_position = upper_limit & 0x1f;
485
uint lower_position = lower_limit & 0x1f;
486
487
uint mask = (((uint)1) << upper_position) - 1;
488
489
while (upper_idx > lower_idx) {
490
res_mask[upper_idx--] |= mask;
491
mask = (uint)-1;
492
}
493
494
mask -= (((uint)1) << lower_position) - 1;
495
res_mask[upper_idx] |= mask;
496
497
for (j = cyclemasksize-1; j >= 0; j--) {
498
formatlen =
499
sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
500
templen += formatlen;
501
}
502
503
resource_mask[templen++] = ')';
504
resource_mask[templen++] = ')';
505
last_comma = &resource_mask[templen];
506
resource_mask[templen++] = ',';
507
resource_mask[templen++] = '\n';
508
}
509
510
resource_mask[templen] = 0;
511
if (last_comma) {
512
last_comma[0] = ' ';
513
}
514
515
// See if the same string is in the table
516
int ndx = pipeline_res_mask.index(resource_mask);
517
518
// No, add it to the table
519
if (ndx < 0) {
520
pipeline_res_mask.addName(resource_mask);
521
ndx = pipeline_res_mask.index(resource_mask);
522
523
if (strlen(resource_mask) > 0)
524
fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
525
ndx+1, element_count, resource_mask);
526
527
char* args = new char [9 + 2*masklen + maskdigit];
528
529
sprintf(args, "0x%0*x, 0x%0*x, %*d",
530
masklen, resources_used,
531
masklen, resources_used_exclusively,
532
maskdigit, element_count);
533
534
pipeline_res_args.addName(args);
535
}
536
else {
537
delete [] resource_mask;
538
}
539
540
delete [] res_mask;
541
//delete [] res_masks;
542
543
return (ndx);
544
}
545
546
void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
547
const char *classname;
548
const char *resourcename;
549
int resourcenamelen = 0;
550
NameList pipeline_reads;
551
NameList pipeline_res_stages;
552
NameList pipeline_res_cycles;
553
NameList pipeline_res_masks;
554
NameList pipeline_res_args;
555
const int default_latency = 1;
556
const int non_operand_latency = 0;
557
const int node_latency = 0;
558
559
if (!_pipeline) {
560
fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
561
fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n");
562
fprintf(fp_cpp, " return %d;\n", non_operand_latency);
563
fprintf(fp_cpp, "}\n");
564
return;
565
}
566
567
fprintf(fp_cpp, "\n");
568
fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
569
fprintf(fp_cpp, "#ifndef PRODUCT\n");
570
fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
571
fprintf(fp_cpp, " static const char * const _stage_names[] = {\n");
572
fprintf(fp_cpp, " \"undefined\"");
573
574
for (int s = 0; s < _pipeline->_stagecnt; s++)
575
fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
576
577
fprintf(fp_cpp, "\n };\n\n");
578
fprintf(fp_cpp, " return (s <= %d ? _stage_names[s] : \"???\");\n",
579
_pipeline->_stagecnt);
580
fprintf(fp_cpp, "}\n");
581
fprintf(fp_cpp, "#endif\n\n");
582
583
fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
584
fprintf(fp_cpp, " // See if the functional units overlap\n");
585
#if 0
586
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
587
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
588
fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
589
fprintf(fp_cpp, " }\n");
590
fprintf(fp_cpp, "#endif\n\n");
591
#endif
592
fprintf(fp_cpp, " uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
593
fprintf(fp_cpp, " if (mask == 0)\n return (start);\n\n");
594
#if 0
595
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
596
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
597
fprintf(fp_cpp, " tty->print(\"# functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
598
fprintf(fp_cpp, " }\n");
599
fprintf(fp_cpp, "#endif\n\n");
600
#endif
601
fprintf(fp_cpp, " for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
602
fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
603
fprintf(fp_cpp, " if (predUse->multiple())\n");
604
fprintf(fp_cpp, " continue;\n\n");
605
fprintf(fp_cpp, " for (uint j = 0; j < resourceUseCount(); j++) {\n");
606
fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
607
fprintf(fp_cpp, " if (currUse->multiple())\n");
608
fprintf(fp_cpp, " continue;\n\n");
609
fprintf(fp_cpp, " if (predUse->used() & currUse->used()) {\n");
610
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
611
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
612
fprintf(fp_cpp, " for ( y <<= start; x.overlaps(y); start++ )\n");
613
fprintf(fp_cpp, " y <<= 1;\n");
614
fprintf(fp_cpp, " }\n");
615
fprintf(fp_cpp, " }\n");
616
fprintf(fp_cpp, " }\n\n");
617
fprintf(fp_cpp, " // There is the potential for overlap\n");
618
fprintf(fp_cpp, " return (start);\n");
619
fprintf(fp_cpp, "}\n\n");
620
fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
621
fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
622
fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
623
fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
624
fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n");
625
fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n");
626
fprintf(fp_cpp, " if (predUse->_multiple) {\n");
627
fprintf(fp_cpp, " uint min_delay = %d;\n",
628
_pipeline->_maxcycleused+1);
629
fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n");
630
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
631
fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n");
632
fprintf(fp_cpp, " uint curr_delay = delay;\n");
633
fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n");
634
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
635
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
636
fprintf(fp_cpp, " for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
637
fprintf(fp_cpp, " y <<= 1;\n");
638
fprintf(fp_cpp, " }\n");
639
fprintf(fp_cpp, " if (min_delay > curr_delay)\n min_delay = curr_delay;\n");
640
fprintf(fp_cpp, " }\n");
641
fprintf(fp_cpp, " if (delay < min_delay)\n delay = min_delay;\n");
642
fprintf(fp_cpp, " }\n");
643
fprintf(fp_cpp, " else {\n");
644
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
645
fprintf(fp_cpp, " const Pipeline_Use_Element *currUse = element(j);\n");
646
fprintf(fp_cpp, " if (predUse->_used & currUse->_used) {\n");
647
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
648
fprintf(fp_cpp, " Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
649
fprintf(fp_cpp, " for ( y <<= delay; x.overlaps(y); delay++ )\n");
650
fprintf(fp_cpp, " y <<= 1;\n");
651
fprintf(fp_cpp, " }\n");
652
fprintf(fp_cpp, " }\n");
653
fprintf(fp_cpp, " }\n");
654
fprintf(fp_cpp, " }\n\n");
655
fprintf(fp_cpp, " return (delay);\n");
656
fprintf(fp_cpp, "}\n\n");
657
fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
658
fprintf(fp_cpp, " for (uint i = 0; i < pred._count; i++) {\n");
659
fprintf(fp_cpp, " const Pipeline_Use_Element *predUse = pred.element(i);\n");
660
fprintf(fp_cpp, " if (predUse->_multiple) {\n");
661
fprintf(fp_cpp, " // Multiple possible functional units, choose first unused one\n");
662
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
663
fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n");
664
fprintf(fp_cpp, " if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
665
fprintf(fp_cpp, " currUse->_used |= (1 << j);\n");
666
fprintf(fp_cpp, " _resources_used |= (1 << j);\n");
667
fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n");
668
fprintf(fp_cpp, " break;\n");
669
fprintf(fp_cpp, " }\n");
670
fprintf(fp_cpp, " }\n");
671
fprintf(fp_cpp, " }\n");
672
fprintf(fp_cpp, " else {\n");
673
fprintf(fp_cpp, " for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
674
fprintf(fp_cpp, " Pipeline_Use_Element *currUse = element(j);\n");
675
fprintf(fp_cpp, " currUse->_used |= (1 << j);\n");
676
fprintf(fp_cpp, " _resources_used |= (1 << j);\n");
677
fprintf(fp_cpp, " currUse->_mask.Or(predUse->_mask);\n");
678
fprintf(fp_cpp, " }\n");
679
fprintf(fp_cpp, " }\n");
680
fprintf(fp_cpp, " }\n");
681
fprintf(fp_cpp, "}\n\n");
682
683
fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
684
fprintf(fp_cpp, " int const default_latency = 1;\n");
685
fprintf(fp_cpp, "\n");
686
#if 0
687
fprintf(fp_cpp, "#ifndef PRODUCT\n");
688
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
689
fprintf(fp_cpp, " tty->print(\"# operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
690
fprintf(fp_cpp, " }\n");
691
fprintf(fp_cpp, "#endif\n\n");
692
#endif
693
fprintf(fp_cpp, " assert(this, \"NULL pipeline info\");\n");
694
fprintf(fp_cpp, " assert(pred, \"NULL predecessor pipline info\");\n\n");
695
fprintf(fp_cpp, " if (pred->hasFixedLatency())\n return (pred->fixedLatency());\n\n");
696
fprintf(fp_cpp, " // If this is not an operand, then assume a dependence with 0 latency\n");
697
fprintf(fp_cpp, " if (opnd > _read_stage_count)\n return (0);\n\n");
698
fprintf(fp_cpp, " uint writeStage = pred->_write_stage;\n");
699
fprintf(fp_cpp, " uint readStage = _read_stages[opnd-1];\n");
700
#if 0
701
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
702
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
703
fprintf(fp_cpp, " tty->print(\"# operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
704
fprintf(fp_cpp, " }\n");
705
fprintf(fp_cpp, "#endif\n\n");
706
#endif
707
fprintf(fp_cpp, "\n");
708
fprintf(fp_cpp, " if (writeStage == stage_undefined || readStage == stage_undefined)\n");
709
fprintf(fp_cpp, " return (default_latency);\n");
710
fprintf(fp_cpp, "\n");
711
fprintf(fp_cpp, " int delta = writeStage - readStage;\n");
712
fprintf(fp_cpp, " if (delta < 0) delta = 0;\n\n");
713
#if 0
714
fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
715
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
716
fprintf(fp_cpp, " tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
717
fprintf(fp_cpp, " }\n");
718
fprintf(fp_cpp, "#endif\n\n");
719
#endif
720
fprintf(fp_cpp, " return (delta);\n");
721
fprintf(fp_cpp, "}\n\n");
722
723
if (!_pipeline)
724
/* Do Nothing */;
725
726
else if (_pipeline->_maxcycleused <= 32) {
727
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
728
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
729
fprintf(fp_cpp, "}\n\n");
730
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
731
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
732
fprintf(fp_cpp, "}\n\n");
733
}
734
else {
735
uint l;
736
uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
737
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
738
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(");
739
for (l = 1; l <= masklen; l++)
740
fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
741
fprintf(fp_cpp, ");\n");
742
fprintf(fp_cpp, "}\n\n");
743
fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
744
fprintf(fp_cpp, " return Pipeline_Use_Cycle_Mask(");
745
for (l = 1; l <= masklen; l++)
746
fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
747
fprintf(fp_cpp, ");\n");
748
fprintf(fp_cpp, "}\n\n");
749
fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
750
for (l = 1; l <= masklen; l++)
751
fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
752
fprintf(fp_cpp, "\n}\n\n");
753
}
754
755
/* Get the length of all the resource names */
756
for (_pipeline->_reslist.reset(), resourcenamelen = 0;
757
(resourcename = _pipeline->_reslist.iter()) != NULL;
758
resourcenamelen += (int)strlen(resourcename));
759
760
// Create the pipeline class description
761
762
fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
763
fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
764
765
fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
766
for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
767
fprintf(fp_cpp, " Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
768
uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
769
for (int i2 = masklen-1; i2 >= 0; i2--)
770
fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
771
fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
772
}
773
fprintf(fp_cpp, "};\n\n");
774
775
fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
776
_pipeline->_rescount);
777
778
for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
779
fprintf(fp_cpp, "\n");
780
fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
781
PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
782
int maxWriteStage = -1;
783
int maxMoreInstrs = 0;
784
int paramcount = 0;
785
int i = 0;
786
const char *paramname;
787
int resource_count = (_pipeline->_rescount + 3) >> 2;
788
789
// Scan the operands, looking for last output stage and number of inputs
790
for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
791
const PipeClassOperandForm *pipeopnd =
792
(const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
793
if (pipeopnd) {
794
if (pipeopnd->_iswrite) {
795
int stagenum = _pipeline->_stages.index(pipeopnd->_stage);
796
int moreinsts = pipeopnd->_more_instrs;
797
if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
798
maxWriteStage = stagenum;
799
maxMoreInstrs = moreinsts;
800
}
801
}
802
}
803
804
if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
805
paramcount++;
806
}
807
808
// Create the list of stages for the operands that are read
809
// Note that we will build a NameList to reduce the number of copies
810
811
int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
812
813
int pipeline_res_stages_index = pipeline_res_stages_initializer(
814
fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
815
816
int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
817
fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
818
819
int pipeline_res_mask_index = pipeline_res_mask_initializer(
820
fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
821
822
#if 0
823
// Process the Resources
824
const PipeClassResourceForm *piperesource;
825
826
unsigned resources_used = 0;
827
unsigned exclusive_resources_used = 0;
828
unsigned resource_groups = 0;
829
for (pipeclass->_resUsage.reset();
830
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
831
int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
832
if (used_mask)
833
resource_groups++;
834
resources_used |= used_mask;
835
if ((used_mask & (used_mask-1)) == 0)
836
exclusive_resources_used |= used_mask;
837
}
838
839
if (resource_groups > 0) {
840
fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
841
pipeclass->_num, resource_groups);
842
for (pipeclass->_resUsage.reset(), i = 1;
843
(piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
844
i++ ) {
845
int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
846
if (used_mask) {
847
fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
848
}
849
}
850
fprintf(fp_cpp, "};\n\n");
851
}
852
#endif
853
854
// Create the pipeline class description
855
fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
856
pipeclass->_num);
857
if (maxWriteStage < 0)
858
fprintf(fp_cpp, "(uint)stage_undefined");
859
else if (maxMoreInstrs == 0)
860
fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
861
else
862
fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
863
fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
864
paramcount,
865
pipeclass->hasFixedLatency() ? "true" : "false",
866
pipeclass->fixedLatency(),
867
pipeclass->InstructionCount(),
868
pipeclass->hasBranchDelay() ? "true" : "false",
869
pipeclass->hasMultipleBundles() ? "true" : "false",
870
pipeclass->forceSerialization() ? "true" : "false",
871
pipeclass->mayHaveNoCode() ? "true" : "false" );
872
if (paramcount > 0) {
873
fprintf(fp_cpp, "\n (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
874
pipeline_reads_index+1);
875
}
876
else
877
fprintf(fp_cpp, " NULL,");
878
fprintf(fp_cpp, " (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
879
pipeline_res_stages_index+1);
880
fprintf(fp_cpp, " (uint * const) pipeline_res_cycles_%03d,\n",
881
pipeline_res_cycles_index+1);
882
fprintf(fp_cpp, " Pipeline_Use(%s, (Pipeline_Use_Element *)",
883
pipeline_res_args.name(pipeline_res_mask_index));
884
if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
885
fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
886
pipeline_res_mask_index+1);
887
else
888
fprintf(fp_cpp, "NULL");
889
fprintf(fp_cpp, "));\n");
890
}
891
892
// Generate the Node::latency method if _pipeline defined
893
fprintf(fp_cpp, "\n");
894
fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
895
fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
896
if (_pipeline) {
897
#if 0
898
fprintf(fp_cpp, "#ifndef PRODUCT\n");
899
fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
900
fprintf(fp_cpp, " tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
901
fprintf(fp_cpp, " }\n");
902
fprintf(fp_cpp, "#endif\n");
903
#endif
904
fprintf(fp_cpp, " uint j;\n");
905
fprintf(fp_cpp, " // verify in legal range for inputs\n");
906
fprintf(fp_cpp, " assert(i < len(), \"index not in range\");\n\n");
907
fprintf(fp_cpp, " // verify input is not null\n");
908
fprintf(fp_cpp, " Node *pred = in(i);\n");
909
fprintf(fp_cpp, " if (!pred)\n return %d;\n\n",
910
non_operand_latency);
911
fprintf(fp_cpp, " if (pred->is_Proj())\n pred = pred->in(0);\n\n");
912
fprintf(fp_cpp, " // if either node does not have pipeline info, use default\n");
913
fprintf(fp_cpp, " const Pipeline *predpipe = pred->pipeline();\n");
914
fprintf(fp_cpp, " assert(predpipe, \"no predecessor pipeline info\");\n\n");
915
fprintf(fp_cpp, " if (predpipe->hasFixedLatency())\n return predpipe->fixedLatency();\n\n");
916
fprintf(fp_cpp, " const Pipeline *currpipe = pipeline();\n");
917
fprintf(fp_cpp, " assert(currpipe, \"no pipeline info\");\n\n");
918
fprintf(fp_cpp, " if (!is_Mach())\n return %d;\n\n",
919
node_latency);
920
fprintf(fp_cpp, " const MachNode *m = as_Mach();\n");
921
fprintf(fp_cpp, " j = m->oper_input_base();\n");
922
fprintf(fp_cpp, " if (i < j)\n return currpipe->functional_unit_latency(%d, predpipe);\n\n",
923
non_operand_latency);
924
fprintf(fp_cpp, " // determine which operand this is in\n");
925
fprintf(fp_cpp, " uint n = m->num_opnds();\n");
926
fprintf(fp_cpp, " int delta = %d;\n\n",
927
non_operand_latency);
928
fprintf(fp_cpp, " uint k;\n");
929
fprintf(fp_cpp, " for (k = 1; k < n; k++) {\n");
930
fprintf(fp_cpp, " j += m->_opnds[k]->num_edges();\n");
931
fprintf(fp_cpp, " if (i < j)\n");
932
fprintf(fp_cpp, " break;\n");
933
fprintf(fp_cpp, " }\n");
934
fprintf(fp_cpp, " if (k < n)\n");
935
fprintf(fp_cpp, " delta = currpipe->operand_latency(k,predpipe);\n\n");
936
fprintf(fp_cpp, " return currpipe->functional_unit_latency(delta, predpipe);\n");
937
}
938
else {
939
fprintf(fp_cpp, " // assert(false, \"pipeline functionality is not defined\");\n");
940
fprintf(fp_cpp, " return %d;\n",
941
non_operand_latency);
942
}
943
fprintf(fp_cpp, "}\n\n");
944
945
// Output the list of nop nodes
946
fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
947
const char *nop;
948
int nopcnt = 0;
949
for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
950
951
fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d]) {\n", nopcnt);
952
int i = 0;
953
for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
954
fprintf(fp_cpp, " nop_list[%d] = (MachNode *) new %sNode();\n", i, nop);
955
}
956
fprintf(fp_cpp, "};\n\n");
957
fprintf(fp_cpp, "#ifndef PRODUCT\n");
958
fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
959
fprintf(fp_cpp, " static const char * bundle_flags[] = {\n");
960
fprintf(fp_cpp, " \"\",\n");
961
fprintf(fp_cpp, " \"use nop delay\",\n");
962
fprintf(fp_cpp, " \"use unconditional delay\",\n");
963
fprintf(fp_cpp, " \"use conditional delay\",\n");
964
fprintf(fp_cpp, " \"used in conditional delay\",\n");
965
fprintf(fp_cpp, " \"used in unconditional delay\",\n");
966
fprintf(fp_cpp, " \"used in all conditional delays\",\n");
967
fprintf(fp_cpp, " };\n\n");
968
969
fprintf(fp_cpp, " static const char *resource_names[%d] = {", _pipeline->_rescount);
970
for (i = 0; i < _pipeline->_rescount; i++)
971
fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
972
fprintf(fp_cpp, "};\n\n");
973
974
// See if the same string is in the table
975
fprintf(fp_cpp, " bool needs_comma = false;\n\n");
976
fprintf(fp_cpp, " if (_flags) {\n");
977
fprintf(fp_cpp, " st->print(\"%%s\", bundle_flags[_flags]);\n");
978
fprintf(fp_cpp, " needs_comma = true;\n");
979
fprintf(fp_cpp, " };\n");
980
fprintf(fp_cpp, " if (instr_count()) {\n");
981
fprintf(fp_cpp, " st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
982
fprintf(fp_cpp, " needs_comma = true;\n");
983
fprintf(fp_cpp, " };\n");
984
fprintf(fp_cpp, " uint r = resources_used();\n");
985
fprintf(fp_cpp, " if (r) {\n");
986
fprintf(fp_cpp, " st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
987
fprintf(fp_cpp, " for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
988
fprintf(fp_cpp, " if ((r & (1 << i)) != 0)\n");
989
fprintf(fp_cpp, " st->print(\" %%s\", resource_names[i]);\n");
990
fprintf(fp_cpp, " needs_comma = true;\n");
991
fprintf(fp_cpp, " };\n");
992
fprintf(fp_cpp, " st->print(\"\\n\");\n");
993
fprintf(fp_cpp, "}\n");
994
fprintf(fp_cpp, "#endif\n");
995
}
996
997
// ---------------------------------------------------------------------------
998
//------------------------------Utilities to build Instruction Classes--------
999
// ---------------------------------------------------------------------------
1000
1001
static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1002
fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1003
node, regMask);
1004
}
1005
1006
static void print_block_index(FILE *fp, int inst_position) {
1007
assert( inst_position >= 0, "Instruction number less than zero");
1008
fprintf(fp, "block_index");
1009
if( inst_position != 0 ) {
1010
fprintf(fp, " - %d", inst_position);
1011
}
1012
}
1013
1014
// Scan the peepmatch and output a test for each instruction
1015
static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1016
int parent = -1;
1017
int inst_position = 0;
1018
const char* inst_name = NULL;
1019
int input = 0;
1020
fprintf(fp, " // Check instruction sub-tree\n");
1021
pmatch->reset();
1022
for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1023
inst_name != NULL;
1024
pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1025
// If this is not a placeholder
1026
if( ! pmatch->is_placeholder() ) {
1027
// Define temporaries 'inst#', based on parent and parent's input index
1028
if( parent != -1 ) { // root was initialized
1029
fprintf(fp, " // Identify previous instruction if inside this block\n");
1030
fprintf(fp, " if( ");
1031
print_block_index(fp, inst_position);
1032
fprintf(fp, " > 0 ) {\n Node *n = block->get_node(");
1033
print_block_index(fp, inst_position);
1034
fprintf(fp, ");\n inst%d = (n->is_Mach()) ? ", inst_position);
1035
fprintf(fp, "n->as_Mach() : NULL;\n }\n");
1036
}
1037
1038
// When not the root
1039
// Test we have the correct instruction by comparing the rule.
1040
if( parent != -1 ) {
1041
fprintf(fp, " matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1042
inst_position, inst_position, inst_name);
1043
}
1044
} else {
1045
// Check that user did not try to constrain a placeholder
1046
assert( ! pconstraint->constrains_instruction(inst_position),
1047
"fatal(): Can not constrain a placeholder instruction");
1048
}
1049
}
1050
}
1051
1052
// Build mapping for register indices, num_edges to input
1053
static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1054
int parent = -1;
1055
int inst_position = 0;
1056
const char* inst_name = NULL;
1057
int input = 0;
1058
fprintf(fp, " // Build map to register info\n");
1059
pmatch->reset();
1060
for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1061
inst_name != NULL;
1062
pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1063
// If this is not a placeholder
1064
if( ! pmatch->is_placeholder() ) {
1065
// Define temporaries 'inst#', based on self's inst_position
1066
InstructForm *inst = globals[inst_name]->is_instruction();
1067
if( inst != NULL ) {
1068
char inst_prefix[] = "instXXXX_";
1069
sprintf(inst_prefix, "inst%d_", inst_position);
1070
char receiver[] = "instXXXX->";
1071
sprintf(receiver, "inst%d->", inst_position);
1072
inst->index_temps( fp, globals, inst_prefix, receiver );
1073
}
1074
}
1075
}
1076
}
1077
1078
// Generate tests for the constraints
1079
static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1080
fprintf(fp, "\n");
1081
fprintf(fp, " // Check constraints on sub-tree-leaves\n");
1082
1083
// Build mapping from num_edges to local variables
1084
build_instruction_index_mapping( fp, globals, pmatch );
1085
1086
// Build constraint tests
1087
if( pconstraint != NULL ) {
1088
fprintf(fp, " matches = matches &&");
1089
bool first_constraint = true;
1090
while( pconstraint != NULL ) {
1091
// indentation and connecting '&&'
1092
const char *indentation = " ";
1093
fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : " "));
1094
1095
// Only have '==' relation implemented
1096
if( strcmp(pconstraint->_relation,"==") != 0 ) {
1097
assert( false, "Unimplemented()" );
1098
}
1099
1100
// LEFT
1101
int left_index = pconstraint->_left_inst;
1102
const char *left_op = pconstraint->_left_op;
1103
// Access info on the instructions whose operands are compared
1104
InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1105
assert( inst_left, "Parser should guaranty this is an instruction");
1106
int left_op_base = inst_left->oper_input_base(globals);
1107
// Access info on the operands being compared
1108
int left_op_index = inst_left->operand_position(left_op, Component::USE);
1109
if( left_op_index == -1 ) {
1110
left_op_index = inst_left->operand_position(left_op, Component::DEF);
1111
if( left_op_index == -1 ) {
1112
left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1113
}
1114
}
1115
assert( left_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1116
ComponentList components_left = inst_left->_components;
1117
const char *left_comp_type = components_left.at(left_op_index)->_type;
1118
OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1119
Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1120
1121
1122
// RIGHT
1123
int right_op_index = -1;
1124
int right_index = pconstraint->_right_inst;
1125
const char *right_op = pconstraint->_right_op;
1126
if( right_index != -1 ) { // Match operand
1127
// Access info on the instructions whose operands are compared
1128
InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1129
assert( inst_right, "Parser should guaranty this is an instruction");
1130
int right_op_base = inst_right->oper_input_base(globals);
1131
// Access info on the operands being compared
1132
right_op_index = inst_right->operand_position(right_op, Component::USE);
1133
if( right_op_index == -1 ) {
1134
right_op_index = inst_right->operand_position(right_op, Component::DEF);
1135
if( right_op_index == -1 ) {
1136
right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1137
}
1138
}
1139
assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1140
ComponentList components_right = inst_right->_components;
1141
const char *right_comp_type = components_right.at(right_op_index)->_type;
1142
OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1143
Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1144
assert( right_interface_type == left_interface_type, "Both must be same interface");
1145
1146
} else { // Else match register
1147
// assert( false, "should be a register" );
1148
}
1149
1150
//
1151
// Check for equivalence
1152
//
1153
// fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s) /* %d.%s */ == /* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1154
// left_index, left_op_index, left_index, left_reg_index, left_index, left_op
1155
// right_index, right_op, right_index, right_op_index, right_index, right_reg_index);
1156
// fprintf(fp, ")");
1157
//
1158
switch( left_interface_type ) {
1159
case Form::register_interface: {
1160
// Check that they are allocated to the same register
1161
// Need parameter for index position if not result operand
1162
char left_reg_index[] = ",instXXXX_idxXXXX";
1163
if( left_op_index != 0 ) {
1164
assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1165
// Must have index into operands
1166
sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
1167
} else {
1168
strcpy(left_reg_index, "");
1169
}
1170
fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s) /* %d.%s */",
1171
left_index, left_op_index, left_index, left_reg_index, left_index, left_op );
1172
fprintf(fp, " == ");
1173
1174
if( right_index != -1 ) {
1175
char right_reg_index[18] = ",instXXXX_idxXXXX";
1176
if( right_op_index != 0 ) {
1177
assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1178
// Must have index into operands
1179
sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
1180
} else {
1181
strcpy(right_reg_index, "");
1182
}
1183
fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1184
right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1185
} else {
1186
fprintf(fp, "%s_enc", right_op );
1187
}
1188
fprintf(fp,")");
1189
break;
1190
}
1191
case Form::constant_interface: {
1192
// Compare the '->constant()' values
1193
fprintf(fp, "(inst%d->_opnds[%d]->constant() /* %d.%s */",
1194
left_index, left_op_index, left_index, left_op );
1195
fprintf(fp, " == ");
1196
fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1197
right_index, right_op, right_index, right_op_index );
1198
break;
1199
}
1200
case Form::memory_interface: {
1201
// Compare 'base', 'index', 'scale', and 'disp'
1202
// base
1203
fprintf(fp, "( \n");
1204
fprintf(fp, " (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d) /* %d.%s$$base */",
1205
left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1206
fprintf(fp, " == ");
1207
fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1208
right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1209
// index
1210
fprintf(fp, " (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d) /* %d.%s$$index */",
1211
left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1212
fprintf(fp, " == ");
1213
fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1214
right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1215
// scale
1216
fprintf(fp, " (inst%d->_opnds[%d]->scale() /* %d.%s$$scale */",
1217
left_index, left_op_index, left_index, left_op );
1218
fprintf(fp, " == ");
1219
fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1220
right_index, right_op, right_index, right_op_index );
1221
// disp
1222
fprintf(fp, " (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d) /* %d.%s$$disp */",
1223
left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1224
fprintf(fp, " == ");
1225
fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1226
right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1227
fprintf(fp, ") \n");
1228
break;
1229
}
1230
case Form::conditional_interface: {
1231
// Compare the condition code being tested
1232
assert( false, "Unimplemented()" );
1233
break;
1234
}
1235
default: {
1236
assert( false, "ShouldNotReachHere()" );
1237
break;
1238
}
1239
}
1240
1241
// Advance to next constraint
1242
pconstraint = pconstraint->next();
1243
first_constraint = false;
1244
}
1245
1246
fprintf(fp, ";\n");
1247
}
1248
}
1249
1250
// // EXPERIMENTAL -- TEMPORARY code
1251
// static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1252
// int op_index = instr->operand_position(op_name, Component::USE);
1253
// if( op_index == -1 ) {
1254
// op_index = instr->operand_position(op_name, Component::DEF);
1255
// if( op_index == -1 ) {
1256
// op_index = instr->operand_position(op_name, Component::USE_DEF);
1257
// }
1258
// }
1259
// assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1260
//
1261
// ComponentList components_right = instr->_components;
1262
// char *right_comp_type = components_right.at(op_index)->_type;
1263
// OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1264
// Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1265
//
1266
// return;
1267
// }
1268
1269
// Construct the new sub-tree
1270
static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1271
fprintf(fp, " // IF instructions and constraints matched\n");
1272
fprintf(fp, " if( matches ) {\n");
1273
fprintf(fp, " // generate the new sub-tree\n");
1274
fprintf(fp, " assert( true, \"Debug stopping point\");\n");
1275
if( preplace != NULL ) {
1276
// Get the root of the new sub-tree
1277
const char *root_inst = NULL;
1278
preplace->next_instruction(root_inst);
1279
InstructForm *root_form = globals[root_inst]->is_instruction();
1280
assert( root_form != NULL, "Replacement instruction was not previously defined");
1281
fprintf(fp, " %sNode *root = new %sNode();\n", root_inst, root_inst);
1282
1283
int inst_num;
1284
const char *op_name;
1285
int opnds_index = 0; // define result operand
1286
// Then install the use-operands for the new sub-tree
1287
// preplace->reset(); // reset breaks iteration
1288
for( preplace->next_operand( inst_num, op_name );
1289
op_name != NULL;
1290
preplace->next_operand( inst_num, op_name ) ) {
1291
InstructForm *inst_form;
1292
inst_form = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1293
assert( inst_form, "Parser should guaranty this is an instruction");
1294
int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1295
if( inst_op_num == NameList::Not_in_list )
1296
inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1297
assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1298
// find the name of the OperandForm from the local name
1299
const Form *form = inst_form->_localNames[op_name];
1300
OperandForm *op_form = form->is_operand();
1301
if( opnds_index == 0 ) {
1302
// Initial setup of new instruction
1303
fprintf(fp, " // ----- Initial setup -----\n");
1304
//
1305
// Add control edge for this node
1306
fprintf(fp, " root->add_req(_in[0]); // control edge\n");
1307
// Add unmatched edges from root of match tree
1308
int op_base = root_form->oper_input_base(globals);
1309
for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1310
fprintf(fp, " root->add_req(inst%d->in(%d)); // unmatched ideal edge\n",
1311
inst_num, unmatched_edge);
1312
}
1313
// If new instruction captures bottom type
1314
if( root_form->captures_bottom_type(globals) ) {
1315
// Get bottom type from instruction whose result we are replacing
1316
fprintf(fp, " root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1317
}
1318
// Define result register and result operand
1319
fprintf(fp, " ra_->add_reference(root, inst%d);\n", inst_num);
1320
fprintf(fp, " ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1321
fprintf(fp, " ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1322
fprintf(fp, " root->_opnds[0] = inst%d->_opnds[0]->clone(); // result\n", inst_num);
1323
fprintf(fp, " // ----- Done with initial setup -----\n");
1324
} else {
1325
if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1326
// Do not have ideal edges for constants after matching
1327
fprintf(fp, " for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1328
inst_op_num, inst_num, inst_op_num,
1329
inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1330
fprintf(fp, " root->add_req( inst%d->in(x%d) );\n",
1331
inst_num, inst_op_num );
1332
} else {
1333
fprintf(fp, " // no ideal edge for constants after matching\n");
1334
}
1335
fprintf(fp, " root->_opnds[%d] = inst%d->_opnds[%d]->clone();\n",
1336
opnds_index, inst_num, inst_op_num );
1337
}
1338
++opnds_index;
1339
}
1340
}else {
1341
// Replacing subtree with empty-tree
1342
assert( false, "ShouldNotReachHere();");
1343
}
1344
1345
// Return the new sub-tree
1346
fprintf(fp, " deleted = %d;\n", max_position+1 /*zero to one based*/);
1347
fprintf(fp, " return root; // return new root;\n");
1348
fprintf(fp, " }\n");
1349
}
1350
1351
1352
// Define the Peephole method for an instruction node
1353
void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1354
// Generate Peephole function header
1355
fprintf(fp, "MachNode *%sNode::peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted) {\n", node->_ident);
1356
fprintf(fp, " bool matches = true;\n");
1357
1358
// Identify the maximum instruction position,
1359
// generate temporaries that hold current instruction
1360
//
1361
// MachNode *inst0 = NULL;
1362
// ...
1363
// MachNode *instMAX = NULL;
1364
//
1365
int max_position = 0;
1366
Peephole *peep;
1367
for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1368
PeepMatch *pmatch = peep->match();
1369
assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1370
if( max_position < pmatch->max_position() ) max_position = pmatch->max_position();
1371
}
1372
for( int i = 0; i <= max_position; ++i ) {
1373
if( i == 0 ) {
1374
fprintf(fp, " MachNode *inst0 = this;\n");
1375
} else {
1376
fprintf(fp, " MachNode *inst%d = NULL;\n", i);
1377
}
1378
}
1379
1380
// For each peephole rule in architecture description
1381
// Construct a test for the desired instruction sub-tree
1382
// then check the constraints
1383
// If these match, Generate the new subtree
1384
for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1385
int peephole_number = peep->peephole_number();
1386
PeepMatch *pmatch = peep->match();
1387
PeepConstraint *pconstraint = peep->constraints();
1388
PeepReplace *preplace = peep->replacement();
1389
1390
// Root of this peephole is the current MachNode
1391
assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1392
"root of PeepMatch does not match instruction");
1393
1394
// Make each peephole rule individually selectable
1395
fprintf(fp, " if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1396
fprintf(fp, " matches = true;\n");
1397
// Scan the peepmatch and output a test for each instruction
1398
check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1399
1400
// Check constraints and build replacement inside scope
1401
fprintf(fp, " // If instruction subtree matches\n");
1402
fprintf(fp, " if( matches ) {\n");
1403
1404
// Generate tests for the constraints
1405
check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1406
1407
// Construct the new sub-tree
1408
generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1409
1410
// End of scope for this peephole's constraints
1411
fprintf(fp, " }\n");
1412
// Closing brace '}' to make each peephole rule individually selectable
1413
fprintf(fp, " } // end of peephole rule #%d\n", peephole_number);
1414
fprintf(fp, "\n");
1415
}
1416
1417
fprintf(fp, " return NULL; // No peephole rules matched\n");
1418
fprintf(fp, "}\n");
1419
fprintf(fp, "\n");
1420
}
1421
1422
// Define the Expand method for an instruction node
1423
void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1424
unsigned cnt = 0; // Count nodes we have expand into
1425
unsigned i;
1426
1427
// Generate Expand function header
1428
fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
1429
fprintf(fp, " Compile* C = Compile::current();\n");
1430
// Generate expand code
1431
if( node->expands() ) {
1432
const char *opid;
1433
int new_pos, exp_pos;
1434
const char *new_id = NULL;
1435
const Form *frm = NULL;
1436
InstructForm *new_inst = NULL;
1437
OperandForm *new_oper = NULL;
1438
unsigned numo = node->num_opnds() +
1439
node->_exprule->_newopers.count();
1440
1441
// If necessary, generate any operands created in expand rule
1442
if (node->_exprule->_newopers.count()) {
1443
for(node->_exprule->_newopers.reset();
1444
(new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1445
frm = node->_localNames[new_id];
1446
assert(frm, "Invalid entry in new operands list of expand rule");
1447
new_oper = frm->is_operand();
1448
char *tmp = (char *)node->_exprule->_newopconst[new_id];
1449
if (tmp == NULL) {
1450
fprintf(fp," MachOper *op%d = new %sOper();\n",
1451
cnt, new_oper->_ident);
1452
}
1453
else {
1454
fprintf(fp," MachOper *op%d = new %sOper(%s);\n",
1455
cnt, new_oper->_ident, tmp);
1456
}
1457
}
1458
}
1459
cnt = 0;
1460
// Generate the temps to use for DAG building
1461
for(i = 0; i < numo; i++) {
1462
if (i < node->num_opnds()) {
1463
fprintf(fp," MachNode *tmp%d = this;\n", i);
1464
}
1465
else {
1466
fprintf(fp," MachNode *tmp%d = NULL;\n", i);
1467
}
1468
}
1469
// Build mapping from num_edges to local variables
1470
fprintf(fp," unsigned num0 = 0;\n");
1471
for( i = 1; i < node->num_opnds(); i++ ) {
1472
fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1473
}
1474
1475
// Build a mapping from operand index to input edges
1476
fprintf(fp," unsigned idx0 = oper_input_base();\n");
1477
1478
// The order in which the memory input is added to a node is very
1479
// strange. Store nodes get a memory input before Expand is
1480
// called and other nodes get it afterwards or before depending on
1481
// match order so oper_input_base is wrong during expansion. This
1482
// code adjusts it so that expansion will work correctly.
1483
int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
1484
if (has_memory_edge) {
1485
fprintf(fp," if (mem == (Node*)1) {\n");
1486
fprintf(fp," idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1487
fprintf(fp," }\n");
1488
}
1489
1490
for( i = 0; i < node->num_opnds(); i++ ) {
1491
fprintf(fp," unsigned idx%d = idx%d + num%d;\n",
1492
i+1,i,i);
1493
}
1494
1495
// Declare variable to hold root of expansion
1496
fprintf(fp," MachNode *result = NULL;\n");
1497
1498
// Iterate over the instructions 'node' expands into
1499
ExpandRule *expand = node->_exprule;
1500
NameAndList *expand_instr = NULL;
1501
for (expand->reset_instructions();
1502
(expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1503
new_id = expand_instr->name();
1504
1505
InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1506
1507
if (!expand_instruction) {
1508
globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
1509
node->_ident, new_id);
1510
continue;
1511
}
1512
1513
// Build the node for the instruction
1514
fprintf(fp,"\n %sNode *n%d = new %sNode();\n", new_id, cnt, new_id);
1515
// Add control edge for this node
1516
fprintf(fp," n%d->add_req(_in[0]);\n", cnt);
1517
// Build the operand for the value this node defines.
1518
Form *form = (Form*)_globalNames[new_id];
1519
assert(form, "'new_id' must be a defined form name");
1520
// Grab the InstructForm for the new instruction
1521
new_inst = form->is_instruction();
1522
assert(new_inst, "'new_id' must be an instruction name");
1523
if (node->is_ideal_if() && new_inst->is_ideal_if()) {
1524
fprintf(fp, " ((MachIfNode*)n%d)->_prob = _prob;\n", cnt);
1525
fprintf(fp, " ((MachIfNode*)n%d)->_fcnt = _fcnt;\n", cnt);
1526
}
1527
1528
if (node->is_ideal_fastlock() && new_inst->is_ideal_fastlock()) {
1529
fprintf(fp, " ((MachFastLockNode*)n%d)->_counters = _counters;\n", cnt);
1530
fprintf(fp, " ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n", cnt);
1531
fprintf(fp, " ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n", cnt);
1532
}
1533
1534
// Fill in the bottom_type where requested
1535
if (node->captures_bottom_type(_globalNames) &&
1536
new_inst->captures_bottom_type(_globalNames)) {
1537
fprintf(fp, " ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
1538
}
1539
1540
const char *resultOper = new_inst->reduce_result();
1541
fprintf(fp," n%d->set_opnd_array(0, state->MachOperGenerator(%s));\n",
1542
cnt, machOperEnum(resultOper));
1543
1544
// get the formal operand NameList
1545
NameList *formal_lst = &new_inst->_parameters;
1546
formal_lst->reset();
1547
1548
// Handle any memory operand
1549
int memory_operand = new_inst->memory_operand(_globalNames);
1550
if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1551
int node_mem_op = node->memory_operand(_globalNames);
1552
assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1553
"expand rule member needs memory but top-level inst doesn't have any" );
1554
if (has_memory_edge) {
1555
// Copy memory edge
1556
fprintf(fp," if (mem != (Node*)1) {\n");
1557
fprintf(fp," n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1558
fprintf(fp," }\n");
1559
}
1560
}
1561
1562
// Iterate over the new instruction's operands
1563
int prev_pos = -1;
1564
for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1565
// Use 'parameter' at current position in list of new instruction's formals
1566
// instead of 'opid' when looking up info internal to new_inst
1567
const char *parameter = formal_lst->iter();
1568
if (!parameter) {
1569
globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
1570
" no equivalent in new instruction %s.",
1571
opid, node->_ident, new_inst->_ident);
1572
assert(0, "Wrong expand");
1573
}
1574
1575
// Check for an operand which is created in the expand rule
1576
if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1577
new_pos = new_inst->operand_position(parameter,Component::USE);
1578
exp_pos += node->num_opnds();
1579
// If there is no use of the created operand, just skip it
1580
if (new_pos != NameList::Not_in_list) {
1581
//Copy the operand from the original made above
1582
fprintf(fp," n%d->set_opnd_array(%d, op%d->clone()); // %s\n",
1583
cnt, new_pos, exp_pos-node->num_opnds(), opid);
1584
// Check for who defines this operand & add edge if needed
1585
fprintf(fp," if(tmp%d != NULL)\n", exp_pos);
1586
fprintf(fp," n%d->add_req(tmp%d);\n", cnt, exp_pos);
1587
}
1588
}
1589
else {
1590
// Use operand name to get an index into instruction component list
1591
// ins = (InstructForm *) _globalNames[new_id];
1592
exp_pos = node->operand_position_format(opid);
1593
assert(exp_pos != -1, "Bad expand rule");
1594
if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1595
// For the add_req calls below to work correctly they need
1596
// to added in the same order that a match would add them.
1597
// This means that they would need to be in the order of
1598
// the components list instead of the formal parameters.
1599
// This is a sort of hidden invariant that previously
1600
// wasn't checked and could lead to incorrectly
1601
// constructed nodes.
1602
syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1603
node->_ident, new_inst->_ident);
1604
}
1605
prev_pos = exp_pos;
1606
1607
new_pos = new_inst->operand_position(parameter,Component::USE);
1608
if (new_pos != -1) {
1609
// Copy the operand from the ExpandNode to the new node
1610
fprintf(fp," n%d->set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1611
cnt, new_pos, exp_pos, opid);
1612
// For each operand add appropriate input edges by looking at tmp's
1613
fprintf(fp," if(tmp%d == this) {\n", exp_pos);
1614
// Grab corresponding edges from ExpandNode and insert them here
1615
fprintf(fp," for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1616
fprintf(fp," n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1617
fprintf(fp," }\n");
1618
fprintf(fp," }\n");
1619
// This value is generated by one of the new instructions
1620
fprintf(fp," else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1621
}
1622
}
1623
1624
// Update the DAG tmp's for values defined by this instruction
1625
int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1626
Effect *eform = (Effect *)new_inst->_effects[parameter];
1627
// If this operand is a definition in either an effects rule
1628
// or a match rule
1629
if((eform) && (is_def(eform->_use_def))) {
1630
// Update the temp associated with this operand
1631
fprintf(fp," tmp%d = n%d;\n", exp_pos, cnt);
1632
}
1633
else if( new_def_pos != -1 ) {
1634
// Instruction defines a value but user did not declare it
1635
// in the 'effect' clause
1636
fprintf(fp," tmp%d = n%d;\n", exp_pos, cnt);
1637
}
1638
} // done iterating over a new instruction's operands
1639
1640
// Fix number of operands, as we do not generate redundant ones.
1641
// The matcher generates some redundant operands, which are removed
1642
// in the expand function (of the node we generate here). We don't
1643
// generate the redundant operands here, so set the correct _num_opnds.
1644
if (expand_instruction->num_opnds() != expand_instruction->num_unique_opnds()) {
1645
fprintf(fp, " n%d->_num_opnds = %d; // Only unique opnds generated.\n",
1646
cnt, expand_instruction->num_unique_opnds());
1647
}
1648
1649
// Invoke Expand() for the newly created instruction.
1650
fprintf(fp," result = n%d->Expand( state, proj_list, mem );\n", cnt);
1651
assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1652
} // done iterating over new instructions
1653
fprintf(fp,"\n");
1654
} // done generating expand rule
1655
1656
// Generate projections for instruction's additional DEFs and KILLs
1657
if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1658
// Get string representing the MachNode that projections point at
1659
const char *machNode = "this";
1660
// Generate the projections
1661
fprintf(fp," // Add projection edges for additional defs or kills\n");
1662
1663
// Examine each component to see if it is a DEF or KILL
1664
node->_components.reset();
1665
// Skip the first component, if already handled as (SET dst (...))
1666
Component *comp = NULL;
1667
// For kills, the choice of projection numbers is arbitrary
1668
int proj_no = 1;
1669
bool declared_def = false;
1670
bool declared_kill = false;
1671
1672
while ((comp = node->_components.iter()) != NULL) {
1673
// Lookup register class associated with operand type
1674
Form *form = (Form*)_globalNames[comp->_type];
1675
assert(form, "component type must be a defined form");
1676
OperandForm *op = form->is_operand();
1677
1678
if (comp->is(Component::TEMP) ||
1679
comp->is(Component::TEMP_DEF)) {
1680
fprintf(fp, " // TEMP %s\n", comp->_name);
1681
if (!declared_def) {
1682
// Define the variable "def" to hold new MachProjNodes
1683
fprintf(fp, " MachTempNode *def;\n");
1684
declared_def = true;
1685
}
1686
if (op && op->_interface && op->_interface->is_RegInterface()) {
1687
fprintf(fp," def = new MachTempNode(state->MachOperGenerator(%s));\n",
1688
machOperEnum(op->_ident));
1689
fprintf(fp," add_req(def);\n");
1690
// The operand for TEMP is already constructed during
1691
// this mach node construction, see buildMachNode().
1692
//
1693
// int idx = node->operand_position_format(comp->_name);
1694
// fprintf(fp," set_opnd_array(%d, state->MachOperGenerator(%s));\n",
1695
// idx, machOperEnum(op->_ident));
1696
} else {
1697
assert(false, "can't have temps which aren't registers");
1698
}
1699
} else if (comp->isa(Component::KILL)) {
1700
fprintf(fp, " // DEF/KILL %s\n", comp->_name);
1701
1702
if (!declared_kill) {
1703
// Define the variable "kill" to hold new MachProjNodes
1704
fprintf(fp, " MachProjNode *kill;\n");
1705
declared_kill = true;
1706
}
1707
1708
assert(op, "Support additional KILLS for base operands");
1709
const char *regmask = reg_mask(*op);
1710
const char *ideal_type = op->ideal_type(_globalNames, _register);
1711
1712
if (!op->is_bound_register()) {
1713
syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1714
node->_ident, comp->_type, comp->_name);
1715
}
1716
1717
fprintf(fp," kill = ");
1718
fprintf(fp,"new MachProjNode( %s, %d, (%s), Op_%s );\n",
1719
machNode, proj_no++, regmask, ideal_type);
1720
fprintf(fp," proj_list.push(kill);\n");
1721
}
1722
}
1723
}
1724
1725
if( !node->expands() && node->_matrule != NULL ) {
1726
// Remove duplicated operands and inputs which use the same name.
1727
// Search through match operands for the same name usage.
1728
// The matcher generates these non-unique operands. If the node
1729
// was constructed by an expand rule, there are no unique operands.
1730
uint cur_num_opnds = node->num_opnds();
1731
if (cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds()) {
1732
Component *comp = NULL;
1733
fprintf(fp, " // Remove duplicated operands and inputs which use the same name.\n");
1734
fprintf(fp, " if (num_opnds() == %d) {\n", cur_num_opnds);
1735
// Build mapping from num_edges to local variables
1736
fprintf(fp," unsigned num0 = 0;\n");
1737
for (i = 1; i < cur_num_opnds; i++) {
1738
fprintf(fp," unsigned num%d = opnd_array(%d)->num_edges();", i, i);
1739
fprintf(fp, " \t// %s\n", node->opnd_ident(i));
1740
}
1741
// Build a mapping from operand index to input edges
1742
fprintf(fp," unsigned idx0 = oper_input_base();\n");
1743
for (i = 0; i < cur_num_opnds; i++) {
1744
fprintf(fp," unsigned idx%d = idx%d + num%d;\n", i+1, i, i);
1745
}
1746
1747
uint new_num_opnds = 1;
1748
node->_components.reset();
1749
// Skip first unique operands.
1750
for (i = 1; i < cur_num_opnds; i++) {
1751
comp = node->_components.iter();
1752
if (i != node->unique_opnds_idx(i)) {
1753
break;
1754
}
1755
new_num_opnds++;
1756
}
1757
// Replace not unique operands with next unique operands.
1758
for ( ; i < cur_num_opnds; i++) {
1759
comp = node->_components.iter();
1760
uint j = node->unique_opnds_idx(i);
1761
// unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1762
if (j != node->unique_opnds_idx(j)) {
1763
fprintf(fp," set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1764
new_num_opnds, i, comp->_name);
1765
// Delete not unique edges here.
1766
fprintf(fp," for (unsigned i = 0; i < num%d; i++) {\n", i);
1767
fprintf(fp," set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1768
fprintf(fp," }\n");
1769
fprintf(fp," num%d = num%d;\n", new_num_opnds, i);
1770
fprintf(fp," idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1771
new_num_opnds++;
1772
}
1773
}
1774
// Delete the rest of edges.
1775
fprintf(fp," for (int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1776
fprintf(fp," del_req(i);\n");
1777
fprintf(fp," }\n");
1778
fprintf(fp," _num_opnds = %d;\n", new_num_opnds);
1779
assert(new_num_opnds == node->num_unique_opnds(), "what?");
1780
fprintf(fp, " } else {\n");
1781
fprintf(fp, " assert(_num_opnds == %d, \"There should be either %d or %d operands.\");\n",
1782
new_num_opnds, new_num_opnds, cur_num_opnds);
1783
fprintf(fp, " }\n");
1784
}
1785
}
1786
1787
// If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
1788
// NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
1789
// There are nodes that don't use $constantablebase, but still require that it
1790
// is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
1791
if (node->is_mach_constant() || node->needs_constant_base()) {
1792
if (node->is_ideal_call() != Form::invalid_type &&
1793
node->is_ideal_call() != Form::JAVA_LEAF) {
1794
fprintf(fp, " // MachConstantBaseNode added in matcher.\n");
1795
_needs_deep_clone_jvms = true;
1796
} else {
1797
fprintf(fp, " add_req(C->mach_constant_base_node());\n");
1798
}
1799
}
1800
1801
fprintf(fp, "\n");
1802
if (node->expands()) {
1803
fprintf(fp, " return result;\n");
1804
} else {
1805
fprintf(fp, " return this;\n");
1806
}
1807
fprintf(fp, "}\n");
1808
fprintf(fp, "\n");
1809
}
1810
1811
1812
//------------------------------Emit Routines----------------------------------
1813
// Special classes and routines for defining node emit routines which output
1814
// target specific instruction object encodings.
1815
// Define the ___Node::emit() routine
1816
//
1817
// (1) void ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1818
// (2) // ... encoding defined by user
1819
// (3)
1820
// (4) }
1821
//
1822
1823
class DefineEmitState {
1824
private:
1825
enum reloc_format { RELOC_NONE = -1,
1826
RELOC_IMMEDIATE = 0,
1827
RELOC_DISP = 1,
1828
RELOC_CALL_DISP = 2 };
1829
enum literal_status{ LITERAL_NOT_SEEN = 0,
1830
LITERAL_SEEN = 1,
1831
LITERAL_ACCESSED = 2,
1832
LITERAL_OUTPUT = 3 };
1833
// Temporaries that describe current operand
1834
bool _cleared;
1835
OpClassForm *_opclass;
1836
OperandForm *_operand;
1837
int _operand_idx;
1838
const char *_local_name;
1839
const char *_operand_name;
1840
bool _doing_disp;
1841
bool _doing_constant;
1842
Form::DataType _constant_type;
1843
DefineEmitState::literal_status _constant_status;
1844
DefineEmitState::literal_status _reg_status;
1845
bool _doing_emit8;
1846
bool _doing_emit_d32;
1847
bool _doing_emit_d16;
1848
bool _doing_emit_hi;
1849
bool _doing_emit_lo;
1850
bool _may_reloc;
1851
reloc_format _reloc_form;
1852
const char * _reloc_type;
1853
bool _processing_noninput;
1854
1855
NameList _strings_to_emit;
1856
1857
// Stable state, set by constructor
1858
ArchDesc &_AD;
1859
FILE *_fp;
1860
EncClass &_encoding;
1861
InsEncode &_ins_encode;
1862
InstructForm &_inst;
1863
1864
public:
1865
DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1866
InsEncode &ins_encode, InstructForm &inst)
1867
: _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1868
clear();
1869
}
1870
1871
void clear() {
1872
_cleared = true;
1873
_opclass = NULL;
1874
_operand = NULL;
1875
_operand_idx = 0;
1876
_local_name = "";
1877
_operand_name = "";
1878
_doing_disp = false;
1879
_doing_constant= false;
1880
_constant_type = Form::none;
1881
_constant_status = LITERAL_NOT_SEEN;
1882
_reg_status = LITERAL_NOT_SEEN;
1883
_doing_emit8 = false;
1884
_doing_emit_d32= false;
1885
_doing_emit_d16= false;
1886
_doing_emit_hi = false;
1887
_doing_emit_lo = false;
1888
_may_reloc = false;
1889
_reloc_form = RELOC_NONE;
1890
_reloc_type = AdlcVMDeps::none_reloc_type();
1891
_strings_to_emit.clear();
1892
}
1893
1894
// Track necessary state when identifying a replacement variable
1895
// @arg rep_var: The formal parameter of the encoding.
1896
void update_state(const char *rep_var) {
1897
// A replacement variable or one of its subfields
1898
// Obtain replacement variable from list
1899
if ( (*rep_var) != '$' ) {
1900
// A replacement variable, '$' prefix
1901
// check_rep_var( rep_var );
1902
if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1903
// No state needed.
1904
assert( _opclass == NULL,
1905
"'primary', 'secondary' and 'tertiary' don't follow operand.");
1906
}
1907
else if ((strcmp(rep_var, "constanttablebase") == 0) ||
1908
(strcmp(rep_var, "constantoffset") == 0) ||
1909
(strcmp(rep_var, "constantaddress") == 0)) {
1910
if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
1911
_AD.syntax_err(_encoding._linenum,
1912
"Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
1913
rep_var, _encoding._name);
1914
}
1915
}
1916
else {
1917
// Lookup its position in (formal) parameter list of encoding
1918
int param_no = _encoding.rep_var_index(rep_var);
1919
if ( param_no == -1 ) {
1920
_AD.syntax_err( _encoding._linenum,
1921
"Replacement variable %s not found in enc_class %s.\n",
1922
rep_var, _encoding._name);
1923
}
1924
1925
// Lookup the corresponding ins_encode parameter
1926
// This is the argument (actual parameter) to the encoding.
1927
const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1928
if (inst_rep_var == NULL) {
1929
_AD.syntax_err( _ins_encode._linenum,
1930
"Parameter %s not passed to enc_class %s from instruct %s.\n",
1931
rep_var, _encoding._name, _inst._ident);
1932
assert(false, "inst_rep_var == NULL, cannot continue.");
1933
}
1934
1935
// Check if instruction's actual parameter is a local name in the instruction
1936
const Form *local = _inst._localNames[inst_rep_var];
1937
OpClassForm *opc = (local != NULL) ? local->is_opclass() : NULL;
1938
// Note: assert removed to allow constant and symbolic parameters
1939
// assert( opc, "replacement variable was not found in local names");
1940
// Lookup the index position iff the replacement variable is a localName
1941
int idx = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1942
1943
if ( idx != -1 ) {
1944
// This is a local in the instruction
1945
// Update local state info.
1946
_opclass = opc;
1947
_operand_idx = idx;
1948
_local_name = rep_var;
1949
_operand_name = inst_rep_var;
1950
1951
// !!!!!
1952
// Do not support consecutive operands.
1953
assert( _operand == NULL, "Unimplemented()");
1954
_operand = opc->is_operand();
1955
}
1956
else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1957
// Instruction provided a constant expression
1958
// Check later that encoding specifies $$$constant to resolve as constant
1959
_constant_status = LITERAL_SEEN;
1960
}
1961
else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
1962
// Instruction provided an opcode: "primary", "secondary", "tertiary"
1963
// Check later that encoding specifies $$$constant to resolve as constant
1964
_constant_status = LITERAL_SEEN;
1965
}
1966
else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
1967
// Instruction provided a literal register name for this parameter
1968
// Check that encoding specifies $$$reg to resolve.as register.
1969
_reg_status = LITERAL_SEEN;
1970
}
1971
else {
1972
// Check for unimplemented functionality before hard failure
1973
assert(opc != NULL && strcmp(opc->_ident, "label") == 0, "Unimplemented Label");
1974
assert(false, "ShouldNotReachHere()");
1975
}
1976
} // done checking which operand this is.
1977
} else {
1978
//
1979
// A subfield variable, '$$' prefix
1980
// Check for fields that may require relocation information.
1981
// Then check that literal register parameters are accessed with 'reg' or 'constant'
1982
//
1983
if ( strcmp(rep_var,"$disp") == 0 ) {
1984
_doing_disp = true;
1985
assert( _opclass, "Must use operand or operand class before '$disp'");
1986
if( _operand == NULL ) {
1987
// Only have an operand class, generate run-time check for relocation
1988
_may_reloc = true;
1989
_reloc_form = RELOC_DISP;
1990
_reloc_type = AdlcVMDeps::oop_reloc_type();
1991
} else {
1992
// Do precise check on operand: is it a ConP or not
1993
//
1994
// Check interface for value of displacement
1995
assert( ( _operand->_interface != NULL ),
1996
"$disp can only follow memory interface operand");
1997
MemInterface *mem_interface= _operand->_interface->is_MemInterface();
1998
assert( mem_interface != NULL,
1999
"$disp can only follow memory interface operand");
2000
const char *disp = mem_interface->_disp;
2001
2002
if( disp != NULL && (*disp == '$') ) {
2003
// MemInterface::disp contains a replacement variable,
2004
// Check if this matches a ConP
2005
//
2006
// Lookup replacement variable, in operand's component list
2007
const char *rep_var_name = disp + 1; // Skip '$'
2008
const Component *comp = _operand->_components.search(rep_var_name);
2009
assert( comp != NULL,"Replacement variable not found in components");
2010
const char *type = comp->_type;
2011
// Lookup operand form for replacement variable's type
2012
const Form *form = _AD.globalNames()[type];
2013
assert( form != NULL, "Replacement variable's type not found");
2014
OperandForm *op = form->is_operand();
2015
assert( op, "Attempting to emit a non-register or non-constant");
2016
// Check if this is a constant
2017
if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2018
// Check which constant this name maps to: _c0, _c1, ..., _cn
2019
// const int idx = _operand.constant_position(_AD.globalNames(), comp);
2020
// assert( idx != -1, "Constant component not found in operand");
2021
Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2022
if ( dtype == Form::idealP ) {
2023
_may_reloc = true;
2024
// No longer true that idealP is always an oop
2025
_reloc_form = RELOC_DISP;
2026
_reloc_type = AdlcVMDeps::oop_reloc_type();
2027
}
2028
}
2029
2030
else if( _operand->is_user_name_for_sReg() != Form::none ) {
2031
// The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2032
assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2033
_may_reloc = false;
2034
} else {
2035
assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2036
}
2037
}
2038
} // finished with precise check of operand for relocation.
2039
} // finished with subfield variable
2040
else if ( strcmp(rep_var,"$constant") == 0 ) {
2041
_doing_constant = true;
2042
if ( _constant_status == LITERAL_NOT_SEEN ) {
2043
// Check operand for type of constant
2044
assert( _operand, "Must use operand before '$$constant'");
2045
Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2046
_constant_type = dtype;
2047
if ( dtype == Form::idealP ) {
2048
_may_reloc = true;
2049
// No longer true that idealP is always an oop
2050
// // _must_reloc = true;
2051
_reloc_form = RELOC_IMMEDIATE;
2052
_reloc_type = AdlcVMDeps::oop_reloc_type();
2053
} else {
2054
// No relocation information needed
2055
}
2056
} else {
2057
// User-provided literals may not require relocation information !!!!!
2058
assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2059
}
2060
}
2061
else if ( strcmp(rep_var,"$label") == 0 ) {
2062
// Calls containing labels require relocation
2063
if ( _inst.is_ideal_call() ) {
2064
_may_reloc = true;
2065
// !!!!! !!!!!
2066
_reloc_type = AdlcVMDeps::none_reloc_type();
2067
}
2068
}
2069
2070
// literal register parameter must be accessed as a 'reg' field.
2071
if ( _reg_status != LITERAL_NOT_SEEN ) {
2072
assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2073
if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2074
_reg_status = LITERAL_ACCESSED;
2075
} else {
2076
_AD.syntax_err(_encoding._linenum,
2077
"Invalid access to literal register parameter '%s' in %s.\n",
2078
rep_var, _encoding._name);
2079
assert( false, "invalid access to literal register parameter");
2080
}
2081
}
2082
// literal constant parameters must be accessed as a 'constant' field
2083
if (_constant_status != LITERAL_NOT_SEEN) {
2084
assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2085
if (strcmp(rep_var,"$constant") == 0) {
2086
_constant_status = LITERAL_ACCESSED;
2087
} else {
2088
_AD.syntax_err(_encoding._linenum,
2089
"Invalid access to literal constant parameter '%s' in %s.\n",
2090
rep_var, _encoding._name);
2091
}
2092
}
2093
} // end replacement and/or subfield
2094
2095
}
2096
2097
void add_rep_var(const char *rep_var) {
2098
// Handle subfield and replacement variables.
2099
if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2100
// Check for emit prefix, '$$emit32'
2101
assert( _cleared, "Can not nest $$$emit32");
2102
if ( strcmp(rep_var,"$$emit32") == 0 ) {
2103
_doing_emit_d32 = true;
2104
}
2105
else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2106
_doing_emit_d16 = true;
2107
}
2108
else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2109
_doing_emit_hi = true;
2110
}
2111
else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2112
_doing_emit_lo = true;
2113
}
2114
else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2115
_doing_emit8 = true;
2116
}
2117
else {
2118
_AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2119
assert( false, "fatal();");
2120
}
2121
}
2122
else {
2123
// Update state for replacement variables
2124
update_state( rep_var );
2125
_strings_to_emit.addName(rep_var);
2126
}
2127
_cleared = false;
2128
}
2129
2130
void emit_replacement() {
2131
// A replacement variable or one of its subfields
2132
// Obtain replacement variable from list
2133
// const char *ec_rep_var = encoding->_rep_vars.iter();
2134
const char *rep_var;
2135
_strings_to_emit.reset();
2136
while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2137
2138
if ( (*rep_var) == '$' ) {
2139
// A subfield variable, '$$' prefix
2140
emit_field( rep_var );
2141
} else {
2142
if (_strings_to_emit.peek() != NULL &&
2143
strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2144
fprintf(_fp, "Address::make_raw(");
2145
2146
emit_rep_var( rep_var );
2147
fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2148
2149
_reg_status = LITERAL_ACCESSED;
2150
emit_rep_var( rep_var );
2151
fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2152
2153
_reg_status = LITERAL_ACCESSED;
2154
emit_rep_var( rep_var );
2155
fprintf(_fp,"->scale(), ");
2156
2157
_reg_status = LITERAL_ACCESSED;
2158
emit_rep_var( rep_var );
2159
Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2160
if( _operand && _operand_idx==0 && stack_type != Form::none ) {
2161
fprintf(_fp,"->disp(ra_,this,0), ");
2162
} else {
2163
fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2164
}
2165
2166
_reg_status = LITERAL_ACCESSED;
2167
emit_rep_var( rep_var );
2168
fprintf(_fp,"->disp_reloc())");
2169
2170
// skip trailing $Address
2171
_strings_to_emit.iter();
2172
} else {
2173
// A replacement variable, '$' prefix
2174
const char* next = _strings_to_emit.peek();
2175
const char* next2 = _strings_to_emit.peek(2);
2176
if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2177
(strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2178
// handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2179
// producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2180
fprintf(_fp, "as_Register(");
2181
// emit the operand reference
2182
emit_rep_var( rep_var );
2183
rep_var = _strings_to_emit.iter();
2184
assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2185
// handle base or index
2186
emit_field(rep_var);
2187
rep_var = _strings_to_emit.iter();
2188
assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2189
// close up the parens
2190
fprintf(_fp, ")");
2191
} else {
2192
emit_rep_var( rep_var );
2193
}
2194
}
2195
} // end replacement and/or subfield
2196
}
2197
}
2198
2199
void emit_reloc_type(const char* type) {
2200
fprintf(_fp, "%s", type)
2201
;
2202
}
2203
2204
2205
void emit() {
2206
//
2207
// "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2208
//
2209
// Emit the function name when generating an emit function
2210
if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2211
const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2212
// In general, relocatable isn't known at compiler compile time.
2213
// Check results of prior scan
2214
if ( ! _may_reloc ) {
2215
// Definitely don't need relocation information
2216
fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2217
emit_replacement(); fprintf(_fp, ")");
2218
}
2219
else {
2220
// Emit RUNTIME CHECK to see if value needs relocation info
2221
// If emitting a relocatable address, use 'emit_d32_reloc'
2222
const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2223
assert( (_doing_disp || _doing_constant)
2224
&& !(_doing_disp && _doing_constant),
2225
"Must be emitting either a displacement or a constant");
2226
fprintf(_fp,"\n");
2227
fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
2228
_operand_idx, disp_constant);
2229
fprintf(_fp," ");
2230
fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
2231
emit_replacement(); fprintf(_fp,", ");
2232
fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
2233
_operand_idx, disp_constant);
2234
fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2235
fprintf(_fp,"\n");
2236
fprintf(_fp,"} else {\n");
2237
fprintf(_fp," emit_%s(cbuf, ", d32_hi_lo);
2238
emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2239
}
2240
}
2241
else if ( _doing_emit_d16 ) {
2242
// Relocation of 16-bit values is not supported
2243
fprintf(_fp,"emit_d16(cbuf, ");
2244
emit_replacement(); fprintf(_fp, ")");
2245
// No relocation done for 16-bit values
2246
}
2247
else if ( _doing_emit8 ) {
2248
// Relocation of 8-bit values is not supported
2249
fprintf(_fp,"emit_d8(cbuf, ");
2250
emit_replacement(); fprintf(_fp, ")");
2251
// No relocation done for 8-bit values
2252
}
2253
else {
2254
// Not an emit# command, just output the replacement string.
2255
emit_replacement();
2256
}
2257
2258
// Get ready for next state collection.
2259
clear();
2260
}
2261
2262
private:
2263
2264
// recognizes names which represent MacroAssembler register types
2265
// and return the conversion function to build them from OptoReg
2266
const char* reg_conversion(const char* rep_var) {
2267
if (strcmp(rep_var,"$Register") == 0) return "as_Register";
2268
if (strcmp(rep_var,"$KRegister") == 0) return "as_KRegister";
2269
if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2270
#if defined(IA32) || defined(AMD64)
2271
if (strcmp(rep_var,"$XMMRegister") == 0) return "as_XMMRegister";
2272
#endif
2273
if (strcmp(rep_var,"$CondRegister") == 0) return "as_ConditionRegister";
2274
#if defined(PPC64)
2275
if (strcmp(rep_var,"$VectorRegister") == 0) return "as_VectorRegister";
2276
if (strcmp(rep_var,"$VectorSRegister") == 0) return "as_VectorSRegister";
2277
#endif
2278
return NULL;
2279
}
2280
2281
void emit_field(const char *rep_var) {
2282
const char* reg_convert = reg_conversion(rep_var);
2283
2284
// A subfield variable, '$$subfield'
2285
if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2286
// $reg form or the $Register MacroAssembler type conversions
2287
assert( _operand_idx != -1,
2288
"Must use this subfield after operand");
2289
if( _reg_status == LITERAL_NOT_SEEN ) {
2290
if (_processing_noninput) {
2291
const Form *local = _inst._localNames[_operand_name];
2292
OperandForm *oper = local->is_operand();
2293
const RegDef* first = oper->get_RegClass()->find_first_elem();
2294
if (reg_convert != NULL) {
2295
fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2296
} else {
2297
fprintf(_fp, "%s_enc", first->_regname);
2298
}
2299
} else {
2300
fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2301
// Add parameter for index position, if not result operand
2302
if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2303
fprintf(_fp,")");
2304
fprintf(_fp, "/* %s */", _operand_name);
2305
}
2306
} else {
2307
assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2308
// Register literal has already been sent to output file, nothing more needed
2309
}
2310
}
2311
else if ( strcmp(rep_var,"$base") == 0 ) {
2312
assert( _operand_idx != -1,
2313
"Must use this subfield after operand");
2314
assert( ! _may_reloc, "UnImplemented()");
2315
fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2316
}
2317
else if ( strcmp(rep_var,"$index") == 0 ) {
2318
assert( _operand_idx != -1,
2319
"Must use this subfield after operand");
2320
assert( ! _may_reloc, "UnImplemented()");
2321
fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2322
}
2323
else if ( strcmp(rep_var,"$scale") == 0 ) {
2324
assert( ! _may_reloc, "UnImplemented()");
2325
fprintf(_fp,"->scale()");
2326
}
2327
else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2328
assert( ! _may_reloc, "UnImplemented()");
2329
fprintf(_fp,"->ccode()");
2330
}
2331
else if ( strcmp(rep_var,"$constant") == 0 ) {
2332
if( _constant_status == LITERAL_NOT_SEEN ) {
2333
if ( _constant_type == Form::idealD ) {
2334
fprintf(_fp,"->constantD()");
2335
} else if ( _constant_type == Form::idealF ) {
2336
fprintf(_fp,"->constantF()");
2337
} else if ( _constant_type == Form::idealL ) {
2338
fprintf(_fp,"->constantL()");
2339
} else {
2340
fprintf(_fp,"->constant()");
2341
}
2342
} else {
2343
assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2344
// Constant literal has already been sent to output file, nothing more needed
2345
}
2346
}
2347
else if ( strcmp(rep_var,"$disp") == 0 ) {
2348
Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2349
if( _operand && _operand_idx==0 && stack_type != Form::none ) {
2350
fprintf(_fp,"->disp(ra_,this,0)");
2351
} else {
2352
fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2353
}
2354
}
2355
else if ( strcmp(rep_var,"$label") == 0 ) {
2356
fprintf(_fp,"->label()");
2357
}
2358
else if ( strcmp(rep_var,"$method") == 0 ) {
2359
fprintf(_fp,"->method()");
2360
}
2361
else {
2362
printf("emit_field: %s\n",rep_var);
2363
globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
2364
rep_var, _inst._ident);
2365
assert( false, "UnImplemented()");
2366
}
2367
}
2368
2369
2370
void emit_rep_var(const char *rep_var) {
2371
_processing_noninput = false;
2372
// A replacement variable, originally '$'
2373
if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2374
if ((_inst._opcode == NULL) || !_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2375
// Missing opcode
2376
_AD.syntax_err( _inst._linenum,
2377
"Missing $%s opcode definition in %s, used by encoding %s\n",
2378
rep_var, _inst._ident, _encoding._name);
2379
}
2380
}
2381
else if (strcmp(rep_var, "constanttablebase") == 0) {
2382
fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
2383
}
2384
else if (strcmp(rep_var, "constantoffset") == 0) {
2385
fprintf(_fp, "constant_offset()");
2386
}
2387
else if (strcmp(rep_var, "constantaddress") == 0) {
2388
fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
2389
}
2390
else {
2391
// Lookup its position in parameter list
2392
int param_no = _encoding.rep_var_index(rep_var);
2393
if ( param_no == -1 ) {
2394
_AD.syntax_err( _encoding._linenum,
2395
"Replacement variable %s not found in enc_class %s.\n",
2396
rep_var, _encoding._name);
2397
}
2398
// Lookup the corresponding ins_encode parameter
2399
const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2400
2401
// Check if instruction's actual parameter is a local name in the instruction
2402
const Form *local = _inst._localNames[inst_rep_var];
2403
OpClassForm *opc = (local != NULL) ? local->is_opclass() : NULL;
2404
// Note: assert removed to allow constant and symbolic parameters
2405
// assert( opc, "replacement variable was not found in local names");
2406
// Lookup the index position iff the replacement variable is a localName
2407
int idx = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2408
if( idx != -1 ) {
2409
if (_inst.is_noninput_operand(idx)) {
2410
// This operand isn't a normal input so printing it is done
2411
// specially.
2412
_processing_noninput = true;
2413
} else {
2414
// Output the emit code for this operand
2415
fprintf(_fp,"opnd_array(%d)",idx);
2416
}
2417
assert( _operand == opc->is_operand(),
2418
"Previous emit $operand does not match current");
2419
}
2420
else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2421
// else check if it is a constant expression
2422
// Removed following assert to allow primitive C types as arguments to encodings
2423
// assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2424
fprintf(_fp,"(%s)", inst_rep_var);
2425
_constant_status = LITERAL_OUTPUT;
2426
}
2427
else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2428
// else check if "primary", "secondary", "tertiary"
2429
assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2430
if ((_inst._opcode == NULL) || !_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2431
// Missing opcode
2432
_AD.syntax_err( _inst._linenum,
2433
"Missing $%s opcode definition in %s\n",
2434
rep_var, _inst._ident);
2435
2436
}
2437
_constant_status = LITERAL_OUTPUT;
2438
}
2439
else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2440
// Instruction provided a literal register name for this parameter
2441
// Check that encoding specifies $$$reg to resolve.as register.
2442
assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2443
fprintf(_fp,"(%s_enc)", inst_rep_var);
2444
_reg_status = LITERAL_OUTPUT;
2445
}
2446
else {
2447
// Check for unimplemented functionality before hard failure
2448
assert(opc != NULL && strcmp(opc->_ident, "label") == 0, "Unimplemented Label");
2449
assert(false, "ShouldNotReachHere()");
2450
}
2451
// all done
2452
}
2453
}
2454
2455
}; // end class DefineEmitState
2456
2457
2458
void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2459
2460
//(1)
2461
// Output instruction's emit prototype
2462
fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
2463
inst._ident);
2464
2465
fprintf(fp, " assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2466
2467
//(2)
2468
// Print the size
2469
fprintf(fp, " return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2470
2471
// (3) and (4)
2472
fprintf(fp,"}\n\n");
2473
}
2474
2475
// Emit postalloc expand function.
2476
void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
2477
InsEncode *ins_encode = inst._insencode;
2478
2479
// Output instruction's postalloc_expand prototype.
2480
fprintf(fp, "void %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
2481
inst._ident);
2482
2483
assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
2484
2485
// Output each operand's offset into the array of registers.
2486
inst.index_temps(fp, _globalNames);
2487
2488
// Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
2489
// for each parameter <par_name> specified in the encoding.
2490
ins_encode->reset();
2491
const char *ec_name = ins_encode->encode_class_iter();
2492
assert(ec_name != NULL, "Postalloc expand must specify an encoding.");
2493
2494
EncClass *encoding = _encode->encClass(ec_name);
2495
if (encoding == NULL) {
2496
fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2497
abort();
2498
}
2499
if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
2500
globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2501
inst._ident, ins_encode->current_encoding_num_args(),
2502
ec_name, encoding->num_args());
2503
}
2504
2505
fprintf(fp, " // Access to ins and operands for postalloc expand.\n");
2506
const int buflen = 2000;
2507
char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0';
2508
char nbuf [buflen]; char *nb = nbuf; nbuf[0] = '\0';
2509
char opbuf [buflen]; char *ob = opbuf; opbuf[0] = '\0';
2510
2511
encoding->_parameter_type.reset();
2512
encoding->_parameter_name.reset();
2513
const char *type = encoding->_parameter_type.iter();
2514
const char *name = encoding->_parameter_name.iter();
2515
int param_no = 0;
2516
for (; (type != NULL) && (name != NULL);
2517
(type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
2518
const char* arg_name = ins_encode->rep_var_name(inst, param_no);
2519
int idx = inst.operand_position_format(arg_name);
2520
if (strcmp(arg_name, "constanttablebase") == 0) {
2521
ib += sprintf(ib, " unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
2522
name, type, arg_name);
2523
nb += sprintf(nb, " Node *n_%-7s = lookup(idx_%s);\n", name, name);
2524
// There is no operand for the constanttablebase.
2525
} else if (inst.is_noninput_operand(idx)) {
2526
globalAD->syntax_err(inst._linenum,
2527
"In %s: you can not pass the non-input %s to a postalloc expand encoding.\n",
2528
inst._ident, arg_name);
2529
} else {
2530
ib += sprintf(ib, " unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
2531
name, idx, type, arg_name);
2532
nb += sprintf(nb, " Node *n_%-7s = lookup(idx_%s);\n", name, name);
2533
ob += sprintf(ob, " %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
2534
}
2535
param_no++;
2536
}
2537
assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
2538
2539
fprintf(fp, "%s", idxbuf);
2540
fprintf(fp, " Node *n_region = lookup(0);\n");
2541
fprintf(fp, "%s%s", nbuf, opbuf);
2542
fprintf(fp, " Compile *C = ra_->C;\n");
2543
2544
// Output this instruction's encodings.
2545
fprintf(fp, " {");
2546
const char *ec_code = NULL;
2547
const char *ec_rep_var = NULL;
2548
assert(encoding == _encode->encClass(ec_name), "");
2549
2550
DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
2551
encoding->_code.reset();
2552
encoding->_rep_vars.reset();
2553
// Process list of user-defined strings,
2554
// and occurrences of replacement variables.
2555
// Replacement Vars are pushed into a list and then output.
2556
while ((ec_code = encoding->_code.iter()) != NULL) {
2557
if (! encoding->_code.is_signal(ec_code)) {
2558
// Emit pending code.
2559
pending.emit();
2560
pending.clear();
2561
// Emit this code section.
2562
fprintf(fp, "%s", ec_code);
2563
} else {
2564
// A replacement variable or one of its subfields.
2565
// Obtain replacement variable from list.
2566
ec_rep_var = encoding->_rep_vars.iter();
2567
pending.add_rep_var(ec_rep_var);
2568
}
2569
}
2570
// Emit pending code.
2571
pending.emit();
2572
pending.clear();
2573
fprintf(fp, " }\n");
2574
2575
fprintf(fp, "}\n\n");
2576
2577
ec_name = ins_encode->encode_class_iter();
2578
assert(ec_name == NULL, "Postalloc expand may only have one encoding.");
2579
}
2580
2581
// defineEmit -----------------------------------------------------------------
2582
void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
2583
InsEncode* encode = inst._insencode;
2584
2585
// (1)
2586
// Output instruction's emit prototype
2587
fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
2588
2589
// If user did not define an encode section,
2590
// provide stub that does not generate any machine code.
2591
if( (_encode == NULL) || (encode == NULL) ) {
2592
fprintf(fp, " // User did not define an encode section.\n");
2593
fprintf(fp, "}\n");
2594
return;
2595
}
2596
2597
// Save current instruction's starting address (helps with relocation).
2598
fprintf(fp, " cbuf.set_insts_mark();\n");
2599
2600
// For MachConstantNodes which are ideal jump nodes, fill the jump table.
2601
if (inst.is_mach_constant() && inst.is_ideal_jump()) {
2602
fprintf(fp, " ra_->C->output()->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
2603
}
2604
2605
// Output each operand's offset into the array of registers.
2606
inst.index_temps(fp, _globalNames);
2607
2608
// Output this instruction's encodings
2609
const char *ec_name;
2610
bool user_defined = false;
2611
encode->reset();
2612
while ((ec_name = encode->encode_class_iter()) != NULL) {
2613
fprintf(fp, " {\n");
2614
// Output user-defined encoding
2615
user_defined = true;
2616
2617
const char *ec_code = NULL;
2618
const char *ec_rep_var = NULL;
2619
EncClass *encoding = _encode->encClass(ec_name);
2620
if (encoding == NULL) {
2621
fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2622
abort();
2623
}
2624
2625
if (encode->current_encoding_num_args() != encoding->num_args()) {
2626
globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2627
inst._ident, encode->current_encoding_num_args(),
2628
ec_name, encoding->num_args());
2629
}
2630
2631
DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2632
encoding->_code.reset();
2633
encoding->_rep_vars.reset();
2634
// Process list of user-defined strings,
2635
// and occurrences of replacement variables.
2636
// Replacement Vars are pushed into a list and then output
2637
while ((ec_code = encoding->_code.iter()) != NULL) {
2638
if (!encoding->_code.is_signal(ec_code)) {
2639
// Emit pending code
2640
pending.emit();
2641
pending.clear();
2642
// Emit this code section
2643
fprintf(fp, "%s", ec_code);
2644
} else {
2645
// A replacement variable or one of its subfields
2646
// Obtain replacement variable from list
2647
ec_rep_var = encoding->_rep_vars.iter();
2648
pending.add_rep_var(ec_rep_var);
2649
}
2650
}
2651
// Emit pending code
2652
pending.emit();
2653
pending.clear();
2654
fprintf(fp, " }\n");
2655
} // end while instruction's encodings
2656
2657
// Check if user stated which encoding to user
2658
if ( user_defined == false ) {
2659
fprintf(fp, " // User did not define which encode class to use.\n");
2660
}
2661
2662
// (3) and (4)
2663
fprintf(fp, "}\n\n");
2664
}
2665
2666
// defineEvalConstant ---------------------------------------------------------
2667
void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
2668
InsEncode* encode = inst._constant;
2669
2670
// (1)
2671
// Output instruction's emit prototype
2672
fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
2673
2674
// For ideal jump nodes, add a jump-table entry.
2675
if (inst.is_ideal_jump()) {
2676
fprintf(fp, " _constant = C->output()->constant_table().add_jump_table(this);\n");
2677
}
2678
2679
// If user did not define an encode section,
2680
// provide stub that does not generate any machine code.
2681
if ((_encode == NULL) || (encode == NULL)) {
2682
fprintf(fp, " // User did not define an encode section.\n");
2683
fprintf(fp, "}\n");
2684
return;
2685
}
2686
2687
// Output this instruction's encodings
2688
const char *ec_name;
2689
bool user_defined = false;
2690
encode->reset();
2691
while ((ec_name = encode->encode_class_iter()) != NULL) {
2692
fprintf(fp, " {\n");
2693
// Output user-defined encoding
2694
user_defined = true;
2695
2696
const char *ec_code = NULL;
2697
const char *ec_rep_var = NULL;
2698
EncClass *encoding = _encode->encClass(ec_name);
2699
if (encoding == NULL) {
2700
fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2701
abort();
2702
}
2703
2704
if (encode->current_encoding_num_args() != encoding->num_args()) {
2705
globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2706
inst._ident, encode->current_encoding_num_args(),
2707
ec_name, encoding->num_args());
2708
}
2709
2710
DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2711
encoding->_code.reset();
2712
encoding->_rep_vars.reset();
2713
// Process list of user-defined strings,
2714
// and occurrences of replacement variables.
2715
// Replacement Vars are pushed into a list and then output
2716
while ((ec_code = encoding->_code.iter()) != NULL) {
2717
if (!encoding->_code.is_signal(ec_code)) {
2718
// Emit pending code
2719
pending.emit();
2720
pending.clear();
2721
// Emit this code section
2722
fprintf(fp, "%s", ec_code);
2723
} else {
2724
// A replacement variable or one of its subfields
2725
// Obtain replacement variable from list
2726
ec_rep_var = encoding->_rep_vars.iter();
2727
pending.add_rep_var(ec_rep_var);
2728
}
2729
}
2730
// Emit pending code
2731
pending.emit();
2732
pending.clear();
2733
fprintf(fp, " }\n");
2734
} // end while instruction's encodings
2735
2736
// Check if user stated which encoding to user
2737
if (user_defined == false) {
2738
fprintf(fp, " // User did not define which encode class to use.\n");
2739
}
2740
2741
// (3) and (4)
2742
fprintf(fp, "}\n");
2743
}
2744
2745
// ---------------------------------------------------------------------------
2746
//--------Utilities to build MachOper and MachNode derived Classes------------
2747
// ---------------------------------------------------------------------------
2748
2749
//------------------------------Utilities to build Operand Classes------------
2750
static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2751
uint num_edges = oper.num_edges(globals);
2752
if( num_edges != 0 ) {
2753
// Method header
2754
fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2755
oper._ident);
2756
2757
// Assert that the index is in range.
2758
fprintf(fp, " assert(0 <= index && index < %d, \"index out of range\");\n",
2759
num_edges);
2760
2761
// Figure out if all RegMasks are the same.
2762
const char* first_reg_class = oper.in_reg_class(0, globals);
2763
bool all_same = true;
2764
assert(first_reg_class != NULL, "did not find register mask");
2765
2766
for (uint index = 1; all_same && index < num_edges; index++) {
2767
const char* some_reg_class = oper.in_reg_class(index, globals);
2768
assert(some_reg_class != NULL, "did not find register mask");
2769
if (strcmp(first_reg_class, some_reg_class) != 0) {
2770
all_same = false;
2771
}
2772
}
2773
2774
if (all_same) {
2775
// Return the sole RegMask.
2776
if (strcmp(first_reg_class, "stack_slots") == 0) {
2777
fprintf(fp," return &(Compile::current()->FIRST_STACK_mask());\n");
2778
} else if (strcmp(first_reg_class, "dynamic") == 0) {
2779
fprintf(fp," return &RegMask::Empty;\n");
2780
} else {
2781
const char* first_reg_class_to_upper = toUpper(first_reg_class);
2782
fprintf(fp," return &%s_mask();\n", first_reg_class_to_upper);
2783
delete[] first_reg_class_to_upper;
2784
}
2785
} else {
2786
// Build a switch statement to return the desired mask.
2787
fprintf(fp," switch (index) {\n");
2788
2789
for (uint index = 0; index < num_edges; index++) {
2790
const char *reg_class = oper.in_reg_class(index, globals);
2791
assert(reg_class != NULL, "did not find register mask");
2792
if( !strcmp(reg_class, "stack_slots") ) {
2793
fprintf(fp, " case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2794
} else {
2795
const char* reg_class_to_upper = toUpper(reg_class);
2796
fprintf(fp, " case %d: return &%s_mask();\n", index, reg_class_to_upper);
2797
delete[] reg_class_to_upper;
2798
}
2799
}
2800
fprintf(fp," }\n");
2801
fprintf(fp," ShouldNotReachHere();\n");
2802
fprintf(fp," return NULL;\n");
2803
}
2804
2805
// Method close
2806
fprintf(fp, "}\n\n");
2807
}
2808
}
2809
2810
// generate code to create a clone for a class derived from MachOper
2811
//
2812
// (0) MachOper *MachOperXOper::clone() const {
2813
// (1) return new MachXOper( _ccode, _c0, _c1, ..., _cn);
2814
// (2) }
2815
//
2816
static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2817
fprintf(fp,"MachOper *%sOper::clone() const {\n", oper._ident);
2818
// Check for constants that need to be copied over
2819
const int num_consts = oper.num_consts(globalNames);
2820
const bool is_ideal_bool = oper.is_ideal_bool();
2821
if( (num_consts > 0) ) {
2822
fprintf(fp," return new %sOper(", oper._ident);
2823
// generate parameters for constants
2824
int i = 0;
2825
fprintf(fp,"_c%d", i);
2826
for( i = 1; i < num_consts; ++i) {
2827
fprintf(fp,", _c%d", i);
2828
}
2829
// finish line (1)
2830
fprintf(fp,");\n");
2831
}
2832
else {
2833
assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2834
fprintf(fp," return new %sOper();\n", oper._ident);
2835
}
2836
// finish method
2837
fprintf(fp,"}\n");
2838
}
2839
2840
// Helper functions for bug 4796752, abstracted with minimal modification
2841
// from define_oper_interface()
2842
OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2843
OperandForm *op = NULL;
2844
// Check for replacement variable
2845
if( *encoding == '$' ) {
2846
// Replacement variable
2847
const char *rep_var = encoding + 1;
2848
// Lookup replacement variable, rep_var, in operand's component list
2849
const Component *comp = oper._components.search(rep_var);
2850
assert( comp != NULL, "Replacement variable not found in components");
2851
// Lookup operand form for replacement variable's type
2852
const char *type = comp->_type;
2853
Form *form = (Form*)globals[type];
2854
assert( form != NULL, "Replacement variable's type not found");
2855
op = form->is_operand();
2856
assert( op, "Attempting to emit a non-register or non-constant");
2857
}
2858
2859
return op;
2860
}
2861
2862
int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2863
int idx = -1;
2864
// Check for replacement variable
2865
if( *encoding == '$' ) {
2866
// Replacement variable
2867
const char *rep_var = encoding + 1;
2868
// Lookup replacement variable, rep_var, in operand's component list
2869
const Component *comp = oper._components.search(rep_var);
2870
assert( comp != NULL, "Replacement variable not found in components");
2871
// Lookup operand form for replacement variable's type
2872
const char *type = comp->_type;
2873
Form *form = (Form*)globals[type];
2874
assert( form != NULL, "Replacement variable's type not found");
2875
OperandForm *op = form->is_operand();
2876
assert( op, "Attempting to emit a non-register or non-constant");
2877
// Check that this is a constant and find constant's index:
2878
if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2879
idx = oper.constant_position(globals, comp);
2880
}
2881
}
2882
2883
return idx;
2884
}
2885
2886
bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2887
bool is_regI = false;
2888
2889
OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2890
if( op != NULL ) {
2891
// Check that this is a register
2892
if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2893
// Register
2894
const char* ideal = op->ideal_type(globals);
2895
is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2896
}
2897
}
2898
2899
return is_regI;
2900
}
2901
2902
bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2903
bool is_conP = false;
2904
2905
OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2906
if( op != NULL ) {
2907
// Check that this is a constant pointer
2908
if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2909
// Constant
2910
Form::DataType dtype = op->is_base_constant(globals);
2911
is_conP = (dtype == Form::idealP);
2912
}
2913
}
2914
2915
return is_conP;
2916
}
2917
2918
2919
// Define a MachOper interface methods
2920
void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2921
const char *name, const char *encoding) {
2922
bool emit_position = false;
2923
int position = -1;
2924
2925
fprintf(fp," virtual int %s", name);
2926
// Generate access method for base, index, scale, disp, ...
2927
if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2928
fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2929
emit_position = true;
2930
} else if ( (strcmp(name,"disp") == 0) ) {
2931
fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2932
} else {
2933
fprintf(fp, "() const {\n");
2934
}
2935
2936
// Check for hexadecimal value OR replacement variable
2937
if( *encoding == '$' ) {
2938
// Replacement variable
2939
const char *rep_var = encoding + 1;
2940
fprintf(fp," // Replacement variable: %s\n", encoding+1);
2941
// Lookup replacement variable, rep_var, in operand's component list
2942
const Component *comp = oper._components.search(rep_var);
2943
assert( comp != NULL, "Replacement variable not found in components");
2944
// Lookup operand form for replacement variable's type
2945
const char *type = comp->_type;
2946
Form *form = (Form*)globals[type];
2947
assert( form != NULL, "Replacement variable's type not found");
2948
OperandForm *op = form->is_operand();
2949
assert( op, "Attempting to emit a non-register or non-constant");
2950
// Check that this is a register or a constant and generate code:
2951
if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2952
// Register
2953
int idx_offset = oper.register_position( globals, rep_var);
2954
position = idx_offset;
2955
fprintf(fp," return (int)ra_->get_encode(node->in(idx");
2956
if ( idx_offset > 0 ) fprintf(fp, "+%d",idx_offset);
2957
fprintf(fp,"));\n");
2958
} else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2959
// StackSlot for an sReg comes either from input node or from self, when idx==0
2960
fprintf(fp," if( idx != 0 ) {\n");
2961
fprintf(fp," // Access stack offset (register number) for input operand\n");
2962
fprintf(fp," return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2963
fprintf(fp," }\n");
2964
fprintf(fp," // Access stack offset (register number) from myself\n");
2965
fprintf(fp," return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2966
} else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2967
// Constant
2968
// Check which constant this name maps to: _c0, _c1, ..., _cn
2969
const int idx = oper.constant_position(globals, comp);
2970
assert( idx != -1, "Constant component not found in operand");
2971
// Output code for this constant, type dependent.
2972
fprintf(fp," return (int)" );
2973
oper.access_constant(fp, globals, (uint)idx /* , const_type */);
2974
fprintf(fp,";\n");
2975
} else {
2976
assert( false, "Attempting to emit a non-register or non-constant");
2977
}
2978
}
2979
else if( *encoding == '0' && *(encoding+1) == 'x' ) {
2980
// Hex value
2981
fprintf(fp," return %s;\n", encoding);
2982
} else {
2983
globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
2984
oper._ident, encoding, name);
2985
assert( false, "Do not support octal or decimal encode constants");
2986
}
2987
fprintf(fp," }\n");
2988
2989
if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
2990
fprintf(fp," virtual int %s_position() const { return %d; }\n", name, position);
2991
MemInterface *mem_interface = oper._interface->is_MemInterface();
2992
const char *base = mem_interface->_base;
2993
const char *disp = mem_interface->_disp;
2994
if( emit_position && (strcmp(name,"base") == 0)
2995
&& base != NULL && is_regI(base, oper, globals)
2996
&& disp != NULL && is_conP(disp, oper, globals) ) {
2997
// Found a memory access using a constant pointer for a displacement
2998
// and a base register containing an integer offset.
2999
// In this case the base and disp are reversed with respect to what
3000
// is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
3001
// Provide a non-NULL return for disp_as_type() that will allow adr_type()
3002
// to correctly compute the access type for alias analysis.
3003
//
3004
// See BugId 4796752, operand indOffset32X in x86_32.ad
3005
int idx = rep_var_to_constant_index(disp, oper, globals);
3006
fprintf(fp," virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
3007
}
3008
}
3009
}
3010
3011
//
3012
// Construct the method to copy _idx, inputs and operands to new node.
3013
static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
3014
fprintf(fp_cpp, "\n");
3015
fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
3016
fprintf(fp_cpp, "void MachNode::fill_new_machnode(MachNode* node) const {\n");
3017
if( !used ) {
3018
fprintf(fp_cpp, " // This architecture does not have cisc or short branch instructions\n");
3019
fprintf(fp_cpp, " ShouldNotCallThis();\n");
3020
fprintf(fp_cpp, "}\n");
3021
} else {
3022
// New node must use same node index for access through allocator's tables
3023
fprintf(fp_cpp, " // New node must use same node index\n");
3024
fprintf(fp_cpp, " node->set_idx( _idx );\n");
3025
// Copy machine-independent inputs
3026
fprintf(fp_cpp, " // Copy machine-independent inputs\n");
3027
fprintf(fp_cpp, " for( uint j = 0; j < req(); j++ ) {\n");
3028
fprintf(fp_cpp, " node->add_req(in(j));\n");
3029
fprintf(fp_cpp, " }\n");
3030
// Copy machine operands to new MachNode
3031
fprintf(fp_cpp, " // Copy my operands, except for cisc position\n");
3032
fprintf(fp_cpp, " int nopnds = num_opnds();\n");
3033
fprintf(fp_cpp, " assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
3034
fprintf(fp_cpp, " MachOper **to = node->_opnds;\n");
3035
fprintf(fp_cpp, " for( int i = 0; i < nopnds; i++ ) {\n");
3036
fprintf(fp_cpp, " if( i != cisc_operand() ) \n");
3037
fprintf(fp_cpp, " to[i] = _opnds[i]->clone();\n");
3038
fprintf(fp_cpp, " }\n");
3039
fprintf(fp_cpp, "}\n");
3040
}
3041
fprintf(fp_cpp, "\n");
3042
}
3043
3044
//------------------------------defineClasses----------------------------------
3045
// Define members of MachNode and MachOper classes based on
3046
// operand and instruction lists
3047
void ArchDesc::defineClasses(FILE *fp) {
3048
3049
// Define the contents of an array containing the machine register names
3050
defineRegNames(fp, _register);
3051
// Define an array containing the machine register encoding values
3052
defineRegEncodes(fp, _register);
3053
// Generate an enumeration of user-defined register classes
3054
// and a list of register masks, one for each class.
3055
// Only define the RegMask value objects in the expand file.
3056
// Declare each as an extern const RegMask ...; in ad_<arch>.hpp
3057
declare_register_masks(_HPP_file._fp);
3058
// build_register_masks(fp);
3059
build_register_masks(_CPP_EXPAND_file._fp);
3060
// Define the pipe_classes
3061
build_pipe_classes(_CPP_PIPELINE_file._fp);
3062
3063
// Generate Machine Classes for each operand defined in AD file
3064
fprintf(fp,"\n");
3065
fprintf(fp,"\n");
3066
fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
3067
// Iterate through all operands
3068
_operands.reset();
3069
OperandForm *oper;
3070
for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
3071
// Ensure this is a machine-world instruction
3072
if ( oper->ideal_only() ) continue;
3073
// !!!!!
3074
// The declaration of labelOper is in machine-independent file: machnode
3075
if ( strcmp(oper->_ident,"label") == 0 ) {
3076
defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3077
3078
fprintf(fp,"MachOper *%sOper::clone() const {\n", oper->_ident);
3079
fprintf(fp," return new %sOper(_label, _block_num);\n", oper->_ident);
3080
fprintf(fp,"}\n");
3081
3082
fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3083
oper->_ident, machOperEnum(oper->_ident));
3084
// // Currently all XXXOper::Hash() methods are identical (990820)
3085
// define_hash(fp, oper->_ident);
3086
// // Currently all XXXOper::Cmp() methods are identical (990820)
3087
// define_cmp(fp, oper->_ident);
3088
fprintf(fp,"\n");
3089
3090
continue;
3091
}
3092
3093
// The declaration of methodOper is in machine-independent file: machnode
3094
if ( strcmp(oper->_ident,"method") == 0 ) {
3095
defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3096
3097
fprintf(fp,"MachOper *%sOper::clone() const {\n", oper->_ident);
3098
fprintf(fp," return new %sOper(_method);\n", oper->_ident);
3099
fprintf(fp,"}\n");
3100
3101
fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3102
oper->_ident, machOperEnum(oper->_ident));
3103
// // Currently all XXXOper::Hash() methods are identical (990820)
3104
// define_hash(fp, oper->_ident);
3105
// // Currently all XXXOper::Cmp() methods are identical (990820)
3106
// define_cmp(fp, oper->_ident);
3107
fprintf(fp,"\n");
3108
3109
continue;
3110
}
3111
3112
defineIn_RegMask(fp, _globalNames, *oper);
3113
defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
3114
// // Currently all XXXOper::Hash() methods are identical (990820)
3115
// define_hash(fp, oper->_ident);
3116
// // Currently all XXXOper::Cmp() methods are identical (990820)
3117
// define_cmp(fp, oper->_ident);
3118
3119
// side-call to generate output that used to be in the header file:
3120
extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
3121
gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
3122
3123
}
3124
3125
3126
// Generate Machine Classes for each instruction defined in AD file
3127
fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
3128
// Output the definitions for out_RegMask() // & kill_RegMask()
3129
_instructions.reset();
3130
InstructForm *instr;
3131
MachNodeForm *machnode;
3132
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3133
// Ensure this is a machine-world instruction
3134
if ( instr->ideal_only() ) continue;
3135
3136
defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
3137
}
3138
3139
bool used = false;
3140
// Output the definitions for expand rules & peephole rules
3141
_instructions.reset();
3142
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3143
// Ensure this is a machine-world instruction
3144
if ( instr->ideal_only() ) continue;
3145
// If there are multiple defs/kills, or an explicit expand rule, build rule
3146
if( instr->expands() || instr->needs_projections() ||
3147
instr->has_temps() ||
3148
instr->is_mach_constant() ||
3149
instr->needs_constant_base() ||
3150
(instr->_matrule != NULL &&
3151
instr->num_opnds() != instr->num_unique_opnds()) )
3152
defineExpand(_CPP_EXPAND_file._fp, instr);
3153
// If there is an explicit peephole rule, build it
3154
if ( instr->peepholes() )
3155
definePeephole(_CPP_PEEPHOLE_file._fp, instr);
3156
3157
// Output code to convert to the cisc version, if applicable
3158
used |= instr->define_cisc_version(*this, fp);
3159
3160
// Output code to convert to the short branch version, if applicable
3161
used |= instr->define_short_branch_methods(*this, fp);
3162
}
3163
3164
// Construct the method called by cisc_version() to copy inputs and operands.
3165
define_fill_new_machnode(used, fp);
3166
3167
// Output the definitions for labels
3168
_instructions.reset();
3169
while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3170
// Ensure this is a machine-world instruction
3171
if ( instr->ideal_only() ) continue;
3172
3173
// Access the fields for operand Label
3174
int label_position = instr->label_position();
3175
if( label_position != -1 ) {
3176
// Set the label
3177
fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
3178
fprintf(fp," labelOper* oper = (labelOper*)(opnd_array(%d));\n",
3179
label_position );
3180
fprintf(fp," oper->_label = label;\n");
3181
fprintf(fp," oper->_block_num = block_num;\n");
3182
fprintf(fp,"}\n");
3183
// Save the label
3184
fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
3185
fprintf(fp," labelOper* oper = (labelOper*)(opnd_array(%d));\n",
3186
label_position );
3187
fprintf(fp," *label = oper->_label;\n");
3188
fprintf(fp," *block_num = oper->_block_num;\n");
3189
fprintf(fp,"}\n");
3190
}
3191
}
3192
3193
// Output the definitions for methods
3194
_instructions.reset();
3195
while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3196
// Ensure this is a machine-world instruction
3197
if ( instr->ideal_only() ) continue;
3198
3199
// Access the fields for operand Label
3200
int method_position = instr->method_position();
3201
if( method_position != -1 ) {
3202
// Access the method's address
3203
fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
3204
fprintf(fp," ((methodOper*)opnd_array(%d))->_method = method;\n",
3205
method_position );
3206
fprintf(fp,"}\n");
3207
fprintf(fp,"\n");
3208
}
3209
}
3210
3211
// Define this instruction's number of relocation entries, base is '0'
3212
_instructions.reset();
3213
while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3214
// Output the definition for number of relocation entries
3215
uint reloc_size = instr->reloc(_globalNames);
3216
if ( reloc_size != 0 ) {
3217
fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
3218
fprintf(fp," return %d;\n", reloc_size);
3219
fprintf(fp,"}\n");
3220
fprintf(fp,"\n");
3221
}
3222
}
3223
fprintf(fp,"\n");
3224
3225
// Output the definitions for code generation
3226
//
3227
// address ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3228
// // ... encoding defined by user
3229
// return ptr;
3230
// }
3231
//
3232
_instructions.reset();
3233
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3234
// Ensure this is a machine-world instruction
3235
if ( instr->ideal_only() ) continue;
3236
3237
if (instr->_insencode) {
3238
if (instr->postalloc_expands()) {
3239
// Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
3240
// from code sections in ad file that is dumped to fp.
3241
define_postalloc_expand(fp, *instr);
3242
} else {
3243
defineEmit(fp, *instr);
3244
}
3245
}
3246
if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
3247
if (instr->_size) defineSize (fp, *instr);
3248
3249
// side-call to generate output that used to be in the header file:
3250
extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3251
gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3252
}
3253
3254
// Output the definitions for alias analysis
3255
_instructions.reset();
3256
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3257
// Ensure this is a machine-world instruction
3258
if ( instr->ideal_only() ) continue;
3259
3260
// Analyze machine instructions that either USE or DEF memory.
3261
int memory_operand = instr->memory_operand(_globalNames);
3262
3263
if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3264
if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3265
fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3266
fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3267
} else {
3268
fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3269
}
3270
}
3271
}
3272
3273
// Get the length of the longest identifier
3274
int max_ident_len = 0;
3275
_instructions.reset();
3276
3277
for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3278
if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3279
int ident_len = (int)strlen(instr->_ident);
3280
if( max_ident_len < ident_len )
3281
max_ident_len = ident_len;
3282
}
3283
}
3284
3285
// Emit specifically for Node(s)
3286
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3287
max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3288
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3289
max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3290
fprintf(_CPP_PIPELINE_file._fp, "\n");
3291
3292
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3293
max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3294
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3295
max_ident_len, "MachNode");
3296
fprintf(_CPP_PIPELINE_file._fp, "\n");
3297
3298
// Output the definitions for machine node specific pipeline data
3299
_machnodes.reset();
3300
3301
if (_pipeline != NULL) {
3302
for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3303
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3304
machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3305
}
3306
}
3307
3308
fprintf(_CPP_PIPELINE_file._fp, "\n");
3309
3310
// Output the definitions for instruction pipeline static data references
3311
_instructions.reset();
3312
3313
if (_pipeline != NULL) {
3314
for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3315
if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3316
fprintf(_CPP_PIPELINE_file._fp, "\n");
3317
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3318
max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3319
fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3320
max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3321
}
3322
}
3323
}
3324
}
3325
3326
3327
// -------------------------------- maps ------------------------------------
3328
3329
// Information needed to generate the ReduceOp mapping for the DFA
3330
class OutputReduceOp : public OutputMap {
3331
public:
3332
OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3333
: OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
3334
3335
void declaration() { fprintf(_hpp, "extern const int reduceOp[];\n"); }
3336
void definition() { fprintf(_cpp, "const int reduceOp[] = {\n"); }
3337
void closing() { fprintf(_cpp, " 0 // no trailing comma\n");
3338
OutputMap::closing();
3339
}
3340
void map(OpClassForm &opc) {
3341
const char *reduce = opc._ident;
3342
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3343
else fprintf(_cpp, " 0");
3344
}
3345
void map(OperandForm &oper) {
3346
// Most operands without match rules, e.g. eFlagsReg, do not have a result operand
3347
const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3348
// operand stackSlot does not have a match rule, but produces a stackSlot
3349
if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3350
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3351
else fprintf(_cpp, " 0");
3352
}
3353
void map(InstructForm &inst) {
3354
const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3355
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3356
else fprintf(_cpp, " 0");
3357
}
3358
void map(char *reduce) {
3359
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3360
else fprintf(_cpp, " 0");
3361
}
3362
};
3363
3364
// Information needed to generate the LeftOp mapping for the DFA
3365
class OutputLeftOp : public OutputMap {
3366
public:
3367
OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3368
: OutputMap(hpp, cpp, globals, AD, "leftOp") {};
3369
3370
void declaration() { fprintf(_hpp, "extern const int leftOp[];\n"); }
3371
void definition() { fprintf(_cpp, "const int leftOp[] = {\n"); }
3372
void closing() { fprintf(_cpp, " 0 // no trailing comma\n");
3373
OutputMap::closing();
3374
}
3375
void map(OpClassForm &opc) { fprintf(_cpp, " 0"); }
3376
void map(OperandForm &oper) {
3377
const char *reduce = oper.reduce_left(_globals);
3378
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3379
else fprintf(_cpp, " 0");
3380
}
3381
void map(char *name) {
3382
const char *reduce = _AD.reduceLeft(name);
3383
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3384
else fprintf(_cpp, " 0");
3385
}
3386
void map(InstructForm &inst) {
3387
const char *reduce = inst.reduce_left(_globals);
3388
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3389
else fprintf(_cpp, " 0");
3390
}
3391
};
3392
3393
3394
// Information needed to generate the RightOp mapping for the DFA
3395
class OutputRightOp : public OutputMap {
3396
public:
3397
OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3398
: OutputMap(hpp, cpp, globals, AD, "rightOp") {};
3399
3400
void declaration() { fprintf(_hpp, "extern const int rightOp[];\n"); }
3401
void definition() { fprintf(_cpp, "const int rightOp[] = {\n"); }
3402
void closing() { fprintf(_cpp, " 0 // no trailing comma\n");
3403
OutputMap::closing();
3404
}
3405
void map(OpClassForm &opc) { fprintf(_cpp, " 0"); }
3406
void map(OperandForm &oper) {
3407
const char *reduce = oper.reduce_right(_globals);
3408
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3409
else fprintf(_cpp, " 0");
3410
}
3411
void map(char *name) {
3412
const char *reduce = _AD.reduceRight(name);
3413
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3414
else fprintf(_cpp, " 0");
3415
}
3416
void map(InstructForm &inst) {
3417
const char *reduce = inst.reduce_right(_globals);
3418
if( reduce ) fprintf(_cpp, " %s_rule", reduce);
3419
else fprintf(_cpp, " 0");
3420
}
3421
};
3422
3423
3424
// Information needed to generate the Rule names for the DFA
3425
class OutputRuleName : public OutputMap {
3426
public:
3427
OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3428
: OutputMap(hpp, cpp, globals, AD, "ruleName") {};
3429
3430
void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
3431
void definition() { fprintf(_cpp, "const char *ruleName[] = {\n"); }
3432
void closing() { fprintf(_cpp, " \"invalid rule name\" // no trailing comma\n");
3433
OutputMap::closing();
3434
}
3435
void map(OpClassForm &opc) { fprintf(_cpp, " \"%s\"", _AD.machOperEnum(opc._ident) ); }
3436
void map(OperandForm &oper) { fprintf(_cpp, " \"%s\"", _AD.machOperEnum(oper._ident) ); }
3437
void map(char *name) { fprintf(_cpp, " \"%s\"", name ? name : "0"); }
3438
void map(InstructForm &inst){ fprintf(_cpp, " \"%s\"", inst._ident ? inst._ident : "0"); }
3439
};
3440
3441
3442
// Information needed to generate the swallowed mapping for the DFA
3443
class OutputSwallowed : public OutputMap {
3444
public:
3445
OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3446
: OutputMap(hpp, cpp, globals, AD, "swallowed") {};
3447
3448
void declaration() { fprintf(_hpp, "extern const bool swallowed[];\n"); }
3449
void definition() { fprintf(_cpp, "const bool swallowed[] = {\n"); }
3450
void closing() { fprintf(_cpp, " false // no trailing comma\n");
3451
OutputMap::closing();
3452
}
3453
void map(OperandForm &oper) { // Generate the entry for this opcode
3454
const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3455
fprintf(_cpp, " %s", swallowed);
3456
}
3457
void map(OpClassForm &opc) { fprintf(_cpp, " false"); }
3458
void map(char *name) { fprintf(_cpp, " false"); }
3459
void map(InstructForm &inst){ fprintf(_cpp, " false"); }
3460
};
3461
3462
3463
// Information needed to generate the decision array for instruction chain rule
3464
class OutputInstChainRule : public OutputMap {
3465
public:
3466
OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3467
: OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
3468
3469
void declaration() { fprintf(_hpp, "extern const bool instruction_chain_rule[];\n"); }
3470
void definition() { fprintf(_cpp, "const bool instruction_chain_rule[] = {\n"); }
3471
void closing() { fprintf(_cpp, " false // no trailing comma\n");
3472
OutputMap::closing();
3473
}
3474
void map(OpClassForm &opc) { fprintf(_cpp, " false"); }
3475
void map(OperandForm &oper) { fprintf(_cpp, " false"); }
3476
void map(char *name) { fprintf(_cpp, " false"); }
3477
void map(InstructForm &inst) { // Check for simple chain rule
3478
const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3479
fprintf(_cpp, " %s", chain);
3480
}
3481
};
3482
3483
3484
//---------------------------build_map------------------------------------
3485
// Build mapping from enumeration for densely packed operands
3486
// TO result and child types.
3487
void ArchDesc::build_map(OutputMap &map) {
3488
FILE *fp_hpp = map.decl_file();
3489
FILE *fp_cpp = map.def_file();
3490
int idx = 0;
3491
OperandForm *op;
3492
OpClassForm *opc;
3493
InstructForm *inst;
3494
3495
// Construct this mapping
3496
map.declaration();
3497
fprintf(fp_cpp,"\n");
3498
map.definition();
3499
3500
// Output the mapping for operands
3501
map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3502
_operands.reset();
3503
for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3504
// Ensure this is a machine-world instruction
3505
if ( op->ideal_only() ) continue;
3506
3507
// Generate the entry for this opcode
3508
fprintf(fp_cpp, " /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
3509
++idx;
3510
};
3511
fprintf(fp_cpp, " // last operand\n");
3512
3513
// Place all user-defined operand classes into the mapping
3514
map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3515
_opclass.reset();
3516
for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3517
fprintf(fp_cpp, " /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
3518
++idx;
3519
};
3520
fprintf(fp_cpp, " // last operand class\n");
3521
3522
// Place all internally defined operands into the mapping
3523
map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3524
_internalOpNames.reset();
3525
char *name = NULL;
3526
for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3527
fprintf(fp_cpp, " /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
3528
++idx;
3529
};
3530
fprintf(fp_cpp, " // last internally defined operand\n");
3531
3532
// Place all user-defined instructions into the mapping
3533
if( map.do_instructions() ) {
3534
map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3535
// Output all simple instruction chain rules first
3536
map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3537
{
3538
_instructions.reset();
3539
for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3540
// Ensure this is a machine-world instruction
3541
if ( inst->ideal_only() ) continue;
3542
if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3543
if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3544
3545
fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3546
++idx;
3547
};
3548
map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3549
_instructions.reset();
3550
for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3551
// Ensure this is a machine-world instruction
3552
if ( inst->ideal_only() ) continue;
3553
if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3554
if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3555
3556
fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3557
++idx;
3558
};
3559
map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3560
}
3561
// Output all instructions that are NOT simple chain rules
3562
{
3563
_instructions.reset();
3564
for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3565
// Ensure this is a machine-world instruction
3566
if ( inst->ideal_only() ) continue;
3567
if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3568
if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3569
3570
fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3571
++idx;
3572
};
3573
map.record_position(OutputMap::END_REMATERIALIZE, idx );
3574
_instructions.reset();
3575
for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3576
// Ensure this is a machine-world instruction
3577
if ( inst->ideal_only() ) continue;
3578
if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3579
if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3580
3581
fprintf(fp_cpp, " /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3582
++idx;
3583
};
3584
}
3585
fprintf(fp_cpp, " // last instruction\n");
3586
map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3587
}
3588
// Finish defining table
3589
map.closing();
3590
};
3591
3592
3593
// Helper function for buildReduceMaps
3594
char reg_save_policy(const char *calling_convention) {
3595
char callconv;
3596
3597
if (!strcmp(calling_convention, "NS")) callconv = 'N';
3598
else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3599
else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3600
else if (!strcmp(calling_convention, "AS")) callconv = 'A';
3601
else callconv = 'Z';
3602
3603
return callconv;
3604
}
3605
3606
void ArchDesc::generate_needs_deep_clone_jvms(FILE *fp_cpp) {
3607
fprintf(fp_cpp, "bool Compile::needs_deep_clone_jvms() { return %s; }\n\n",
3608
_needs_deep_clone_jvms ? "true" : "false");
3609
}
3610
3611
//---------------------------generate_assertion_checks-------------------
3612
void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3613
fprintf(fp_cpp, "\n");
3614
3615
fprintf(fp_cpp, "#ifndef PRODUCT\n");
3616
fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3617
globalDefs().print_asserts(fp_cpp);
3618
fprintf(fp_cpp, "}\n");
3619
fprintf(fp_cpp, "#endif\n");
3620
fprintf(fp_cpp, "\n");
3621
}
3622
3623
//---------------------------addSourceBlocks-----------------------------
3624
void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3625
if (_source.count() > 0)
3626
_source.output(fp_cpp);
3627
3628
generate_adlc_verification(fp_cpp);
3629
}
3630
//---------------------------addHeaderBlocks-----------------------------
3631
void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3632
if (_header.count() > 0)
3633
_header.output(fp_hpp);
3634
}
3635
//-------------------------addPreHeaderBlocks----------------------------
3636
void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3637
// Output #defines from definition block
3638
globalDefs().print_defines(fp_hpp);
3639
3640
if (_pre_header.count() > 0)
3641
_pre_header.output(fp_hpp);
3642
}
3643
3644
//---------------------------buildReduceMaps-----------------------------
3645
// Build mapping from enumeration for densely packed operands
3646
// TO result and child types.
3647
void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3648
RegDef *rdef;
3649
RegDef *next;
3650
3651
// The emit bodies currently require functions defined in the source block.
3652
3653
// Build external declarations for mappings
3654
fprintf(fp_hpp, "\n");
3655
fprintf(fp_hpp, "extern const char register_save_policy[];\n");
3656
fprintf(fp_hpp, "extern const char c_reg_save_policy[];\n");
3657
fprintf(fp_hpp, "extern const int register_save_type[];\n");
3658
fprintf(fp_hpp, "\n");
3659
3660
// Construct Save-Policy array
3661
fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3662
fprintf(fp_cpp, "const char register_save_policy[] = {\n");
3663
_register->reset_RegDefs();
3664
for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3665
next = _register->iter_RegDefs();
3666
char policy = reg_save_policy(rdef->_callconv);
3667
const char *comma = (next != NULL) ? "," : " // no trailing comma";
3668
fprintf(fp_cpp, " '%c'%s // %s\n", policy, comma, rdef->_regname);
3669
}
3670
fprintf(fp_cpp, "};\n\n");
3671
3672
// Construct Native Save-Policy array
3673
fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3674
fprintf(fp_cpp, "const char c_reg_save_policy[] = {\n");
3675
_register->reset_RegDefs();
3676
for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3677
next = _register->iter_RegDefs();
3678
char policy = reg_save_policy(rdef->_c_conv);
3679
const char *comma = (next != NULL) ? "," : " // no trailing comma";
3680
fprintf(fp_cpp, " '%c'%s // %s\n", policy, comma, rdef->_regname);
3681
}
3682
fprintf(fp_cpp, "};\n\n");
3683
3684
// Construct Register Save Type array
3685
fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3686
fprintf(fp_cpp, "const int register_save_type[] = {\n");
3687
_register->reset_RegDefs();
3688
for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3689
next = _register->iter_RegDefs();
3690
const char *comma = (next != NULL) ? "," : " // no trailing comma";
3691
fprintf(fp_cpp, " %s%s\n", rdef->_idealtype, comma);
3692
}
3693
fprintf(fp_cpp, "};\n\n");
3694
3695
// Construct the table for reduceOp
3696
OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3697
build_map(output_reduce_op);
3698
// Construct the table for leftOp
3699
OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3700
build_map(output_left_op);
3701
// Construct the table for rightOp
3702
OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3703
build_map(output_right_op);
3704
// Construct the table of rule names
3705
OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3706
build_map(output_rule_name);
3707
// Construct the boolean table for subsumed operands
3708
OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3709
build_map(output_swallowed);
3710
// // // Preserve in case we decide to use this table instead of another
3711
//// Construct the boolean table for instruction chain rules
3712
//OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3713
//build_map(output_inst_chain);
3714
3715
}
3716
3717
3718
//---------------------------buildMachOperGenerator---------------------------
3719
3720
// Recurse through match tree, building path through corresponding state tree,
3721
// Until we reach the constant we are looking for.
3722
static void path_to_constant(FILE *fp, FormDict &globals,
3723
MatchNode *mnode, uint idx) {
3724
if ( ! mnode) return;
3725
3726
unsigned position = 0;
3727
const char *result = NULL;
3728
const char *name = NULL;
3729
const char *optype = NULL;
3730
3731
// Base Case: access constant in ideal node linked to current state node
3732
// Each type of constant has its own access function
3733
if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3734
&& mnode->base_operand(position, globals, result, name, optype) ) {
3735
if ( strcmp(optype,"ConI") == 0 ) {
3736
fprintf(fp, "_leaf->get_int()");
3737
} else if ( (strcmp(optype,"ConP") == 0) ) {
3738
fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3739
} else if ( (strcmp(optype,"ConN") == 0) ) {
3740
fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3741
} else if ( (strcmp(optype,"ConNKlass") == 0) ) {
3742
fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
3743
} else if ( (strcmp(optype,"ConF") == 0) ) {
3744
fprintf(fp, "_leaf->getf()");
3745
} else if ( (strcmp(optype,"ConD") == 0) ) {
3746
fprintf(fp, "_leaf->getd()");
3747
} else if ( (strcmp(optype,"ConL") == 0) ) {
3748
fprintf(fp, "_leaf->get_long()");
3749
} else if ( (strcmp(optype,"Con")==0) ) {
3750
// !!!!! - Update if adding a machine-independent constant type
3751
fprintf(fp, "_leaf->get_int()");
3752
assert( false, "Unsupported constant type, pointer or indefinite");
3753
} else if ( (strcmp(optype,"Bool") == 0) ) {
3754
fprintf(fp, "_leaf->as_Bool()->_test._test");
3755
} else {
3756
assert( false, "Unsupported constant type");
3757
}
3758
return;
3759
}
3760
3761
// If constant is in left child, build path and recurse
3762
uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3763
uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3764
if ( (mnode->_lChild) && (lConsts > idx) ) {
3765
fprintf(fp, "_kids[0]->");
3766
path_to_constant(fp, globals, mnode->_lChild, idx);
3767
return;
3768
}
3769
// If constant is in right child, build path and recurse
3770
if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3771
idx = idx - lConsts;
3772
fprintf(fp, "_kids[1]->");
3773
path_to_constant(fp, globals, mnode->_rChild, idx);
3774
return;
3775
}
3776
assert( false, "ShouldNotReachHere()");
3777
}
3778
3779
// Generate code that is executed when generating a specific Machine Operand
3780
static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3781
OperandForm &op) {
3782
const char *opName = op._ident;
3783
const char *opEnumName = AD.machOperEnum(opName);
3784
uint num_consts = op.num_consts(globalNames);
3785
3786
// Generate the case statement for this opcode
3787
fprintf(fp, " case %s:", opEnumName);
3788
fprintf(fp, "\n return new %sOper(", opName);
3789
// Access parameters for constructor from the stat object
3790
//
3791
// Build access to condition code value
3792
if ( (num_consts > 0) ) {
3793
uint i = 0;
3794
path_to_constant(fp, globalNames, op._matrule, i);
3795
for ( i = 1; i < num_consts; ++i ) {
3796
fprintf(fp, ", ");
3797
path_to_constant(fp, globalNames, op._matrule, i);
3798
}
3799
}
3800
fprintf(fp, " );\n");
3801
}
3802
3803
3804
// Build switch to invoke "new" MachNode or MachOper
3805
void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3806
int idx = 0;
3807
3808
// Build switch to invoke 'new' for a specific MachOper
3809
fprintf(fp_cpp, "\n");
3810
fprintf(fp_cpp, "\n");
3811
fprintf(fp_cpp,
3812
"//------------------------- MachOper Generator ---------------\n");
3813
fprintf(fp_cpp,
3814
"// A switch statement on the dense-packed user-defined type system\n"
3815
"// that invokes 'new' on the corresponding class constructor.\n");
3816
fprintf(fp_cpp, "\n");
3817
fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3818
fprintf(fp_cpp, "(int opcode)");
3819
fprintf(fp_cpp, "{\n");
3820
fprintf(fp_cpp, "\n");
3821
fprintf(fp_cpp, " switch(opcode) {\n");
3822
3823
// Place all user-defined operands into the mapping
3824
_operands.reset();
3825
int opIndex = 0;
3826
OperandForm *op;
3827
for( ; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3828
// Ensure this is a machine-world instruction
3829
if ( op->ideal_only() ) continue;
3830
3831
genMachOperCase(fp_cpp, _globalNames, *this, *op);
3832
};
3833
3834
// Do not iterate over operand classes for the operand generator!!!
3835
3836
// Place all internal operands into the mapping
3837
_internalOpNames.reset();
3838
const char *iopn;
3839
for( ; (iopn = _internalOpNames.iter()) != NULL; ) {
3840
const char *opEnumName = machOperEnum(iopn);
3841
// Generate the case statement for this opcode
3842
fprintf(fp_cpp, " case %s:", opEnumName);
3843
fprintf(fp_cpp, " return NULL;\n");
3844
};
3845
3846
// Generate the default case for switch(opcode)
3847
fprintf(fp_cpp, " \n");
3848
fprintf(fp_cpp, " default:\n");
3849
fprintf(fp_cpp, " fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3850
fprintf(fp_cpp, " fprintf(stderr, \" opcode = %cd\\n\", opcode);\n", '%');
3851
fprintf(fp_cpp, " break;\n");
3852
fprintf(fp_cpp, " }\n");
3853
3854
// Generate the closing for method Matcher::MachOperGenerator
3855
fprintf(fp_cpp, " return NULL;\n");
3856
fprintf(fp_cpp, "};\n");
3857
}
3858
3859
3860
//---------------------------buildMachNode-------------------------------------
3861
// Build a new MachNode, for MachNodeGenerator or cisc-spilling
3862
void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3863
const char *opType = NULL;
3864
const char *opClass = inst->_ident;
3865
3866
// Create the MachNode object
3867
fprintf(fp_cpp, "%s %sNode *node = new %sNode();\n",indent, opClass,opClass);
3868
3869
if ( (inst->num_post_match_opnds() != 0) ) {
3870
// Instruction that contains operands which are not in match rule.
3871
//
3872
// Check if the first post-match component may be an interesting def
3873
bool dont_care = false;
3874
ComponentList &comp_list = inst->_components;
3875
Component *comp = NULL;
3876
comp_list.reset();
3877
if ( comp_list.match_iter() != NULL ) dont_care = true;
3878
3879
// Insert operands that are not in match-rule.
3880
// Only insert a DEF if the do_care flag is set
3881
comp_list.reset();
3882
while ( (comp = comp_list.post_match_iter()) ) {
3883
// Check if we don't care about DEFs or KILLs that are not USEs
3884
if ( dont_care && (! comp->isa(Component::USE)) ) {
3885
continue;
3886
}
3887
dont_care = true;
3888
// For each operand not in the match rule, call MachOperGenerator
3889
// with the enum for the opcode that needs to be built.
3890
ComponentList clist = inst->_components;
3891
int index = clist.operand_position(comp->_name, comp->_usedef, inst);
3892
const char *opcode = machOperEnum(comp->_type);
3893
fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3894
fprintf(fp_cpp, "MachOperGenerator(%s));\n", opcode);
3895
}
3896
}
3897
else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3898
// An instruction that chains from a constant!
3899
// In this case, we need to subsume the constant into the node
3900
// at operand position, oper_input_base().
3901
//
3902
// Fill in the constant
3903
fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3904
inst->oper_input_base(_globalNames));
3905
// #####
3906
// Check for multiple constants and then fill them in.
3907
// Just like MachOperGenerator
3908
const char *opName = inst->_matrule->_rChild->_opType;
3909
fprintf(fp_cpp, "new %sOper(", opName);
3910
// Grab operand form
3911
OperandForm *op = (_globalNames[opName])->is_operand();
3912
// Look up the number of constants
3913
uint num_consts = op->num_consts(_globalNames);
3914
if ( (num_consts > 0) ) {
3915
uint i = 0;
3916
path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3917
for ( i = 1; i < num_consts; ++i ) {
3918
fprintf(fp_cpp, ", ");
3919
path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3920
}
3921
}
3922
fprintf(fp_cpp, " );\n");
3923
// #####
3924
}
3925
3926
// Fill in the bottom_type where requested
3927
if (inst->captures_bottom_type(_globalNames)) {
3928
if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
3929
fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3930
}
3931
}
3932
if( inst->is_ideal_if() ) {
3933
fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3934
fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3935
}
3936
if (inst->is_ideal_halt()) {
3937
fprintf(fp_cpp, "%s node->_halt_reason = _leaf->as_Halt()->_halt_reason;\n", indent);
3938
fprintf(fp_cpp, "%s node->_reachable = _leaf->as_Halt()->_reachable;\n", indent);
3939
}
3940
if (inst->is_ideal_jump()) {
3941
fprintf(fp_cpp, "%s node->_probs = _leaf->as_Jump()->_probs;\n", indent);
3942
}
3943
if( inst->is_ideal_fastlock() ) {
3944
fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3945
fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
3946
fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
3947
}
3948
3949
}
3950
3951
//---------------------------declare_cisc_version------------------------------
3952
// Build CISC version of this instruction
3953
void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3954
if( AD.can_cisc_spill() ) {
3955
InstructForm *inst_cisc = cisc_spill_alternate();
3956
if (inst_cisc != NULL) {
3957
fprintf(fp_hpp, " virtual int cisc_operand() const { return %d; }\n", cisc_spill_operand());
3958
fprintf(fp_hpp, " virtual MachNode *cisc_version(int offset);\n");
3959
fprintf(fp_hpp, " virtual void use_cisc_RegMask();\n");
3960
fprintf(fp_hpp, " virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3961
}
3962
}
3963
}
3964
3965
//---------------------------define_cisc_version-------------------------------
3966
// Build CISC version of this instruction
3967
bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3968
InstructForm *inst_cisc = this->cisc_spill_alternate();
3969
if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3970
const char *name = inst_cisc->_ident;
3971
assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3972
OperandForm *cisc_oper = AD.cisc_spill_operand();
3973
assert( cisc_oper != NULL, "insanity check");
3974
const char *cisc_oper_name = cisc_oper->_ident;
3975
assert( cisc_oper_name != NULL, "insanity check");
3976
//
3977
// Set the correct reg_mask_or_stack for the cisc operand
3978
fprintf(fp_cpp, "\n");
3979
fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
3980
// Lookup the correct reg_mask_or_stack
3981
const char *reg_mask_name = cisc_reg_mask_name();
3982
fprintf(fp_cpp, " _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
3983
fprintf(fp_cpp, "}\n");
3984
//
3985
// Construct CISC version of this instruction
3986
fprintf(fp_cpp, "\n");
3987
fprintf(fp_cpp, "// Build CISC version of this instruction\n");
3988
fprintf(fp_cpp, "MachNode *%sNode::cisc_version(int offset) {\n", this->_ident);
3989
// Create the MachNode object
3990
fprintf(fp_cpp, " %sNode *node = new %sNode();\n", name, name);
3991
// Fill in the bottom_type where requested
3992
if ( this->captures_bottom_type(AD.globalNames()) ) {
3993
fprintf(fp_cpp, " node->_bottom_type = bottom_type();\n");
3994
}
3995
3996
uint cur_num_opnds = num_opnds();
3997
if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
3998
fprintf(fp_cpp," node->_num_opnds = %d;\n", num_unique_opnds());
3999
}
4000
4001
fprintf(fp_cpp, "\n");
4002
fprintf(fp_cpp, " // Copy _idx, inputs and operands to new node\n");
4003
fprintf(fp_cpp, " fill_new_machnode(node);\n");
4004
// Construct operand to access [stack_pointer + offset]
4005
fprintf(fp_cpp, " // Construct operand to access [stack_pointer + offset]\n");
4006
fprintf(fp_cpp, " node->set_opnd_array(cisc_operand(), new %sOper(offset));\n", cisc_oper_name);
4007
fprintf(fp_cpp, "\n");
4008
4009
// Return result and exit scope
4010
fprintf(fp_cpp, " return node;\n");
4011
fprintf(fp_cpp, "}\n");
4012
fprintf(fp_cpp, "\n");
4013
return true;
4014
}
4015
return false;
4016
}
4017
4018
//---------------------------declare_short_branch_methods----------------------
4019
// Build prototypes for short branch methods
4020
void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
4021
if (has_short_branch_form()) {
4022
fprintf(fp_hpp, " virtual MachNode *short_branch_version();\n");
4023
}
4024
}
4025
4026
//---------------------------define_short_branch_methods-----------------------
4027
// Build definitions for short branch methods
4028
bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
4029
if (has_short_branch_form()) {
4030
InstructForm *short_branch = short_branch_form();
4031
const char *name = short_branch->_ident;
4032
4033
// Construct short_branch_version() method.
4034
fprintf(fp_cpp, "// Build short branch version of this instruction\n");
4035
fprintf(fp_cpp, "MachNode *%sNode::short_branch_version() {\n", this->_ident);
4036
// Create the MachNode object
4037
fprintf(fp_cpp, " %sNode *node = new %sNode();\n", name, name);
4038
if( is_ideal_if() ) {
4039
fprintf(fp_cpp, " node->_prob = _prob;\n");
4040
fprintf(fp_cpp, " node->_fcnt = _fcnt;\n");
4041
}
4042
// Fill in the bottom_type where requested
4043
if ( this->captures_bottom_type(AD.globalNames()) ) {
4044
fprintf(fp_cpp, " node->_bottom_type = bottom_type();\n");
4045
}
4046
4047
fprintf(fp_cpp, "\n");
4048
// Short branch version must use same node index for access
4049
// through allocator's tables
4050
fprintf(fp_cpp, " // Copy _idx, inputs and operands to new node\n");
4051
fprintf(fp_cpp, " fill_new_machnode(node);\n");
4052
4053
// Return result and exit scope
4054
fprintf(fp_cpp, " return node;\n");
4055
fprintf(fp_cpp, "}\n");
4056
fprintf(fp_cpp,"\n");
4057
return true;
4058
}
4059
return false;
4060
}
4061
4062
4063
//---------------------------buildMachNodeGenerator----------------------------
4064
// Build switch to invoke appropriate "new" MachNode for an opcode
4065
void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
4066
4067
// Build switch to invoke 'new' for a specific MachNode
4068
fprintf(fp_cpp, "\n");
4069
fprintf(fp_cpp, "\n");
4070
fprintf(fp_cpp,
4071
"//------------------------- MachNode Generator ---------------\n");
4072
fprintf(fp_cpp,
4073
"// A switch statement on the dense-packed user-defined type system\n"
4074
"// that invokes 'new' on the corresponding class constructor.\n");
4075
fprintf(fp_cpp, "\n");
4076
fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
4077
fprintf(fp_cpp, "(int opcode)");
4078
fprintf(fp_cpp, "{\n");
4079
fprintf(fp_cpp, " switch(opcode) {\n");
4080
4081
// Provide constructor for all user-defined instructions
4082
_instructions.reset();
4083
int opIndex = operandFormCount();
4084
InstructForm *inst;
4085
for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4086
// Ensure that matrule is defined.
4087
if ( inst->_matrule == NULL ) continue;
4088
4089
int opcode = opIndex++;
4090
const char *opClass = inst->_ident;
4091
char *opType = NULL;
4092
4093
// Generate the case statement for this instruction
4094
fprintf(fp_cpp, " case %s_rule:", opClass);
4095
4096
// Start local scope
4097
fprintf(fp_cpp, " {\n");
4098
// Generate code to construct the new MachNode
4099
buildMachNode(fp_cpp, inst, " ");
4100
// Return result and exit scope
4101
fprintf(fp_cpp, " return node;\n");
4102
fprintf(fp_cpp, " }\n");
4103
}
4104
4105
// Generate the default case for switch(opcode)
4106
fprintf(fp_cpp, " \n");
4107
fprintf(fp_cpp, " default:\n");
4108
fprintf(fp_cpp, " fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
4109
fprintf(fp_cpp, " fprintf(stderr, \" opcode = %cd\\n\", opcode);\n", '%');
4110
fprintf(fp_cpp, " break;\n");
4111
fprintf(fp_cpp, " };\n");
4112
4113
// Generate the closing for method Matcher::MachNodeGenerator
4114
fprintf(fp_cpp, " return NULL;\n");
4115
fprintf(fp_cpp, "}\n");
4116
}
4117
4118
4119
//---------------------------buildInstructMatchCheck--------------------------
4120
// Output the method to Matcher which checks whether or not a specific
4121
// instruction has a matching rule for the host architecture.
4122
void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
4123
fprintf(fp_cpp, "\n\n");
4124
fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
4125
fprintf(fp_cpp, " assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
4126
fprintf(fp_cpp, " return _hasMatchRule[opcode];\n");
4127
fprintf(fp_cpp, "}\n\n");
4128
4129
fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
4130
int i;
4131
for (i = 0; i < _last_opcode - 1; i++) {
4132
fprintf(fp_cpp, " %-5s, // %s\n",
4133
_has_match_rule[i] ? "true" : "false",
4134
NodeClassNames[i]);
4135
}
4136
fprintf(fp_cpp, " %-5s // %s\n",
4137
_has_match_rule[i] ? "true" : "false",
4138
NodeClassNames[i]);
4139
fprintf(fp_cpp, "};\n");
4140
}
4141
4142
//---------------------------buildFrameMethods---------------------------------
4143
// Output the methods to Matcher which specify frame behavior
4144
void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
4145
fprintf(fp_cpp,"\n\n");
4146
// Sync Stack Slots
4147
fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
4148
_frame->_sync_stack_slots);
4149
// Java Stack Alignment
4150
fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
4151
_frame->_alignment);
4152
// Java Return Address Location
4153
fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
4154
if (_frame->_return_addr_loc) {
4155
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4156
_frame->_return_addr);
4157
}
4158
else {
4159
fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
4160
_frame->_return_addr);
4161
}
4162
// varargs C out slots killed
4163
fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
4164
fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
4165
// Java Return Value Location
4166
fprintf(fp_cpp,"OptoRegPair Matcher::return_value(uint ideal_reg) {\n");
4167
fprintf(fp_cpp,"%s\n", _frame->_return_value);
4168
fprintf(fp_cpp,"}\n\n");
4169
// Native Return Value Location
4170
fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(uint ideal_reg) {\n");
4171
fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
4172
fprintf(fp_cpp,"}\n\n");
4173
4174
// Inline Cache Register, mask definition, and encoding
4175
fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
4176
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4177
_frame->_inline_cache_reg);
4178
fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
4179
fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
4180
4181
// Interpreter's Frame Pointer Register
4182
fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
4183
if (_frame->_interpreter_frame_pointer_reg == NULL)
4184
fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
4185
else
4186
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4187
_frame->_interpreter_frame_pointer_reg);
4188
4189
// Frame Pointer definition
4190
/* CNC - I can not contemplate having a different frame pointer between
4191
Java and native code; makes my head hurt to think about it.
4192
fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
4193
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4194
_frame->_frame_pointer);
4195
*/
4196
// (Native) Frame Pointer definition
4197
fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
4198
fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4199
_frame->_frame_pointer);
4200
4201
// Number of callee-save + always-save registers for calling convention
4202
fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
4203
fprintf(fp_cpp, "int Matcher::number_of_saved_registers() {\n");
4204
RegDef *rdef;
4205
int nof_saved_registers = 0;
4206
_register->reset_RegDefs();
4207
while( (rdef = _register->iter_RegDefs()) != NULL ) {
4208
if( !strcmp(rdef->_callconv, "SOE") || !strcmp(rdef->_callconv, "AS") )
4209
++nof_saved_registers;
4210
}
4211
fprintf(fp_cpp, " return %d;\n", nof_saved_registers);
4212
fprintf(fp_cpp, "};\n\n");
4213
}
4214
4215
4216
4217
4218
static int PrintAdlcCisc = 0;
4219
//---------------------------identify_cisc_spilling----------------------------
4220
// Get info for the CISC_oracle and MachNode::cisc_version()
4221
void ArchDesc::identify_cisc_spill_instructions() {
4222
4223
if (_frame == NULL)
4224
return;
4225
4226
// Find the user-defined operand for cisc-spilling
4227
if( _frame->_cisc_spilling_operand_name != NULL ) {
4228
const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4229
OperandForm *oper = form ? form->is_operand() : NULL;
4230
// Verify the user's suggestion
4231
if( oper != NULL ) {
4232
// Ensure that match field is defined.
4233
if ( oper->_matrule != NULL ) {
4234
MatchRule &mrule = *oper->_matrule;
4235
if( strcmp(mrule._opType,"AddP") == 0 ) {
4236
MatchNode *left = mrule._lChild;
4237
MatchNode *right= mrule._rChild;
4238
if( left != NULL && right != NULL ) {
4239
const Form *left_op = _globalNames[left->_opType]->is_operand();
4240
const Form *right_op = _globalNames[right->_opType]->is_operand();
4241
if( (left_op != NULL && right_op != NULL)
4242
&& (left_op->interface_type(_globalNames) == Form::register_interface)
4243
&& (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4244
// Successfully verified operand
4245
set_cisc_spill_operand( oper );
4246
if( _cisc_spill_debug ) {
4247
fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4248
}
4249
}
4250
}
4251
}
4252
}
4253
}
4254
}
4255
4256
if( cisc_spill_operand() != NULL ) {
4257
// N^2 comparison of instructions looking for a cisc-spilling version
4258
_instructions.reset();
4259
InstructForm *instr;
4260
for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4261
// Ensure that match field is defined.
4262
if ( instr->_matrule == NULL ) continue;
4263
4264
MatchRule &mrule = *instr->_matrule;
4265
Predicate *pred = instr->build_predicate();
4266
4267
// Grab the machine type of the operand
4268
const char *rootOp = instr->_ident;
4269
mrule._machType = rootOp;
4270
4271
// Find result type for match
4272
const char *result = instr->reduce_result();
4273
4274
if( PrintAdlcCisc ) fprintf(stderr, " new instruction %s \n", instr->_ident ? instr->_ident : " ");
4275
bool found_cisc_alternate = false;
4276
_instructions.reset2();
4277
InstructForm *instr2;
4278
for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4279
// Ensure that match field is defined.
4280
if( PrintAdlcCisc ) fprintf(stderr, " instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4281
if ( instr2->_matrule != NULL
4282
&& (instr != instr2 ) // Skip self
4283
&& (instr2->reduce_result() != NULL) // want same result
4284
&& (strcmp(result, instr2->reduce_result()) == 0)) {
4285
MatchRule &mrule2 = *instr2->_matrule;
4286
Predicate *pred2 = instr2->build_predicate();
4287
found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4288
}
4289
}
4290
}
4291
}
4292
}
4293
4294
//---------------------------build_cisc_spilling-------------------------------
4295
// Get info for the CISC_oracle and MachNode::cisc_version()
4296
void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4297
// Output the table for cisc spilling
4298
fprintf(fp_cpp, "// The following instructions can cisc-spill\n");
4299
_instructions.reset();
4300
InstructForm *inst = NULL;
4301
for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4302
// Ensure this is a machine-world instruction
4303
if ( inst->ideal_only() ) continue;
4304
const char *inst_name = inst->_ident;
4305
int operand = inst->cisc_spill_operand();
4306
if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4307
InstructForm *inst2 = inst->cisc_spill_alternate();
4308
fprintf(fp_cpp, "// %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4309
}
4310
}
4311
fprintf(fp_cpp, "\n\n");
4312
}
4313
4314
//---------------------------identify_short_branches----------------------------
4315
// Get info for our short branch replacement oracle.
4316
void ArchDesc::identify_short_branches() {
4317
// Walk over all instructions, checking to see if they match a short
4318
// branching alternate.
4319
_instructions.reset();
4320
InstructForm *instr;
4321
while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4322
// The instruction must have a match rule.
4323
if (instr->_matrule != NULL &&
4324
instr->is_short_branch()) {
4325
4326
_instructions.reset2();
4327
InstructForm *instr2;
4328
while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4329
instr2->check_branch_variant(*this, instr);
4330
}
4331
}
4332
}
4333
}
4334
4335
4336
//---------------------------identify_unique_operands---------------------------
4337
// Identify unique operands.
4338
void ArchDesc::identify_unique_operands() {
4339
// Walk over all instructions.
4340
_instructions.reset();
4341
InstructForm *instr;
4342
while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4343
// Ensure this is a machine-world instruction
4344
if (!instr->ideal_only()) {
4345
instr->set_unique_opnds();
4346
}
4347
}
4348
}
4349
4350