Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/gc/parallel/parMarkBitMap.hpp
41152 views
1
/*
2
* Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_GC_PARALLEL_PARMARKBITMAP_HPP
26
#define SHARE_GC_PARALLEL_PARMARKBITMAP_HPP
27
28
#include "memory/memRegion.hpp"
29
#include "oops/oop.hpp"
30
#include "utilities/bitMap.hpp"
31
32
class ParMarkBitMapClosure;
33
class PSVirtualSpace;
34
class ParCompactionManager;
35
36
class ParMarkBitMap: public CHeapObj<mtGC>
37
{
38
public:
39
typedef BitMap::idx_t idx_t;
40
41
// Values returned by the iterate() methods.
42
enum IterationStatus { incomplete, complete, full, would_overflow };
43
44
inline ParMarkBitMap();
45
bool initialize(MemRegion covered_region);
46
47
// Atomically mark an object as live.
48
bool mark_obj(HeapWord* addr, size_t size);
49
inline bool mark_obj(oop obj, int size);
50
51
// Return whether the specified begin or end bit is set.
52
inline bool is_obj_beg(idx_t bit) const;
53
inline bool is_obj_end(idx_t bit) const;
54
55
// Traditional interface for testing whether an object is marked or not (these
56
// test only the begin bits).
57
inline bool is_marked(idx_t bit) const;
58
inline bool is_marked(HeapWord* addr) const;
59
inline bool is_marked(oop obj) const;
60
61
inline bool is_unmarked(idx_t bit) const;
62
inline bool is_unmarked(HeapWord* addr) const;
63
inline bool is_unmarked(oop obj) const;
64
65
// Convert sizes from bits to HeapWords and back. An object that is n bits
66
// long will be bits_to_words(n) words long. An object that is m words long
67
// will take up words_to_bits(m) bits in the bitmap.
68
inline static size_t bits_to_words(idx_t bits);
69
inline static idx_t words_to_bits(size_t words);
70
71
// Return the size in words of an object given a begin bit and an end bit, or
72
// the equivalent beg_addr and end_addr.
73
inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const;
74
inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const;
75
76
// Return the size in words of the object (a search is done for the end bit).
77
inline size_t obj_size(idx_t beg_bit) const;
78
inline size_t obj_size(HeapWord* addr) const;
79
80
// Apply live_closure to each live object that lies completely within the
81
// range [live_range_beg, live_range_end). This is used to iterate over the
82
// compacted region of the heap. Return values:
83
//
84
// incomplete The iteration is not complete. The last object that
85
// begins in the range does not end in the range;
86
// closure->source() is set to the start of that object.
87
//
88
// complete The iteration is complete. All objects in the range
89
// were processed and the closure is not full;
90
// closure->source() is set one past the end of the range.
91
//
92
// full The closure is full; closure->source() is set to one
93
// past the end of the last object processed.
94
//
95
// would_overflow The next object in the range would overflow the closure;
96
// closure->source() is set to the start of that object.
97
IterationStatus iterate(ParMarkBitMapClosure* live_closure,
98
idx_t range_beg, idx_t range_end) const;
99
inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
100
HeapWord* range_beg,
101
HeapWord* range_end) const;
102
103
// Apply live closure as above and additionally apply dead_closure to all dead
104
// space in the range [range_beg, dead_range_end). Note that dead_range_end
105
// must be >= range_end. This is used to iterate over the dense prefix.
106
//
107
// This method assumes that if the first bit in the range (range_beg) is not
108
// marked, then dead space begins at that point and the dead_closure is
109
// applied. Thus callers must ensure that range_beg is not in the middle of a
110
// live object.
111
IterationStatus iterate(ParMarkBitMapClosure* live_closure,
112
ParMarkBitMapClosure* dead_closure,
113
idx_t range_beg, idx_t range_end,
114
idx_t dead_range_end) const;
115
inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
116
ParMarkBitMapClosure* dead_closure,
117
HeapWord* range_beg,
118
HeapWord* range_end,
119
HeapWord* dead_range_end) const;
120
121
// Return the number of live words in the range [beg_addr, end_obj) due to
122
// objects that start in the range. If a live object extends onto the range,
123
// the caller must detect and account for any live words due to that object.
124
// If a live object extends beyond the end of the range, only the words within
125
// the range are included in the result. The end of the range must be a live object,
126
// which is the case when updating pointers. This allows a branch to be removed
127
// from inside the loop.
128
size_t live_words_in_range(ParCompactionManager* cm, HeapWord* beg_addr, oop end_obj) const;
129
130
inline HeapWord* region_start() const;
131
inline HeapWord* region_end() const;
132
inline size_t region_size() const;
133
inline size_t size() const;
134
135
size_t reserved_byte_size() const { return _reserved_byte_size; }
136
137
// Convert a heap address to/from a bit index.
138
inline idx_t addr_to_bit(HeapWord* addr) const;
139
inline HeapWord* bit_to_addr(idx_t bit) const;
140
141
// Return word-aligned up range_end, which must not be greater than size().
142
inline idx_t align_range_end(idx_t range_end) const;
143
144
// Return the bit index of the first marked object that begins (or ends,
145
// respectively) in the range [beg, end). If no object is found, return end.
146
// end must be word-aligned.
147
inline idx_t find_obj_beg(idx_t beg, idx_t end) const;
148
inline idx_t find_obj_end(idx_t beg, idx_t end) const;
149
150
inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const;
151
inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const;
152
153
// Clear a range of bits or the entire bitmap (both begin and end bits are
154
// cleared).
155
inline void clear_range(idx_t beg, idx_t end);
156
157
// Return the number of bits required to represent the specified number of
158
// HeapWords, or the specified region.
159
static inline idx_t bits_required(size_t words);
160
static inline idx_t bits_required(MemRegion covered_region);
161
162
void print_on_error(outputStream* st) const {
163
st->print_cr("Marking Bits: (ParMarkBitMap*) " PTR_FORMAT, p2i(this));
164
_beg_bits.print_on_error(st, " Begin Bits: ");
165
_end_bits.print_on_error(st, " End Bits: ");
166
}
167
168
#ifdef ASSERT
169
void verify_clear() const;
170
inline void verify_bit(idx_t bit) const;
171
inline void verify_addr(HeapWord* addr) const;
172
#endif // #ifdef ASSERT
173
174
private:
175
size_t live_words_in_range_helper(HeapWord* beg_addr, oop end_obj) const;
176
177
bool is_live_words_in_range_in_cache(ParCompactionManager* cm, HeapWord* beg_addr) const;
178
size_t live_words_in_range_use_cache(ParCompactionManager* cm, HeapWord* beg_addr, oop end_obj) const;
179
void update_live_words_in_range_cache(ParCompactionManager* cm, HeapWord* beg_addr, oop end_obj, size_t result) const;
180
181
// Each bit in the bitmap represents one unit of 'object granularity.' Objects
182
// are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit
183
// granularity is 2, 64-bit is 1.
184
static inline size_t obj_granularity() { return size_t(MinObjAlignment); }
185
static inline int obj_granularity_shift() { return LogMinObjAlignment; }
186
187
HeapWord* _region_start;
188
size_t _region_size;
189
BitMapView _beg_bits;
190
BitMapView _end_bits;
191
PSVirtualSpace* _virtual_space;
192
size_t _reserved_byte_size;
193
};
194
195
#endif // SHARE_GC_PARALLEL_PARMARKBITMAP_HPP
196
197