Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/gc/parallel/psAdaptiveSizePolicy.hpp
41152 views
1
/*
2
* Copyright (c) 2002, 2020, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP
26
#define SHARE_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP
27
28
#include "gc/shared/adaptiveSizePolicy.hpp"
29
#include "gc/shared/gcCause.hpp"
30
#include "gc/shared/gcStats.hpp"
31
#include "gc/shared/gcUtil.hpp"
32
#include "utilities/align.hpp"
33
34
// This class keeps statistical information and computes the
35
// optimal free space for both the young and old generation
36
// based on current application characteristics (based on gc cost
37
// and application footprint).
38
//
39
// It also computes an optimal tenuring threshold between the young
40
// and old generations, so as to equalize the cost of collections
41
// of those generations, as well as optimal survivor space sizes
42
// for the young generation.
43
//
44
// While this class is specifically intended for a generational system
45
// consisting of a young gen (containing an Eden and two semi-spaces)
46
// and a tenured gen, as well as a perm gen for reflective data, it
47
// makes NO references to specific generations.
48
//
49
// 05/02/2003 Update
50
// The 1.5 policy makes use of data gathered for the costs of GC on
51
// specific generations. That data does reference specific
52
// generation. Also diagnostics specific to generations have
53
// been added.
54
55
// Forward decls
56
class elapsedTimer;
57
58
class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
59
friend class PSGCAdaptivePolicyCounters;
60
private:
61
// These values are used to record decisions made during the
62
// policy. For example, if the young generation was decreased
63
// to decrease the GC cost of minor collections the value
64
// decrease_young_gen_for_throughput_true is used.
65
66
// Last calculated sizes, in bytes, and aligned
67
// NEEDS_CLEANUP should use sizes.hpp, but it works in ints, not size_t's
68
69
// Time statistics
70
AdaptivePaddedAverage* _avg_major_pause;
71
72
// Footprint statistics
73
AdaptiveWeightedAverage* _avg_base_footprint;
74
75
// Statistical data gathered for GC
76
GCStats _gc_stats;
77
78
const double _collection_cost_margin_fraction;
79
80
// Variable for estimating the major and minor pause times.
81
// These variables represent linear least-squares fits of
82
// the data.
83
// major pause time vs. old gen size
84
LinearLeastSquareFit* _major_pause_old_estimator;
85
// major pause time vs. young gen size
86
LinearLeastSquareFit* _major_pause_young_estimator;
87
88
89
// These record the most recent collection times. They
90
// are available as an alternative to using the averages
91
// for making ergonomic decisions.
92
double _latest_major_mutator_interval_seconds;
93
94
const size_t _space_alignment; // alignment for eden, survivors
95
96
const double _gc_minor_pause_goal_sec; // goal for maximum minor gc pause
97
98
// The amount of live data in the heap at the last full GC, used
99
// as a baseline to help us determine when we need to perform the
100
// next full GC.
101
size_t _live_at_last_full_gc;
102
103
// decrease/increase the old generation for minor pause time
104
int _change_old_gen_for_min_pauses;
105
106
// increase/decrease the young generation for major pause time
107
int _change_young_gen_for_maj_pauses;
108
109
// To facilitate faster growth at start up, supplement the normal
110
// growth percentage for the young gen eden and the
111
// old gen space for promotion with these value which decay
112
// with increasing collections.
113
uint _young_gen_size_increment_supplement;
114
uint _old_gen_size_increment_supplement;
115
116
private:
117
118
// Accessors
119
AdaptivePaddedAverage* avg_major_pause() const { return _avg_major_pause; }
120
double gc_minor_pause_goal_sec() const { return _gc_minor_pause_goal_sec; }
121
122
void adjust_eden_for_minor_pause_time(bool is_full_gc,
123
size_t* desired_eden_size_ptr);
124
// Change the generation sizes to achieve a GC pause time goal
125
// Returned sizes are not necessarily aligned.
126
void adjust_promo_for_pause_time(bool is_full_gc,
127
size_t* desired_promo_size_ptr,
128
size_t* desired_eden_size_ptr);
129
void adjust_eden_for_pause_time(bool is_full_gc,
130
size_t* desired_promo_size_ptr,
131
size_t* desired_eden_size_ptr);
132
// Change the generation sizes to achieve an application throughput goal
133
// Returned sizes are not necessarily aligned.
134
void adjust_promo_for_throughput(bool is_full_gc,
135
size_t* desired_promo_size_ptr);
136
void adjust_eden_for_throughput(bool is_full_gc,
137
size_t* desired_eden_size_ptr);
138
// Change the generation sizes to achieve minimum footprint
139
// Returned sizes are not aligned.
140
size_t adjust_promo_for_footprint(size_t desired_promo_size,
141
size_t desired_total);
142
size_t adjust_eden_for_footprint(size_t desired_promo_size,
143
size_t desired_total);
144
145
// Size in bytes for an increment or decrement of eden.
146
virtual size_t eden_increment(size_t cur_eden, uint percent_change);
147
virtual size_t eden_decrement(size_t cur_eden);
148
size_t eden_decrement_aligned_down(size_t cur_eden);
149
size_t eden_increment_with_supplement_aligned_up(size_t cur_eden);
150
151
// Size in bytes for an increment or decrement of the promotion area
152
virtual size_t promo_increment(size_t cur_promo, uint percent_change);
153
virtual size_t promo_decrement(size_t cur_promo);
154
size_t promo_decrement_aligned_down(size_t cur_promo);
155
size_t promo_increment_with_supplement_aligned_up(size_t cur_promo);
156
157
// Returns a change that has been scaled down. Result
158
// is not aligned. (If useful, move to some shared
159
// location.)
160
size_t scale_down(size_t change, double part, double total);
161
162
protected:
163
// Time accessors
164
165
// Footprint accessors
166
size_t live_space() const {
167
return (size_t)(avg_base_footprint()->average() +
168
avg_young_live()->average() +
169
avg_old_live()->average());
170
}
171
size_t free_space() const {
172
return _eden_size + _promo_size;
173
}
174
175
void set_promo_size(size_t new_size) {
176
_promo_size = new_size;
177
}
178
void set_survivor_size(size_t new_size) {
179
_survivor_size = new_size;
180
}
181
182
// Update estimators
183
void update_minor_pause_old_estimator(double minor_pause_in_ms);
184
185
virtual GCPolicyKind kind() const { return _gc_ps_adaptive_size_policy; }
186
187
public:
188
virtual size_t eden_increment(size_t cur_eden);
189
virtual size_t promo_increment(size_t cur_promo);
190
191
// Accessors for use by performance counters
192
AdaptivePaddedNoZeroDevAverage* avg_promoted() const {
193
return _gc_stats.avg_promoted();
194
}
195
AdaptiveWeightedAverage* avg_base_footprint() const {
196
return _avg_base_footprint;
197
}
198
199
// Input arguments are initial free space sizes for young and old
200
// generations, the initial survivor space size, the
201
// alignment values and the pause & throughput goals.
202
//
203
// NEEDS_CLEANUP this is a singleton object
204
PSAdaptiveSizePolicy(size_t init_eden_size,
205
size_t init_promo_size,
206
size_t init_survivor_size,
207
size_t space_alignment,
208
double gc_pause_goal_sec,
209
double gc_minor_pause_goal_sec,
210
uint gc_time_ratio);
211
212
// Methods indicating events of interest to the adaptive size policy,
213
// called by GC algorithms. It is the responsibility of users of this
214
// policy to call these methods at the correct times!
215
void major_collection_begin();
216
void major_collection_end(size_t amount_live, GCCause::Cause gc_cause);
217
218
void tenured_allocation(size_t size) {
219
_avg_pretenured->sample(size);
220
}
221
222
// Accessors
223
// NEEDS_CLEANUP should use sizes.hpp
224
225
static size_t calculate_free_based_on_live(size_t live, uintx ratio_as_percentage);
226
227
size_t calculated_old_free_size_in_bytes() const;
228
229
size_t average_old_live_in_bytes() const {
230
return (size_t) avg_old_live()->average();
231
}
232
233
size_t average_promoted_in_bytes() const {
234
return (size_t)avg_promoted()->average();
235
}
236
237
size_t padded_average_promoted_in_bytes() const {
238
return (size_t)avg_promoted()->padded_average();
239
}
240
241
int change_young_gen_for_maj_pauses() {
242
return _change_young_gen_for_maj_pauses;
243
}
244
void set_change_young_gen_for_maj_pauses(int v) {
245
_change_young_gen_for_maj_pauses = v;
246
}
247
248
int change_old_gen_for_min_pauses() {
249
return _change_old_gen_for_min_pauses;
250
}
251
void set_change_old_gen_for_min_pauses(int v) {
252
_change_old_gen_for_min_pauses = v;
253
}
254
255
// Return true if the old generation size was changed
256
// to try to reach a pause time goal.
257
bool old_gen_changed_for_pauses() {
258
bool result = _change_old_gen_for_maj_pauses != 0 ||
259
_change_old_gen_for_min_pauses != 0;
260
return result;
261
}
262
263
// Return true if the young generation size was changed
264
// to try to reach a pause time goal.
265
bool young_gen_changed_for_pauses() {
266
bool result = _change_young_gen_for_min_pauses != 0 ||
267
_change_young_gen_for_maj_pauses != 0;
268
return result;
269
}
270
// end flags for pause goal
271
272
// Return true if the old generation size was changed
273
// to try to reach a throughput goal.
274
bool old_gen_changed_for_throughput() {
275
bool result = _change_old_gen_for_throughput != 0;
276
return result;
277
}
278
279
// Return true if the young generation size was changed
280
// to try to reach a throughput goal.
281
bool young_gen_changed_for_throughput() {
282
bool result = _change_young_gen_for_throughput != 0;
283
return result;
284
}
285
286
int decrease_for_footprint() { return _decrease_for_footprint; }
287
288
289
// Accessors for estimators. The slope of the linear fit is
290
// currently all that is used for making decisions.
291
292
LinearLeastSquareFit* major_pause_old_estimator() {
293
return _major_pause_old_estimator;
294
}
295
296
LinearLeastSquareFit* major_pause_young_estimator() {
297
return _major_pause_young_estimator;
298
}
299
300
301
virtual void clear_generation_free_space_flags();
302
303
float major_pause_old_slope() { return _major_pause_old_estimator->slope(); }
304
float major_pause_young_slope() {
305
return _major_pause_young_estimator->slope();
306
}
307
float major_collection_slope() { return _major_collection_estimator->slope();}
308
309
// Given the amount of live data in the heap, should we
310
// perform a Full GC?
311
bool should_full_GC(size_t live_in_old_gen);
312
313
// Calculates optimal (free) space sizes for both the young and old
314
// generations. Stores results in _eden_size and _promo_size.
315
// Takes current used space in all generations as input, as well
316
// as an indication if a full gc has just been performed, for use
317
// in deciding if an OOM error should be thrown.
318
void compute_generations_free_space(size_t young_live,
319
size_t eden_live,
320
size_t old_live,
321
size_t cur_eden, // current eden in bytes
322
size_t max_old_gen_size,
323
size_t max_eden_size,
324
bool is_full_gc);
325
326
void compute_eden_space_size(size_t young_live,
327
size_t eden_live,
328
size_t cur_eden, // current eden in bytes
329
size_t max_eden_size,
330
bool is_full_gc);
331
332
void compute_old_gen_free_space(size_t old_live,
333
size_t cur_eden, // current eden in bytes
334
size_t max_old_gen_size,
335
bool is_full_gc);
336
337
// Calculates new survivor space size; returns a new tenuring threshold
338
// value. Stores new survivor size in _survivor_size.
339
uint compute_survivor_space_size_and_threshold(bool is_survivor_overflow,
340
uint tenuring_threshold,
341
size_t survivor_limit);
342
343
// Return the maximum size of a survivor space if the young generation were of
344
// size gen_size.
345
size_t max_survivor_size(size_t gen_size) {
346
// Never allow the target survivor size to grow more than MinSurvivorRatio
347
// of the young generation size. We cannot grow into a two semi-space
348
// system, with Eden zero sized. Even if the survivor space grows, from()
349
// might grow by moving the bottom boundary "down" -- so from space will
350
// remain almost full anyway (top() will be near end(), but there will be a
351
// large filler object at the bottom).
352
const size_t sz = gen_size / MinSurvivorRatio;
353
const size_t alignment = _space_alignment;
354
return sz > alignment ? align_down(sz, alignment) : alignment;
355
}
356
357
size_t live_at_last_full_gc() {
358
return _live_at_last_full_gc;
359
}
360
361
// Update averages that are always used (even
362
// if adaptive sizing is turned off).
363
void update_averages(bool is_survivor_overflow,
364
size_t survived,
365
size_t promoted);
366
367
// Printing support
368
virtual bool print() const;
369
370
// Decay the supplemental growth additive.
371
void decay_supplemental_growth(bool is_full_gc);
372
};
373
374
#endif // SHARE_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP
375
376