Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/gc/parallel/psCardTable.cpp
41149 views
1
/*
2
* Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "gc/parallel/objectStartArray.inline.hpp"
27
#include "gc/parallel/parallelScavengeHeap.inline.hpp"
28
#include "gc/parallel/psCardTable.hpp"
29
#include "gc/parallel/psPromotionManager.inline.hpp"
30
#include "gc/parallel/psScavenge.inline.hpp"
31
#include "gc/parallel/psYoungGen.hpp"
32
#include "memory/iterator.inline.hpp"
33
#include "oops/access.inline.hpp"
34
#include "oops/oop.inline.hpp"
35
#include "runtime/prefetch.inline.hpp"
36
#include "utilities/align.hpp"
37
38
// Checks an individual oop for missing precise marks. Mark
39
// may be either dirty or newgen.
40
class CheckForUnmarkedOops : public BasicOopIterateClosure {
41
private:
42
PSYoungGen* _young_gen;
43
PSCardTable* _card_table;
44
HeapWord* _unmarked_addr;
45
46
protected:
47
template <class T> void do_oop_work(T* p) {
48
oop obj = RawAccess<>::oop_load(p);
49
if (_young_gen->is_in_reserved(obj) &&
50
!_card_table->addr_is_marked_imprecise(p)) {
51
// Don't overwrite the first missing card mark
52
if (_unmarked_addr == NULL) {
53
_unmarked_addr = (HeapWord*)p;
54
}
55
}
56
}
57
58
public:
59
CheckForUnmarkedOops(PSYoungGen* young_gen, PSCardTable* card_table) :
60
_young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
61
62
virtual void do_oop(oop* p) { CheckForUnmarkedOops::do_oop_work(p); }
63
virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
64
65
bool has_unmarked_oop() {
66
return _unmarked_addr != NULL;
67
}
68
};
69
70
// Checks all objects for the existence of some type of mark,
71
// precise or imprecise, dirty or newgen.
72
class CheckForUnmarkedObjects : public ObjectClosure {
73
private:
74
PSYoungGen* _young_gen;
75
PSCardTable* _card_table;
76
77
public:
78
CheckForUnmarkedObjects() {
79
ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
80
_young_gen = heap->young_gen();
81
_card_table = heap->card_table();
82
}
83
84
// Card marks are not precise. The current system can leave us with
85
// a mismatch of precise marks and beginning of object marks. This means
86
// we test for missing precise marks first. If any are found, we don't
87
// fail unless the object head is also unmarked.
88
virtual void do_object(oop obj) {
89
CheckForUnmarkedOops object_check(_young_gen, _card_table);
90
obj->oop_iterate(&object_check);
91
if (object_check.has_unmarked_oop()) {
92
guarantee(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
93
}
94
}
95
};
96
97
// Checks for precise marking of oops as newgen.
98
class CheckForPreciseMarks : public BasicOopIterateClosure {
99
private:
100
PSYoungGen* _young_gen;
101
PSCardTable* _card_table;
102
103
protected:
104
template <class T> void do_oop_work(T* p) {
105
oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
106
if (_young_gen->is_in_reserved(obj)) {
107
assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
108
_card_table->set_card_newgen(p);
109
}
110
}
111
112
public:
113
CheckForPreciseMarks(PSYoungGen* young_gen, PSCardTable* card_table) :
114
_young_gen(young_gen), _card_table(card_table) { }
115
116
virtual void do_oop(oop* p) { CheckForPreciseMarks::do_oop_work(p); }
117
virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
118
};
119
120
// We get passed the space_top value to prevent us from traversing into
121
// the old_gen promotion labs, which cannot be safely parsed.
122
123
// Do not call this method if the space is empty.
124
// It is a waste to start tasks and get here only to
125
// do no work. If this method needs to be called
126
// when the space is empty, fix the calculation of
127
// end_card to allow sp_top == sp->bottom().
128
129
// The generation (old gen) is divided into slices, which are further
130
// subdivided into stripes, with one stripe per GC thread. The size of
131
// a stripe is a constant, ssize.
132
//
133
// +===============+ slice 0
134
// | stripe 0 |
135
// +---------------+
136
// | stripe 1 |
137
// +---------------+
138
// | stripe 2 |
139
// +---------------+
140
// | stripe 3 |
141
// +===============+ slice 1
142
// | stripe 0 |
143
// +---------------+
144
// | stripe 1 |
145
// +---------------+
146
// | stripe 2 |
147
// +---------------+
148
// | stripe 3 |
149
// +===============+ slice 2
150
// ...
151
//
152
// In this case there are 4 threads, so 4 stripes. A GC thread first works on
153
// its stripe within slice 0 and then moves to its stripe in the next slice
154
// until it has exceeded the top of the generation. The distance to stripe in
155
// the next slice is calculated based on the number of stripes. The next
156
// stripe is at ssize * number_of_stripes (= slice_stride).. So after
157
// finishing stripe 0 in slice 0, the thread finds the stripe 0 in slice1 by
158
// adding slice_stride to the start of stripe 0 in slice 0 to get to the start
159
// of stride 0 in slice 1.
160
161
void PSCardTable::scavenge_contents_parallel(ObjectStartArray* start_array,
162
MutableSpace* sp,
163
HeapWord* space_top,
164
PSPromotionManager* pm,
165
uint stripe_number,
166
uint stripe_total) {
167
int ssize = 128; // Naked constant! Work unit = 64k.
168
int dirty_card_count = 0;
169
170
// It is a waste to get here if empty.
171
assert(sp->bottom() < sp->top(), "Should not be called if empty");
172
oop* sp_top = (oop*)space_top;
173
CardValue* start_card = byte_for(sp->bottom());
174
CardValue* end_card = byte_for(sp_top - 1) + 1;
175
oop* last_scanned = NULL; // Prevent scanning objects more than once
176
// The width of the stripe ssize*stripe_total must be
177
// consistent with the number of stripes so that the complete slice
178
// is covered.
179
size_t slice_width = ssize * stripe_total;
180
for (CardValue* slice = start_card; slice < end_card; slice += slice_width) {
181
CardValue* worker_start_card = slice + stripe_number * ssize;
182
if (worker_start_card >= end_card)
183
return; // We're done.
184
185
CardValue* worker_end_card = worker_start_card + ssize;
186
if (worker_end_card > end_card)
187
worker_end_card = end_card;
188
189
// We do not want to scan objects more than once. In order to accomplish
190
// this, we assert that any object with an object head inside our 'slice'
191
// belongs to us. We may need to extend the range of scanned cards if the
192
// last object continues into the next 'slice'.
193
//
194
// Note! ending cards are exclusive!
195
HeapWord* slice_start = addr_for(worker_start_card);
196
HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
197
198
#ifdef ASSERT
199
if (GCWorkerDelayMillis > 0) {
200
// Delay 1 worker so that it proceeds after all the work
201
// has been completed.
202
if (stripe_number < 2) {
203
os::naked_sleep(GCWorkerDelayMillis);
204
}
205
}
206
#endif
207
208
// If there are not objects starting within the chunk, skip it.
209
if (!start_array->object_starts_in_range(slice_start, slice_end)) {
210
continue;
211
}
212
// Update our beginning addr
213
HeapWord* first_object = start_array->object_start(slice_start);
214
debug_only(oop* first_object_within_slice = (oop*) first_object;)
215
if (first_object < slice_start) {
216
last_scanned = (oop*)(first_object + cast_to_oop(first_object)->size());
217
debug_only(first_object_within_slice = last_scanned;)
218
worker_start_card = byte_for(last_scanned);
219
}
220
221
// Update the ending addr
222
if (slice_end < (HeapWord*)sp_top) {
223
// The subtraction is important! An object may start precisely at slice_end.
224
HeapWord* last_object = start_array->object_start(slice_end - 1);
225
slice_end = last_object + cast_to_oop(last_object)->size();
226
// worker_end_card is exclusive, so bump it one past the end of last_object's
227
// covered span.
228
worker_end_card = byte_for(slice_end) + 1;
229
230
if (worker_end_card > end_card)
231
worker_end_card = end_card;
232
}
233
234
assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
235
assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
236
assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
237
// Note that worker_start_card >= worker_end_card is legal, and happens when
238
// an object spans an entire slice.
239
assert(worker_start_card <= end_card, "worker start card beyond end card");
240
assert(worker_end_card <= end_card, "worker end card beyond end card");
241
242
CardValue* current_card = worker_start_card;
243
while (current_card < worker_end_card) {
244
// Find an unclean card.
245
while (current_card < worker_end_card && card_is_clean(*current_card)) {
246
current_card++;
247
}
248
CardValue* first_unclean_card = current_card;
249
250
// Find the end of a run of contiguous unclean cards
251
while (current_card < worker_end_card && !card_is_clean(*current_card)) {
252
while (current_card < worker_end_card && !card_is_clean(*current_card)) {
253
current_card++;
254
}
255
256
if (current_card < worker_end_card) {
257
// Some objects may be large enough to span several cards. If such
258
// an object has more than one dirty card, separated by a clean card,
259
// we will attempt to scan it twice. The test against "last_scanned"
260
// prevents the redundant object scan, but it does not prevent newly
261
// marked cards from being cleaned.
262
HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
263
size_t size_of_last_object = cast_to_oop(last_object_in_dirty_region)->size();
264
HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
265
CardValue* ending_card_of_last_object = byte_for(end_of_last_object);
266
assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
267
if (ending_card_of_last_object > current_card) {
268
// This means the object spans the next complete card.
269
// We need to bump the current_card to ending_card_of_last_object
270
current_card = ending_card_of_last_object;
271
}
272
}
273
}
274
CardValue* following_clean_card = current_card;
275
276
if (first_unclean_card < worker_end_card) {
277
oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
278
assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
279
// "p" should always be >= "last_scanned" because newly GC dirtied
280
// cards are no longer scanned again (see comment at end
281
// of loop on the increment of "current_card"). Test that
282
// hypothesis before removing this code.
283
// If this code is removed, deal with the first time through
284
// the loop when the last_scanned is the object starting in
285
// the previous slice.
286
assert((p >= last_scanned) ||
287
(last_scanned == first_object_within_slice),
288
"Should no longer be possible");
289
if (p < last_scanned) {
290
// Avoid scanning more than once; this can happen because
291
// newgen cards set by GC may a different set than the
292
// originally dirty set
293
p = last_scanned;
294
}
295
oop* to = (oop*)addr_for(following_clean_card);
296
297
// Test slice_end first!
298
if ((HeapWord*)to > slice_end) {
299
to = (oop*)slice_end;
300
} else if (to > sp_top) {
301
to = sp_top;
302
}
303
304
// we know which cards to scan, now clear them
305
if (first_unclean_card <= worker_start_card+1)
306
first_unclean_card = worker_start_card+1;
307
if (following_clean_card >= worker_end_card-1)
308
following_clean_card = worker_end_card-1;
309
310
while (first_unclean_card < following_clean_card) {
311
*first_unclean_card++ = clean_card;
312
}
313
314
const int interval = PrefetchScanIntervalInBytes;
315
// scan all objects in the range
316
if (interval != 0) {
317
while (p < to) {
318
Prefetch::write(p, interval);
319
oop m = cast_to_oop(p);
320
assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
321
pm->push_contents(m);
322
p += m->size();
323
}
324
pm->drain_stacks_cond_depth();
325
} else {
326
while (p < to) {
327
oop m = cast_to_oop(p);
328
assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
329
pm->push_contents(m);
330
p += m->size();
331
}
332
pm->drain_stacks_cond_depth();
333
}
334
last_scanned = p;
335
}
336
// "current_card" is still the "following_clean_card" or
337
// the current_card is >= the worker_end_card so the
338
// loop will not execute again.
339
assert((current_card == following_clean_card) ||
340
(current_card >= worker_end_card),
341
"current_card should only be incremented if it still equals "
342
"following_clean_card");
343
// Increment current_card so that it is not processed again.
344
// It may now be dirty because a old-to-young pointer was
345
// found on it an updated. If it is now dirty, it cannot be
346
// be safely cleaned in the next iteration.
347
current_card++;
348
}
349
}
350
}
351
352
// This should be called before a scavenge.
353
void PSCardTable::verify_all_young_refs_imprecise() {
354
CheckForUnmarkedObjects check;
355
356
ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
357
PSOldGen* old_gen = heap->old_gen();
358
359
old_gen->object_iterate(&check);
360
}
361
362
// This should be called immediately after a scavenge, before mutators resume.
363
void PSCardTable::verify_all_young_refs_precise() {
364
ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
365
PSOldGen* old_gen = heap->old_gen();
366
367
CheckForPreciseMarks check(heap->young_gen(), this);
368
369
old_gen->oop_iterate(&check);
370
371
verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
372
}
373
374
void PSCardTable::verify_all_young_refs_precise_helper(MemRegion mr) {
375
CardValue* bot = byte_for(mr.start());
376
CardValue* top = byte_for(mr.end());
377
while (bot <= top) {
378
assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
379
if (*bot == verify_card)
380
*bot = youngergen_card;
381
bot++;
382
}
383
}
384
385
bool PSCardTable::addr_is_marked_imprecise(void *addr) {
386
CardValue* p = byte_for(addr);
387
CardValue val = *p;
388
389
if (card_is_dirty(val))
390
return true;
391
392
if (card_is_newgen(val))
393
return true;
394
395
if (card_is_clean(val))
396
return false;
397
398
assert(false, "Found unhandled card mark type");
399
400
return false;
401
}
402
403
// Also includes verify_card
404
bool PSCardTable::addr_is_marked_precise(void *addr) {
405
CardValue* p = byte_for(addr);
406
CardValue val = *p;
407
408
if (card_is_newgen(val))
409
return true;
410
411
if (card_is_verify(val))
412
return true;
413
414
if (card_is_clean(val))
415
return false;
416
417
if (card_is_dirty(val))
418
return false;
419
420
assert(false, "Found unhandled card mark type");
421
422
return false;
423
}
424
425
// Assumes that only the base or the end changes. This allows indentification
426
// of the region that is being resized. The
427
// CardTable::resize_covered_region() is used for the normal case
428
// where the covered regions are growing or shrinking at the high end.
429
// The method resize_covered_region_by_end() is analogous to
430
// CardTable::resize_covered_region() but
431
// for regions that grow or shrink at the low end.
432
void PSCardTable::resize_covered_region(MemRegion new_region) {
433
for (int i = 0; i < _cur_covered_regions; i++) {
434
if (_covered[i].start() == new_region.start()) {
435
// Found a covered region with the same start as the
436
// new region. The region is growing or shrinking
437
// from the start of the region.
438
resize_covered_region_by_start(new_region);
439
return;
440
}
441
if (_covered[i].start() > new_region.start()) {
442
break;
443
}
444
}
445
446
int changed_region = -1;
447
for (int j = 0; j < _cur_covered_regions; j++) {
448
if (_covered[j].end() == new_region.end()) {
449
changed_region = j;
450
// This is a case where the covered region is growing or shrinking
451
// at the start of the region.
452
assert(changed_region != -1, "Don't expect to add a covered region");
453
assert(_covered[changed_region].byte_size() != new_region.byte_size(),
454
"The sizes should be different here");
455
resize_covered_region_by_end(changed_region, new_region);
456
return;
457
}
458
}
459
// This should only be a new covered region (where no existing
460
// covered region matches at the start or the end).
461
assert(_cur_covered_regions < _max_covered_regions,
462
"An existing region should have been found");
463
resize_covered_region_by_start(new_region);
464
}
465
466
void PSCardTable::resize_covered_region_by_start(MemRegion new_region) {
467
CardTable::resize_covered_region(new_region);
468
debug_only(verify_guard();)
469
}
470
471
void PSCardTable::resize_covered_region_by_end(int changed_region,
472
MemRegion new_region) {
473
assert(SafepointSynchronize::is_at_safepoint(),
474
"Only expect an expansion at the low end at a GC");
475
debug_only(verify_guard();)
476
#ifdef ASSERT
477
for (int k = 0; k < _cur_covered_regions; k++) {
478
if (_covered[k].end() == new_region.end()) {
479
assert(changed_region == k, "Changed region is incorrect");
480
break;
481
}
482
}
483
#endif
484
485
// Commit new or uncommit old pages, if necessary.
486
if (resize_commit_uncommit(changed_region, new_region)) {
487
// Set the new start of the committed region
488
resize_update_committed_table(changed_region, new_region);
489
}
490
491
// Update card table entries
492
resize_update_card_table_entries(changed_region, new_region);
493
494
// Update the covered region
495
resize_update_covered_table(changed_region, new_region);
496
497
int ind = changed_region;
498
log_trace(gc, barrier)("CardTable::resize_covered_region: ");
499
log_trace(gc, barrier)(" _covered[%d].start(): " INTPTR_FORMAT " _covered[%d].last(): " INTPTR_FORMAT,
500
ind, p2i(_covered[ind].start()), ind, p2i(_covered[ind].last()));
501
log_trace(gc, barrier)(" _committed[%d].start(): " INTPTR_FORMAT " _committed[%d].last(): " INTPTR_FORMAT,
502
ind, p2i(_committed[ind].start()), ind, p2i(_committed[ind].last()));
503
log_trace(gc, barrier)(" byte_for(start): " INTPTR_FORMAT " byte_for(last): " INTPTR_FORMAT,
504
p2i(byte_for(_covered[ind].start())), p2i(byte_for(_covered[ind].last())));
505
log_trace(gc, barrier)(" addr_for(start): " INTPTR_FORMAT " addr_for(last): " INTPTR_FORMAT,
506
p2i(addr_for((CardValue*) _committed[ind].start())), p2i(addr_for((CardValue*) _committed[ind].last())));
507
508
debug_only(verify_guard();)
509
}
510
511
bool PSCardTable::resize_commit_uncommit(int changed_region,
512
MemRegion new_region) {
513
bool result = false;
514
// Commit new or uncommit old pages, if necessary.
515
MemRegion cur_committed = _committed[changed_region];
516
assert(_covered[changed_region].end() == new_region.end(),
517
"The ends of the regions are expected to match");
518
// Extend the start of this _committed region to
519
// to cover the start of any previous _committed region.
520
// This forms overlapping regions, but never interior regions.
521
HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
522
if (min_prev_start < cur_committed.start()) {
523
// Only really need to set start of "cur_committed" to
524
// the new start (min_prev_start) but assertion checking code
525
// below use cur_committed.end() so make it correct.
526
MemRegion new_committed =
527
MemRegion(min_prev_start, cur_committed.end());
528
cur_committed = new_committed;
529
}
530
#ifdef ASSERT
531
ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
532
assert(cur_committed.start() == align_up(cur_committed.start(), os::vm_page_size()),
533
"Starts should have proper alignment");
534
#endif
535
536
CardValue* new_start = byte_for(new_region.start());
537
// Round down because this is for the start address
538
HeapWord* new_start_aligned = align_down((HeapWord*)new_start, os::vm_page_size());
539
// The guard page is always committed and should not be committed over.
540
// This method is used in cases where the generation is growing toward
541
// lower addresses but the guard region is still at the end of the
542
// card table. That still makes sense when looking for writes
543
// off the end of the card table.
544
if (new_start_aligned < cur_committed.start()) {
545
// Expand the committed region
546
//
547
// Case A
548
// |+ guard +|
549
// |+ cur committed +++++++++|
550
// |+ new committed +++++++++++++++++|
551
//
552
// Case B
553
// |+ guard +|
554
// |+ cur committed +|
555
// |+ new committed +++++++|
556
//
557
// These are not expected because the calculation of the
558
// cur committed region and the new committed region
559
// share the same end for the covered region.
560
// Case C
561
// |+ guard +|
562
// |+ cur committed +|
563
// |+ new committed +++++++++++++++++|
564
// Case D
565
// |+ guard +|
566
// |+ cur committed +++++++++++|
567
// |+ new committed +++++++|
568
569
HeapWord* new_end_for_commit =
570
MIN2(cur_committed.end(), _guard_region.start());
571
if(new_start_aligned < new_end_for_commit) {
572
MemRegion new_committed =
573
MemRegion(new_start_aligned, new_end_for_commit);
574
os::commit_memory_or_exit((char*)new_committed.start(),
575
new_committed.byte_size(), !ExecMem,
576
"card table expansion");
577
}
578
result = true;
579
} else if (new_start_aligned > cur_committed.start()) {
580
// Shrink the committed region
581
#if 0 // uncommitting space is currently unsafe because of the interactions
582
// of growing and shrinking regions. One region A can uncommit space
583
// that it owns but which is being used by another region B (maybe).
584
// Region B has not committed the space because it was already
585
// committed by region A.
586
MemRegion uncommit_region = committed_unique_to_self(changed_region,
587
MemRegion(cur_committed.start(), new_start_aligned));
588
if (!uncommit_region.is_empty()) {
589
if (!os::uncommit_memory((char*)uncommit_region.start(),
590
uncommit_region.byte_size())) {
591
// If the uncommit fails, ignore it. Let the
592
// committed table resizing go even though the committed
593
// table will over state the committed space.
594
}
595
}
596
#else
597
assert(!result, "Should be false with current workaround");
598
#endif
599
}
600
assert(_committed[changed_region].end() == cur_committed.end(),
601
"end should not change");
602
return result;
603
}
604
605
void PSCardTable::resize_update_committed_table(int changed_region,
606
MemRegion new_region) {
607
608
CardValue* new_start = byte_for(new_region.start());
609
// Set the new start of the committed region
610
HeapWord* new_start_aligned = align_down((HeapWord*)new_start, os::vm_page_size());
611
MemRegion new_committed = MemRegion(new_start_aligned,
612
_committed[changed_region].end());
613
_committed[changed_region] = new_committed;
614
_committed[changed_region].set_start(new_start_aligned);
615
}
616
617
void PSCardTable::resize_update_card_table_entries(int changed_region,
618
MemRegion new_region) {
619
debug_only(verify_guard();)
620
MemRegion original_covered = _covered[changed_region];
621
// Initialize the card entries. Only consider the
622
// region covered by the card table (_whole_heap)
623
CardValue* entry;
624
if (new_region.start() < _whole_heap.start()) {
625
entry = byte_for(_whole_heap.start());
626
} else {
627
entry = byte_for(new_region.start());
628
}
629
CardValue* end = byte_for(original_covered.start());
630
// If _whole_heap starts at the original covered regions start,
631
// this loop will not execute.
632
while (entry < end) { *entry++ = clean_card; }
633
}
634
635
void PSCardTable::resize_update_covered_table(int changed_region,
636
MemRegion new_region) {
637
// Update the covered region
638
_covered[changed_region].set_start(new_region.start());
639
_covered[changed_region].set_word_size(new_region.word_size());
640
641
// reorder regions. There should only be at most 1 out
642
// of order.
643
for (int i = _cur_covered_regions-1 ; i > 0; i--) {
644
if (_covered[i].start() < _covered[i-1].start()) {
645
MemRegion covered_mr = _covered[i-1];
646
_covered[i-1] = _covered[i];
647
_covered[i] = covered_mr;
648
MemRegion committed_mr = _committed[i-1];
649
_committed[i-1] = _committed[i];
650
_committed[i] = committed_mr;
651
break;
652
}
653
}
654
#ifdef ASSERT
655
for (int m = 0; m < _cur_covered_regions-1; m++) {
656
assert(_covered[m].start() <= _covered[m+1].start(),
657
"Covered regions out of order");
658
assert(_committed[m].start() <= _committed[m+1].start(),
659
"Committed regions out of order");
660
}
661
#endif
662
}
663
664
// Returns the start of any committed region that is lower than
665
// the target committed region (index ind) and that intersects the
666
// target region. If none, return start of target region.
667
//
668
// -------------
669
// | |
670
// -------------
671
// ------------
672
// | target |
673
// ------------
674
// -------------
675
// | |
676
// -------------
677
// ^ returns this
678
//
679
// -------------
680
// | |
681
// -------------
682
// ------------
683
// | target |
684
// ------------
685
// -------------
686
// | |
687
// -------------
688
// ^ returns this
689
690
HeapWord* PSCardTable::lowest_prev_committed_start(int ind) const {
691
assert(_cur_covered_regions >= 0, "Expecting at least on region");
692
HeapWord* min_start = _committed[ind].start();
693
for (int j = 0; j < ind; j++) {
694
HeapWord* this_start = _committed[j].start();
695
if ((this_start < min_start) &&
696
!(_committed[j].intersection(_committed[ind])).is_empty()) {
697
min_start = this_start;
698
}
699
}
700
return min_start;
701
}
702
703
bool PSCardTable::is_in_young(oop obj) const {
704
return ParallelScavengeHeap::heap()->is_in_young(obj);
705
}
706
707