Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/gc/parallel/psParallelCompact.hpp
41152 views
1
/*
2
* Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP
26
#define SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP
27
28
#include "gc/parallel/mutableSpace.hpp"
29
#include "gc/parallel/objectStartArray.hpp"
30
#include "gc/parallel/parallelScavengeHeap.hpp"
31
#include "gc/parallel/parMarkBitMap.hpp"
32
#include "gc/shared/collectedHeap.hpp"
33
#include "gc/shared/collectorCounters.hpp"
34
#include "gc/shared/taskTerminator.hpp"
35
#include "oops/oop.hpp"
36
#include "runtime/atomic.hpp"
37
#include "runtime/orderAccess.hpp"
38
39
class ParallelScavengeHeap;
40
class PSAdaptiveSizePolicy;
41
class PSYoungGen;
42
class PSOldGen;
43
class ParCompactionManager;
44
class PSParallelCompact;
45
class MoveAndUpdateClosure;
46
class RefProcTaskExecutor;
47
class ParallelOldTracer;
48
class STWGCTimer;
49
50
// The SplitInfo class holds the information needed to 'split' a source region
51
// so that the live data can be copied to two destination *spaces*. Normally,
52
// all the live data in a region is copied to a single destination space (e.g.,
53
// everything live in a region in eden is copied entirely into the old gen).
54
// However, when the heap is nearly full, all the live data in eden may not fit
55
// into the old gen. Copying only some of the regions from eden to old gen
56
// requires finding a region that does not contain a partial object (i.e., no
57
// live object crosses the region boundary) somewhere near the last object that
58
// does fit into the old gen. Since it's not always possible to find such a
59
// region, splitting is necessary for predictable behavior.
60
//
61
// A region is always split at the end of the partial object. This avoids
62
// additional tests when calculating the new location of a pointer, which is a
63
// very hot code path. The partial object and everything to its left will be
64
// copied to another space (call it dest_space_1). The live data to the right
65
// of the partial object will be copied either within the space itself, or to a
66
// different destination space (distinct from dest_space_1).
67
//
68
// Split points are identified during the summary phase, when region
69
// destinations are computed: data about the split, including the
70
// partial_object_size, is recorded in a SplitInfo record and the
71
// partial_object_size field in the summary data is set to zero. The zeroing is
72
// possible (and necessary) since the partial object will move to a different
73
// destination space than anything to its right, thus the partial object should
74
// not affect the locations of any objects to its right.
75
//
76
// The recorded data is used during the compaction phase, but only rarely: when
77
// the partial object on the split region will be copied across a destination
78
// region boundary. This test is made once each time a region is filled, and is
79
// a simple address comparison, so the overhead is negligible (see
80
// PSParallelCompact::first_src_addr()).
81
//
82
// Notes:
83
//
84
// Only regions with partial objects are split; a region without a partial
85
// object does not need any extra bookkeeping.
86
//
87
// At most one region is split per space, so the amount of data required is
88
// constant.
89
//
90
// A region is split only when the destination space would overflow. Once that
91
// happens, the destination space is abandoned and no other data (even from
92
// other source spaces) is targeted to that destination space. Abandoning the
93
// destination space may leave a somewhat large unused area at the end, if a
94
// large object caused the overflow.
95
//
96
// Future work:
97
//
98
// More bookkeeping would be required to continue to use the destination space.
99
// The most general solution would allow data from regions in two different
100
// source spaces to be "joined" in a single destination region. At the very
101
// least, additional code would be required in next_src_region() to detect the
102
// join and skip to an out-of-order source region. If the join region was also
103
// the last destination region to which a split region was copied (the most
104
// likely case), then additional work would be needed to get fill_region() to
105
// stop iteration and switch to a new source region at the right point. Basic
106
// idea would be to use a fake value for the top of the source space. It is
107
// doable, if a bit tricky.
108
//
109
// A simpler (but less general) solution would fill the remainder of the
110
// destination region with a dummy object and continue filling the next
111
// destination region.
112
113
class SplitInfo
114
{
115
public:
116
// Return true if this split info is valid (i.e., if a split has been
117
// recorded). The very first region cannot have a partial object and thus is
118
// never split, so 0 is the 'invalid' value.
119
bool is_valid() const { return _src_region_idx > 0; }
120
121
// Return true if this split holds data for the specified source region.
122
inline bool is_split(size_t source_region) const;
123
124
// The index of the split region, the size of the partial object on that
125
// region and the destination of the partial object.
126
size_t src_region_idx() const { return _src_region_idx; }
127
size_t partial_obj_size() const { return _partial_obj_size; }
128
HeapWord* destination() const { return _destination; }
129
130
// The destination count of the partial object referenced by this split
131
// (either 1 or 2). This must be added to the destination count of the
132
// remainder of the source region.
133
unsigned int destination_count() const { return _destination_count; }
134
135
// If a word within the partial object will be written to the first word of a
136
// destination region, this is the address of the destination region;
137
// otherwise this is NULL.
138
HeapWord* dest_region_addr() const { return _dest_region_addr; }
139
140
// If a word within the partial object will be written to the first word of a
141
// destination region, this is the address of that word within the partial
142
// object; otherwise this is NULL.
143
HeapWord* first_src_addr() const { return _first_src_addr; }
144
145
// Record the data necessary to split the region src_region_idx.
146
void record(size_t src_region_idx, size_t partial_obj_size,
147
HeapWord* destination);
148
149
void clear();
150
151
DEBUG_ONLY(void verify_clear();)
152
153
private:
154
size_t _src_region_idx;
155
size_t _partial_obj_size;
156
HeapWord* _destination;
157
unsigned int _destination_count;
158
HeapWord* _dest_region_addr;
159
HeapWord* _first_src_addr;
160
};
161
162
inline bool SplitInfo::is_split(size_t region_idx) const
163
{
164
return _src_region_idx == region_idx && is_valid();
165
}
166
167
class SpaceInfo
168
{
169
public:
170
MutableSpace* space() const { return _space; }
171
172
// Where the free space will start after the collection. Valid only after the
173
// summary phase completes.
174
HeapWord* new_top() const { return _new_top; }
175
176
// Allows new_top to be set.
177
HeapWord** new_top_addr() { return &_new_top; }
178
179
// Where the smallest allowable dense prefix ends (used only for perm gen).
180
HeapWord* min_dense_prefix() const { return _min_dense_prefix; }
181
182
// Where the dense prefix ends, or the compacted region begins.
183
HeapWord* dense_prefix() const { return _dense_prefix; }
184
185
// The start array for the (generation containing the) space, or NULL if there
186
// is no start array.
187
ObjectStartArray* start_array() const { return _start_array; }
188
189
SplitInfo& split_info() { return _split_info; }
190
191
void set_space(MutableSpace* s) { _space = s; }
192
void set_new_top(HeapWord* addr) { _new_top = addr; }
193
void set_min_dense_prefix(HeapWord* addr) { _min_dense_prefix = addr; }
194
void set_dense_prefix(HeapWord* addr) { _dense_prefix = addr; }
195
void set_start_array(ObjectStartArray* s) { _start_array = s; }
196
197
void publish_new_top() const { _space->set_top(_new_top); }
198
199
private:
200
MutableSpace* _space;
201
HeapWord* _new_top;
202
HeapWord* _min_dense_prefix;
203
HeapWord* _dense_prefix;
204
ObjectStartArray* _start_array;
205
SplitInfo _split_info;
206
};
207
208
class ParallelCompactData
209
{
210
public:
211
// Sizes are in HeapWords, unless indicated otherwise.
212
static const size_t Log2RegionSize;
213
static const size_t RegionSize;
214
static const size_t RegionSizeBytes;
215
216
// Mask for the bits in a size_t to get an offset within a region.
217
static const size_t RegionSizeOffsetMask;
218
// Mask for the bits in a pointer to get an offset within a region.
219
static const size_t RegionAddrOffsetMask;
220
// Mask for the bits in a pointer to get the address of the start of a region.
221
static const size_t RegionAddrMask;
222
223
static const size_t Log2BlockSize;
224
static const size_t BlockSize;
225
static const size_t BlockSizeBytes;
226
227
static const size_t BlockSizeOffsetMask;
228
static const size_t BlockAddrOffsetMask;
229
static const size_t BlockAddrMask;
230
231
static const size_t BlocksPerRegion;
232
static const size_t Log2BlocksPerRegion;
233
234
class RegionData
235
{
236
public:
237
// Destination address of the region.
238
HeapWord* destination() const { return _destination; }
239
240
// The first region containing data destined for this region.
241
size_t source_region() const { return _source_region; }
242
243
// Reuse _source_region to store the corresponding shadow region index
244
size_t shadow_region() const { return _source_region; }
245
246
// The object (if any) starting in this region and ending in a different
247
// region that could not be updated during the main (parallel) compaction
248
// phase. This is different from _partial_obj_addr, which is an object that
249
// extends onto a source region. However, the two uses do not overlap in
250
// time, so the same field is used to save space.
251
HeapWord* deferred_obj_addr() const { return _partial_obj_addr; }
252
253
// The starting address of the partial object extending onto the region.
254
HeapWord* partial_obj_addr() const { return _partial_obj_addr; }
255
256
// Size of the partial object extending onto the region (words).
257
size_t partial_obj_size() const { return _partial_obj_size; }
258
259
// Size of live data that lies within this region due to objects that start
260
// in this region (words). This does not include the partial object
261
// extending onto the region (if any), or the part of an object that extends
262
// onto the next region (if any).
263
size_t live_obj_size() const { return _dc_and_los & los_mask; }
264
265
// Total live data that lies within the region (words).
266
size_t data_size() const { return partial_obj_size() + live_obj_size(); }
267
268
// The destination_count is the number of other regions to which data from
269
// this region will be copied. At the end of the summary phase, the valid
270
// values of destination_count are
271
//
272
// 0 - data from the region will be compacted completely into itself, or the
273
// region is empty. The region can be claimed and then filled.
274
// 1 - data from the region will be compacted into 1 other region; some
275
// data from the region may also be compacted into the region itself.
276
// 2 - data from the region will be copied to 2 other regions.
277
//
278
// During compaction as regions are emptied, the destination_count is
279
// decremented (atomically) and when it reaches 0, it can be claimed and
280
// then filled.
281
//
282
// A region is claimed for processing by atomically changing the
283
// destination_count to the claimed value (dc_claimed). After a region has
284
// been filled, the destination_count should be set to the completed value
285
// (dc_completed).
286
inline uint destination_count() const;
287
inline uint destination_count_raw() const;
288
289
// Whether the block table for this region has been filled.
290
inline bool blocks_filled() const;
291
292
// Number of times the block table was filled.
293
DEBUG_ONLY(inline size_t blocks_filled_count() const;)
294
295
// The location of the java heap data that corresponds to this region.
296
inline HeapWord* data_location() const;
297
298
// The highest address referenced by objects in this region.
299
inline HeapWord* highest_ref() const;
300
301
// Whether this region is available to be claimed, has been claimed, or has
302
// been completed.
303
//
304
// Minor subtlety: claimed() returns true if the region is marked
305
// completed(), which is desirable since a region must be claimed before it
306
// can be completed.
307
bool available() const { return _dc_and_los < dc_one; }
308
bool claimed() const { return _dc_and_los >= dc_claimed; }
309
bool completed() const { return _dc_and_los >= dc_completed; }
310
311
// These are not atomic.
312
void set_destination(HeapWord* addr) { _destination = addr; }
313
void set_source_region(size_t region) { _source_region = region; }
314
void set_shadow_region(size_t region) { _source_region = region; }
315
void set_deferred_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
316
void set_partial_obj_addr(HeapWord* addr) { _partial_obj_addr = addr; }
317
void set_partial_obj_size(size_t words) {
318
_partial_obj_size = (region_sz_t) words;
319
}
320
inline void set_blocks_filled();
321
322
inline void set_destination_count(uint count);
323
inline void set_live_obj_size(size_t words);
324
inline void set_data_location(HeapWord* addr);
325
inline void set_completed();
326
inline bool claim_unsafe();
327
328
// These are atomic.
329
inline void add_live_obj(size_t words);
330
inline void set_highest_ref(HeapWord* addr);
331
inline void decrement_destination_count();
332
inline bool claim();
333
334
// Possible values of _shadow_state, and transition is as follows
335
// Normal Path:
336
// UnusedRegion -> mark_normal() -> NormalRegion
337
// Shadow Path:
338
// UnusedRegion -> mark_shadow() -> ShadowRegion ->
339
// mark_filled() -> FilledShadow -> mark_copied() -> CopiedShadow
340
static const int UnusedRegion = 0; // The region is not collected yet
341
static const int ShadowRegion = 1; // Stolen by an idle thread, and a shadow region is created for it
342
static const int FilledShadow = 2; // Its shadow region has been filled and ready to be copied back
343
static const int CopiedShadow = 3; // The data of the shadow region has been copied back
344
static const int NormalRegion = 4; // The region will be collected by the original parallel algorithm
345
346
// Mark the current region as normal or shadow to enter different processing paths
347
inline bool mark_normal();
348
inline bool mark_shadow();
349
// Mark the shadow region as filled and ready to be copied back
350
inline void mark_filled();
351
// Mark the shadow region as copied back to avoid double copying.
352
inline bool mark_copied();
353
// Special case: see the comment in PSParallelCompact::fill_and_update_shadow_region.
354
// Return to the normal path here
355
inline void shadow_to_normal();
356
357
358
int shadow_state() { return _shadow_state; }
359
360
private:
361
// The type used to represent object sizes within a region.
362
typedef uint region_sz_t;
363
364
// Constants for manipulating the _dc_and_los field, which holds both the
365
// destination count and live obj size. The live obj size lives at the
366
// least significant end so no masking is necessary when adding.
367
static const region_sz_t dc_shift; // Shift amount.
368
static const region_sz_t dc_mask; // Mask for destination count.
369
static const region_sz_t dc_one; // 1, shifted appropriately.
370
static const region_sz_t dc_claimed; // Region has been claimed.
371
static const region_sz_t dc_completed; // Region has been completed.
372
static const region_sz_t los_mask; // Mask for live obj size.
373
374
HeapWord* _destination;
375
size_t _source_region;
376
HeapWord* _partial_obj_addr;
377
region_sz_t _partial_obj_size;
378
region_sz_t volatile _dc_and_los;
379
bool volatile _blocks_filled;
380
int volatile _shadow_state;
381
382
#ifdef ASSERT
383
size_t _blocks_filled_count; // Number of block table fills.
384
385
// These enable optimizations that are only partially implemented. Use
386
// debug builds to prevent the code fragments from breaking.
387
HeapWord* _data_location;
388
HeapWord* _highest_ref;
389
#endif // #ifdef ASSERT
390
391
#ifdef ASSERT
392
public:
393
uint _pushed; // 0 until region is pushed onto a stack
394
private:
395
#endif
396
};
397
398
// "Blocks" allow shorter sections of the bitmap to be searched. Each Block
399
// holds an offset, which is the amount of live data in the Region to the left
400
// of the first live object that starts in the Block.
401
class BlockData
402
{
403
public:
404
typedef unsigned short int blk_ofs_t;
405
406
blk_ofs_t offset() const { return _offset; }
407
void set_offset(size_t val) { _offset = (blk_ofs_t)val; }
408
409
private:
410
blk_ofs_t _offset;
411
};
412
413
public:
414
ParallelCompactData();
415
bool initialize(MemRegion covered_region);
416
417
size_t region_count() const { return _region_count; }
418
size_t reserved_byte_size() const { return _reserved_byte_size; }
419
420
// Convert region indices to/from RegionData pointers.
421
inline RegionData* region(size_t region_idx) const;
422
inline size_t region(const RegionData* const region_ptr) const;
423
424
size_t block_count() const { return _block_count; }
425
inline BlockData* block(size_t block_idx) const;
426
inline size_t block(const BlockData* block_ptr) const;
427
428
void add_obj(HeapWord* addr, size_t len);
429
void add_obj(oop p, size_t len) { add_obj(cast_from_oop<HeapWord*>(p), len); }
430
431
// Fill in the regions covering [beg, end) so that no data moves; i.e., the
432
// destination of region n is simply the start of region n. Both arguments
433
// beg and end must be region-aligned.
434
void summarize_dense_prefix(HeapWord* beg, HeapWord* end);
435
436
HeapWord* summarize_split_space(size_t src_region, SplitInfo& split_info,
437
HeapWord* destination, HeapWord* target_end,
438
HeapWord** target_next);
439
bool summarize(SplitInfo& split_info,
440
HeapWord* source_beg, HeapWord* source_end,
441
HeapWord** source_next,
442
HeapWord* target_beg, HeapWord* target_end,
443
HeapWord** target_next);
444
445
void clear();
446
void clear_range(size_t beg_region, size_t end_region);
447
void clear_range(HeapWord* beg, HeapWord* end) {
448
clear_range(addr_to_region_idx(beg), addr_to_region_idx(end));
449
}
450
451
// Return the number of words between addr and the start of the region
452
// containing addr.
453
inline size_t region_offset(const HeapWord* addr) const;
454
455
// Convert addresses to/from a region index or region pointer.
456
inline size_t addr_to_region_idx(const HeapWord* addr) const;
457
inline RegionData* addr_to_region_ptr(const HeapWord* addr) const;
458
inline HeapWord* region_to_addr(size_t region) const;
459
inline HeapWord* region_to_addr(size_t region, size_t offset) const;
460
inline HeapWord* region_to_addr(const RegionData* region) const;
461
462
inline HeapWord* region_align_down(HeapWord* addr) const;
463
inline HeapWord* region_align_up(HeapWord* addr) const;
464
inline bool is_region_aligned(HeapWord* addr) const;
465
466
// Analogous to region_offset() for blocks.
467
size_t block_offset(const HeapWord* addr) const;
468
size_t addr_to_block_idx(const HeapWord* addr) const;
469
size_t addr_to_block_idx(const oop obj) const {
470
return addr_to_block_idx(cast_from_oop<HeapWord*>(obj));
471
}
472
inline BlockData* addr_to_block_ptr(const HeapWord* addr) const;
473
inline HeapWord* block_to_addr(size_t block) const;
474
inline size_t region_to_block_idx(size_t region) const;
475
476
inline HeapWord* block_align_down(HeapWord* addr) const;
477
inline HeapWord* block_align_up(HeapWord* addr) const;
478
inline bool is_block_aligned(HeapWord* addr) const;
479
480
// Return the address one past the end of the partial object.
481
HeapWord* partial_obj_end(size_t region_idx) const;
482
483
// Return the location of the object after compaction.
484
HeapWord* calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) const;
485
486
HeapWord* calc_new_pointer(oop p, ParCompactionManager* cm) const {
487
return calc_new_pointer(cast_from_oop<HeapWord*>(p), cm);
488
}
489
490
#ifdef ASSERT
491
void verify_clear(const PSVirtualSpace* vspace);
492
void verify_clear();
493
#endif // #ifdef ASSERT
494
495
private:
496
bool initialize_block_data();
497
bool initialize_region_data(size_t region_size);
498
PSVirtualSpace* create_vspace(size_t count, size_t element_size);
499
500
private:
501
HeapWord* _region_start;
502
#ifdef ASSERT
503
HeapWord* _region_end;
504
#endif // #ifdef ASSERT
505
506
PSVirtualSpace* _region_vspace;
507
size_t _reserved_byte_size;
508
RegionData* _region_data;
509
size_t _region_count;
510
511
PSVirtualSpace* _block_vspace;
512
BlockData* _block_data;
513
size_t _block_count;
514
};
515
516
inline uint
517
ParallelCompactData::RegionData::destination_count_raw() const
518
{
519
return _dc_and_los & dc_mask;
520
}
521
522
inline uint
523
ParallelCompactData::RegionData::destination_count() const
524
{
525
return destination_count_raw() >> dc_shift;
526
}
527
528
inline bool
529
ParallelCompactData::RegionData::blocks_filled() const
530
{
531
bool result = _blocks_filled;
532
OrderAccess::acquire();
533
return result;
534
}
535
536
#ifdef ASSERT
537
inline size_t
538
ParallelCompactData::RegionData::blocks_filled_count() const
539
{
540
return _blocks_filled_count;
541
}
542
#endif // #ifdef ASSERT
543
544
inline void
545
ParallelCompactData::RegionData::set_blocks_filled()
546
{
547
OrderAccess::release();
548
_blocks_filled = true;
549
// Debug builds count the number of times the table was filled.
550
DEBUG_ONLY(Atomic::inc(&_blocks_filled_count));
551
}
552
553
inline void
554
ParallelCompactData::RegionData::set_destination_count(uint count)
555
{
556
assert(count <= (dc_completed >> dc_shift), "count too large");
557
const region_sz_t live_sz = (region_sz_t) live_obj_size();
558
_dc_and_los = (count << dc_shift) | live_sz;
559
}
560
561
inline void ParallelCompactData::RegionData::set_live_obj_size(size_t words)
562
{
563
assert(words <= los_mask, "would overflow");
564
_dc_and_los = destination_count_raw() | (region_sz_t)words;
565
}
566
567
inline void ParallelCompactData::RegionData::decrement_destination_count()
568
{
569
assert(_dc_and_los < dc_claimed, "already claimed");
570
assert(_dc_and_los >= dc_one, "count would go negative");
571
Atomic::add(&_dc_and_los, dc_mask);
572
}
573
574
inline HeapWord* ParallelCompactData::RegionData::data_location() const
575
{
576
DEBUG_ONLY(return _data_location;)
577
NOT_DEBUG(return NULL;)
578
}
579
580
inline HeapWord* ParallelCompactData::RegionData::highest_ref() const
581
{
582
DEBUG_ONLY(return _highest_ref;)
583
NOT_DEBUG(return NULL;)
584
}
585
586
inline void ParallelCompactData::RegionData::set_data_location(HeapWord* addr)
587
{
588
DEBUG_ONLY(_data_location = addr;)
589
}
590
591
inline void ParallelCompactData::RegionData::set_completed()
592
{
593
assert(claimed(), "must be claimed first");
594
_dc_and_los = dc_completed | (region_sz_t) live_obj_size();
595
}
596
597
// MT-unsafe claiming of a region. Should only be used during single threaded
598
// execution.
599
inline bool ParallelCompactData::RegionData::claim_unsafe()
600
{
601
if (available()) {
602
_dc_and_los |= dc_claimed;
603
return true;
604
}
605
return false;
606
}
607
608
inline void ParallelCompactData::RegionData::add_live_obj(size_t words)
609
{
610
assert(words <= (size_t)los_mask - live_obj_size(), "overflow");
611
Atomic::add(&_dc_and_los, static_cast<region_sz_t>(words));
612
}
613
614
inline void ParallelCompactData::RegionData::set_highest_ref(HeapWord* addr)
615
{
616
#ifdef ASSERT
617
HeapWord* tmp = _highest_ref;
618
while (addr > tmp) {
619
tmp = Atomic::cmpxchg(&_highest_ref, tmp, addr);
620
}
621
#endif // #ifdef ASSERT
622
}
623
624
inline bool ParallelCompactData::RegionData::claim()
625
{
626
const region_sz_t los = static_cast<region_sz_t>(live_obj_size());
627
const region_sz_t old = Atomic::cmpxchg(&_dc_and_los, los, dc_claimed | los);
628
return old == los;
629
}
630
631
inline bool ParallelCompactData::RegionData::mark_normal() {
632
return Atomic::cmpxchg(&_shadow_state, UnusedRegion, NormalRegion) == UnusedRegion;
633
}
634
635
inline bool ParallelCompactData::RegionData::mark_shadow() {
636
if (_shadow_state != UnusedRegion) return false;
637
return Atomic::cmpxchg(&_shadow_state, UnusedRegion, ShadowRegion) == UnusedRegion;
638
}
639
640
inline void ParallelCompactData::RegionData::mark_filled() {
641
int old = Atomic::cmpxchg(&_shadow_state, ShadowRegion, FilledShadow);
642
assert(old == ShadowRegion, "Fail to mark the region as filled");
643
}
644
645
inline bool ParallelCompactData::RegionData::mark_copied() {
646
return Atomic::cmpxchg(&_shadow_state, FilledShadow, CopiedShadow) == FilledShadow;
647
}
648
649
void ParallelCompactData::RegionData::shadow_to_normal() {
650
int old = Atomic::cmpxchg(&_shadow_state, ShadowRegion, NormalRegion);
651
assert(old == ShadowRegion, "Fail to mark the region as finish");
652
}
653
654
inline ParallelCompactData::RegionData*
655
ParallelCompactData::region(size_t region_idx) const
656
{
657
assert(region_idx <= region_count(), "bad arg");
658
return _region_data + region_idx;
659
}
660
661
inline size_t
662
ParallelCompactData::region(const RegionData* const region_ptr) const
663
{
664
assert(region_ptr >= _region_data, "bad arg");
665
assert(region_ptr <= _region_data + region_count(), "bad arg");
666
return pointer_delta(region_ptr, _region_data, sizeof(RegionData));
667
}
668
669
inline ParallelCompactData::BlockData*
670
ParallelCompactData::block(size_t n) const {
671
assert(n < block_count(), "bad arg");
672
return _block_data + n;
673
}
674
675
inline size_t
676
ParallelCompactData::region_offset(const HeapWord* addr) const
677
{
678
assert(addr >= _region_start, "bad addr");
679
// would mistakenly return 0 for _region_end
680
assert(addr < _region_end, "bad addr");
681
return (size_t(addr) & RegionAddrOffsetMask) >> LogHeapWordSize;
682
}
683
684
inline size_t
685
ParallelCompactData::addr_to_region_idx(const HeapWord* addr) const
686
{
687
assert(addr >= _region_start, "bad addr " PTR_FORMAT " _region_start " PTR_FORMAT, p2i(addr), p2i(_region_start));
688
assert(addr <= _region_end, "bad addr " PTR_FORMAT " _region_end " PTR_FORMAT, p2i(addr), p2i(_region_end));
689
return pointer_delta(addr, _region_start) >> Log2RegionSize;
690
}
691
692
inline ParallelCompactData::RegionData*
693
ParallelCompactData::addr_to_region_ptr(const HeapWord* addr) const
694
{
695
return region(addr_to_region_idx(addr));
696
}
697
698
inline HeapWord*
699
ParallelCompactData::region_to_addr(size_t region) const
700
{
701
assert(region <= _region_count, "region out of range");
702
return _region_start + (region << Log2RegionSize);
703
}
704
705
inline HeapWord*
706
ParallelCompactData::region_to_addr(const RegionData* region) const
707
{
708
return region_to_addr(pointer_delta(region, _region_data,
709
sizeof(RegionData)));
710
}
711
712
inline HeapWord*
713
ParallelCompactData::region_to_addr(size_t region, size_t offset) const
714
{
715
assert(region <= _region_count, "region out of range");
716
assert(offset < RegionSize, "offset too big"); // This may be too strict.
717
return region_to_addr(region) + offset;
718
}
719
720
inline HeapWord*
721
ParallelCompactData::region_align_down(HeapWord* addr) const
722
{
723
assert(addr >= _region_start, "bad addr");
724
assert(addr < _region_end + RegionSize, "bad addr");
725
return (HeapWord*)(size_t(addr) & RegionAddrMask);
726
}
727
728
inline HeapWord*
729
ParallelCompactData::region_align_up(HeapWord* addr) const
730
{
731
assert(addr >= _region_start, "bad addr");
732
assert(addr <= _region_end, "bad addr");
733
return region_align_down(addr + RegionSizeOffsetMask);
734
}
735
736
inline bool
737
ParallelCompactData::is_region_aligned(HeapWord* addr) const
738
{
739
return (size_t(addr) & RegionAddrOffsetMask) == 0;
740
}
741
742
inline size_t
743
ParallelCompactData::block_offset(const HeapWord* addr) const
744
{
745
assert(addr >= _region_start, "bad addr");
746
assert(addr <= _region_end, "bad addr");
747
return (size_t(addr) & BlockAddrOffsetMask) >> LogHeapWordSize;
748
}
749
750
inline size_t
751
ParallelCompactData::addr_to_block_idx(const HeapWord* addr) const
752
{
753
assert(addr >= _region_start, "bad addr");
754
assert(addr <= _region_end, "bad addr");
755
return pointer_delta(addr, _region_start) >> Log2BlockSize;
756
}
757
758
inline ParallelCompactData::BlockData*
759
ParallelCompactData::addr_to_block_ptr(const HeapWord* addr) const
760
{
761
return block(addr_to_block_idx(addr));
762
}
763
764
inline HeapWord*
765
ParallelCompactData::block_to_addr(size_t block) const
766
{
767
assert(block < _block_count, "block out of range");
768
return _region_start + (block << Log2BlockSize);
769
}
770
771
inline size_t
772
ParallelCompactData::region_to_block_idx(size_t region) const
773
{
774
return region << Log2BlocksPerRegion;
775
}
776
777
inline HeapWord*
778
ParallelCompactData::block_align_down(HeapWord* addr) const
779
{
780
assert(addr >= _region_start, "bad addr");
781
assert(addr < _region_end + RegionSize, "bad addr");
782
return (HeapWord*)(size_t(addr) & BlockAddrMask);
783
}
784
785
inline HeapWord*
786
ParallelCompactData::block_align_up(HeapWord* addr) const
787
{
788
assert(addr >= _region_start, "bad addr");
789
assert(addr <= _region_end, "bad addr");
790
return block_align_down(addr + BlockSizeOffsetMask);
791
}
792
793
inline bool
794
ParallelCompactData::is_block_aligned(HeapWord* addr) const
795
{
796
return block_offset(addr) == 0;
797
}
798
799
// Abstract closure for use with ParMarkBitMap::iterate(), which will invoke the
800
// do_addr() method.
801
//
802
// The closure is initialized with the number of heap words to process
803
// (words_remaining()), and becomes 'full' when it reaches 0. The do_addr()
804
// methods in subclasses should update the total as words are processed. Since
805
// only one subclass actually uses this mechanism to terminate iteration, the
806
// default initial value is > 0. The implementation is here and not in the
807
// single subclass that uses it to avoid making is_full() virtual, and thus
808
// adding a virtual call per live object.
809
810
class ParMarkBitMapClosure: public StackObj {
811
public:
812
typedef ParMarkBitMap::idx_t idx_t;
813
typedef ParMarkBitMap::IterationStatus IterationStatus;
814
815
public:
816
inline ParMarkBitMapClosure(ParMarkBitMap* mbm, ParCompactionManager* cm,
817
size_t words = max_uintx);
818
819
inline ParCompactionManager* compaction_manager() const;
820
inline ParMarkBitMap* bitmap() const;
821
inline size_t words_remaining() const;
822
inline bool is_full() const;
823
inline HeapWord* source() const;
824
825
inline void set_source(HeapWord* addr);
826
827
virtual IterationStatus do_addr(HeapWord* addr, size_t words) = 0;
828
829
protected:
830
inline void decrement_words_remaining(size_t words);
831
832
private:
833
ParMarkBitMap* const _bitmap;
834
ParCompactionManager* const _compaction_manager;
835
DEBUG_ONLY(const size_t _initial_words_remaining;) // Useful in debugger.
836
size_t _words_remaining; // Words left to copy.
837
838
protected:
839
HeapWord* _source; // Next addr that would be read.
840
};
841
842
inline
843
ParMarkBitMapClosure::ParMarkBitMapClosure(ParMarkBitMap* bitmap,
844
ParCompactionManager* cm,
845
size_t words):
846
_bitmap(bitmap), _compaction_manager(cm)
847
#ifdef ASSERT
848
, _initial_words_remaining(words)
849
#endif
850
{
851
_words_remaining = words;
852
_source = NULL;
853
}
854
855
inline ParCompactionManager* ParMarkBitMapClosure::compaction_manager() const {
856
return _compaction_manager;
857
}
858
859
inline ParMarkBitMap* ParMarkBitMapClosure::bitmap() const {
860
return _bitmap;
861
}
862
863
inline size_t ParMarkBitMapClosure::words_remaining() const {
864
return _words_remaining;
865
}
866
867
inline bool ParMarkBitMapClosure::is_full() const {
868
return words_remaining() == 0;
869
}
870
871
inline HeapWord* ParMarkBitMapClosure::source() const {
872
return _source;
873
}
874
875
inline void ParMarkBitMapClosure::set_source(HeapWord* addr) {
876
_source = addr;
877
}
878
879
inline void ParMarkBitMapClosure::decrement_words_remaining(size_t words) {
880
assert(_words_remaining >= words, "processed too many words");
881
_words_remaining -= words;
882
}
883
884
// The Parallel collector is a stop-the-world garbage collector that
885
// does parts of the collection using parallel threads. The collection includes
886
// the tenured generation and the young generation.
887
//
888
// There are four phases of the collection.
889
//
890
// - marking phase
891
// - summary phase
892
// - compacting phase
893
// - clean up phase
894
//
895
// Roughly speaking these phases correspond, respectively, to
896
// - mark all the live objects
897
// - calculate the destination of each object at the end of the collection
898
// - move the objects to their destination
899
// - update some references and reinitialize some variables
900
//
901
// These three phases are invoked in PSParallelCompact::invoke_no_policy(). The
902
// marking phase is implemented in PSParallelCompact::marking_phase() and does a
903
// complete marking of the heap. The summary phase is implemented in
904
// PSParallelCompact::summary_phase(). The move and update phase is implemented
905
// in PSParallelCompact::compact().
906
//
907
// A space that is being collected is divided into regions and with each region
908
// is associated an object of type ParallelCompactData. Each region is of a
909
// fixed size and typically will contain more than 1 object and may have parts
910
// of objects at the front and back of the region.
911
//
912
// region -----+---------------------+----------
913
// objects covered [ AAA )[ BBB )[ CCC )[ DDD )
914
//
915
// The marking phase does a complete marking of all live objects in the heap.
916
// The marking also compiles the size of the data for all live objects covered
917
// by the region. This size includes the part of any live object spanning onto
918
// the region (part of AAA if it is live) from the front, all live objects
919
// contained in the region (BBB and/or CCC if they are live), and the part of
920
// any live objects covered by the region that extends off the region (part of
921
// DDD if it is live). The marking phase uses multiple GC threads and marking
922
// is done in a bit array of type ParMarkBitMap. The marking of the bit map is
923
// done atomically as is the accumulation of the size of the live objects
924
// covered by a region.
925
//
926
// The summary phase calculates the total live data to the left of each region
927
// XXX. Based on that total and the bottom of the space, it can calculate the
928
// starting location of the live data in XXX. The summary phase calculates for
929
// each region XXX quantities such as
930
//
931
// - the amount of live data at the beginning of a region from an object
932
// entering the region.
933
// - the location of the first live data on the region
934
// - a count of the number of regions receiving live data from XXX.
935
//
936
// See ParallelCompactData for precise details. The summary phase also
937
// calculates the dense prefix for the compaction. The dense prefix is a
938
// portion at the beginning of the space that is not moved. The objects in the
939
// dense prefix do need to have their object references updated. See method
940
// summarize_dense_prefix().
941
//
942
// The summary phase is done using 1 GC thread.
943
//
944
// The compaction phase moves objects to their new location and updates all
945
// references in the object.
946
//
947
// A current exception is that objects that cross a region boundary are moved
948
// but do not have their references updated. References are not updated because
949
// it cannot easily be determined if the klass pointer KKK for the object AAA
950
// has been updated. KKK likely resides in a region to the left of the region
951
// containing AAA. These AAA's have there references updated at the end in a
952
// clean up phase. See the method PSParallelCompact::update_deferred_objects().
953
// An alternate strategy is being investigated for this deferral of updating.
954
//
955
// Compaction is done on a region basis. A region that is ready to be filled is
956
// put on a ready list and GC threads take region off the list and fill them. A
957
// region is ready to be filled if it empty of live objects. Such a region may
958
// have been initially empty (only contained dead objects) or may have had all
959
// its live objects copied out already. A region that compacts into itself is
960
// also ready for filling. The ready list is initially filled with empty
961
// regions and regions compacting into themselves. There is always at least 1
962
// region that can be put on the ready list. The regions are atomically added
963
// and removed from the ready list.
964
965
class TaskQueue;
966
967
class PSParallelCompact : AllStatic {
968
public:
969
// Convenient access to type names.
970
typedef ParMarkBitMap::idx_t idx_t;
971
typedef ParallelCompactData::RegionData RegionData;
972
typedef ParallelCompactData::BlockData BlockData;
973
974
typedef enum {
975
old_space_id, eden_space_id,
976
from_space_id, to_space_id, last_space_id
977
} SpaceId;
978
979
struct UpdateDensePrefixTask : public CHeapObj<mtGC> {
980
SpaceId _space_id;
981
size_t _region_index_start;
982
size_t _region_index_end;
983
984
UpdateDensePrefixTask() :
985
_space_id(SpaceId(0)),
986
_region_index_start(0),
987
_region_index_end(0) {}
988
989
UpdateDensePrefixTask(SpaceId space_id,
990
size_t region_index_start,
991
size_t region_index_end) :
992
_space_id(space_id),
993
_region_index_start(region_index_start),
994
_region_index_end(region_index_end) {}
995
};
996
997
public:
998
// Inline closure decls
999
//
1000
class IsAliveClosure: public BoolObjectClosure {
1001
public:
1002
virtual bool do_object_b(oop p);
1003
};
1004
1005
friend class RefProcTaskProxy;
1006
friend class PSParallelCompactTest;
1007
1008
private:
1009
static STWGCTimer _gc_timer;
1010
static ParallelOldTracer _gc_tracer;
1011
static elapsedTimer _accumulated_time;
1012
static unsigned int _total_invocations;
1013
static unsigned int _maximum_compaction_gc_num;
1014
static CollectorCounters* _counters;
1015
static ParMarkBitMap _mark_bitmap;
1016
static ParallelCompactData _summary_data;
1017
static IsAliveClosure _is_alive_closure;
1018
static SpaceInfo _space_info[last_space_id];
1019
1020
// Reference processing (used in ...follow_contents)
1021
static SpanSubjectToDiscoveryClosure _span_based_discoverer;
1022
static ReferenceProcessor* _ref_processor;
1023
1024
// Values computed at initialization and used by dead_wood_limiter().
1025
static double _dwl_mean;
1026
static double _dwl_std_dev;
1027
static double _dwl_first_term;
1028
static double _dwl_adjustment;
1029
#ifdef ASSERT
1030
static bool _dwl_initialized;
1031
#endif // #ifdef ASSERT
1032
1033
public:
1034
static ParallelOldTracer* gc_tracer() { return &_gc_tracer; }
1035
1036
private:
1037
1038
static void initialize_space_info();
1039
1040
// Clear the marking bitmap and summary data that cover the specified space.
1041
static void clear_data_covering_space(SpaceId id);
1042
1043
static void pre_compact();
1044
static void post_compact();
1045
1046
// Mark live objects
1047
static void marking_phase(ParCompactionManager* cm,
1048
bool maximum_heap_compaction,
1049
ParallelOldTracer *gc_tracer);
1050
1051
// Compute the dense prefix for the designated space. This is an experimental
1052
// implementation currently not used in production.
1053
static HeapWord* compute_dense_prefix_via_density(const SpaceId id,
1054
bool maximum_compaction);
1055
1056
// Methods used to compute the dense prefix.
1057
1058
// Compute the value of the normal distribution at x = density. The mean and
1059
// standard deviation are values saved by initialize_dead_wood_limiter().
1060
static inline double normal_distribution(double density);
1061
1062
// Initialize the static vars used by dead_wood_limiter().
1063
static void initialize_dead_wood_limiter();
1064
1065
// Return the percentage of space that can be treated as "dead wood" (i.e.,
1066
// not reclaimed).
1067
static double dead_wood_limiter(double density, size_t min_percent);
1068
1069
// Find the first (left-most) region in the range [beg, end) that has at least
1070
// dead_words of dead space to the left. The argument beg must be the first
1071
// region in the space that is not completely live.
1072
static RegionData* dead_wood_limit_region(const RegionData* beg,
1073
const RegionData* end,
1074
size_t dead_words);
1075
1076
// Return a pointer to the first region in the range [beg, end) that is not
1077
// completely full.
1078
static RegionData* first_dead_space_region(const RegionData* beg,
1079
const RegionData* end);
1080
1081
// Return a value indicating the benefit or 'yield' if the compacted region
1082
// were to start (or equivalently if the dense prefix were to end) at the
1083
// candidate region. Higher values are better.
1084
//
1085
// The value is based on the amount of space reclaimed vs. the costs of (a)
1086
// updating references in the dense prefix plus (b) copying objects and
1087
// updating references in the compacted region.
1088
static inline double reclaimed_ratio(const RegionData* const candidate,
1089
HeapWord* const bottom,
1090
HeapWord* const top,
1091
HeapWord* const new_top);
1092
1093
// Compute the dense prefix for the designated space.
1094
static HeapWord* compute_dense_prefix(const SpaceId id,
1095
bool maximum_compaction);
1096
1097
// Return true if dead space crosses onto the specified Region; bit must be
1098
// the bit index corresponding to the first word of the Region.
1099
static inline bool dead_space_crosses_boundary(const RegionData* region,
1100
idx_t bit);
1101
1102
// Summary phase utility routine to fill dead space (if any) at the dense
1103
// prefix boundary. Should only be called if the the dense prefix is
1104
// non-empty.
1105
static void fill_dense_prefix_end(SpaceId id);
1106
1107
static void summarize_spaces_quick();
1108
static void summarize_space(SpaceId id, bool maximum_compaction);
1109
static void summary_phase(ParCompactionManager* cm, bool maximum_compaction);
1110
1111
// Adjust addresses in roots. Does not adjust addresses in heap.
1112
static void adjust_roots();
1113
1114
DEBUG_ONLY(static void write_block_fill_histogram();)
1115
1116
// Move objects to new locations.
1117
static void compact_perm(ParCompactionManager* cm);
1118
static void compact();
1119
1120
// Add available regions to the stack and draining tasks to the task queue.
1121
static void prepare_region_draining_tasks(uint parallel_gc_threads);
1122
1123
// Add dense prefix update tasks to the task queue.
1124
static void enqueue_dense_prefix_tasks(TaskQueue& task_queue,
1125
uint parallel_gc_threads);
1126
1127
#ifndef PRODUCT
1128
// Print generic summary data
1129
static void print_generic_summary_data(ParallelCompactData& summary_data,
1130
HeapWord* const beg_addr,
1131
HeapWord* const end_addr);
1132
#endif // #ifndef PRODUCT
1133
1134
public:
1135
1136
PSParallelCompact();
1137
1138
static void invoke(bool maximum_heap_compaction);
1139
static bool invoke_no_policy(bool maximum_heap_compaction);
1140
1141
static void post_initialize();
1142
// Perform initialization for PSParallelCompact that requires
1143
// allocations. This should be called during the VM initialization
1144
// at a pointer where it would be appropriate to return a JNI_ENOMEM
1145
// in the event of a failure.
1146
static bool initialize();
1147
1148
// Closure accessors
1149
static BoolObjectClosure* is_alive_closure() { return &_is_alive_closure; }
1150
1151
// Public accessors
1152
static elapsedTimer* accumulated_time() { return &_accumulated_time; }
1153
static unsigned int total_invocations() { return _total_invocations; }
1154
static CollectorCounters* counters() { return _counters; }
1155
1156
// Marking support
1157
static inline bool mark_obj(oop obj);
1158
static inline bool is_marked(oop obj);
1159
1160
template <class T> static inline void adjust_pointer(T* p, ParCompactionManager* cm);
1161
1162
// Compaction support.
1163
// Return true if p is in the range [beg_addr, end_addr).
1164
static inline bool is_in(HeapWord* p, HeapWord* beg_addr, HeapWord* end_addr);
1165
static inline bool is_in(oop* p, HeapWord* beg_addr, HeapWord* end_addr);
1166
1167
// Convenience wrappers for per-space data kept in _space_info.
1168
static inline MutableSpace* space(SpaceId space_id);
1169
static inline HeapWord* new_top(SpaceId space_id);
1170
static inline HeapWord* dense_prefix(SpaceId space_id);
1171
static inline ObjectStartArray* start_array(SpaceId space_id);
1172
1173
// Process the end of the given region range in the dense prefix.
1174
// This includes saving any object not updated.
1175
static void dense_prefix_regions_epilogue(ParCompactionManager* cm,
1176
size_t region_start_index,
1177
size_t region_end_index,
1178
idx_t exiting_object_offset,
1179
idx_t region_offset_start,
1180
idx_t region_offset_end);
1181
1182
// Update a region in the dense prefix. For each live object
1183
// in the region, update it's interior references. For each
1184
// dead object, fill it with deadwood. Dead space at the end
1185
// of a region range will be filled to the start of the next
1186
// live object regardless of the region_index_end. None of the
1187
// objects in the dense prefix move and dead space is dead
1188
// (holds only dead objects that don't need any processing), so
1189
// dead space can be filled in any order.
1190
static void update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
1191
SpaceId space_id,
1192
size_t region_index_start,
1193
size_t region_index_end);
1194
1195
// Return the address of the count + 1st live word in the range [beg, end).
1196
static HeapWord* skip_live_words(HeapWord* beg, HeapWord* end, size_t count);
1197
1198
// Return the address of the word to be copied to dest_addr, which must be
1199
// aligned to a region boundary.
1200
static HeapWord* first_src_addr(HeapWord* const dest_addr,
1201
SpaceId src_space_id,
1202
size_t src_region_idx);
1203
1204
// Determine the next source region, set closure.source() to the start of the
1205
// new region return the region index. Parameter end_addr is the address one
1206
// beyond the end of source range just processed. If necessary, switch to a
1207
// new source space and set src_space_id (in-out parameter) and src_space_top
1208
// (out parameter) accordingly.
1209
static size_t next_src_region(MoveAndUpdateClosure& closure,
1210
SpaceId& src_space_id,
1211
HeapWord*& src_space_top,
1212
HeapWord* end_addr);
1213
1214
// Decrement the destination count for each non-empty source region in the
1215
// range [beg_region, region(region_align_up(end_addr))). If the destination
1216
// count for a region goes to 0 and it needs to be filled, enqueue it.
1217
static void decrement_destination_counts(ParCompactionManager* cm,
1218
SpaceId src_space_id,
1219
size_t beg_region,
1220
HeapWord* end_addr);
1221
1222
static void fill_region(ParCompactionManager* cm, MoveAndUpdateClosure& closure, size_t region);
1223
static void fill_and_update_region(ParCompactionManager* cm, size_t region);
1224
1225
static bool steal_unavailable_region(ParCompactionManager* cm, size_t& region_idx);
1226
static void fill_and_update_shadow_region(ParCompactionManager* cm, size_t region);
1227
// Copy the content of a shadow region back to its corresponding heap region
1228
static void copy_back(HeapWord* shadow_addr, HeapWord* region_addr);
1229
// Collect empty regions as shadow regions and initialize the
1230
// _next_shadow_region filed for each compact manager
1231
static void initialize_shadow_regions(uint parallel_gc_threads);
1232
1233
// Fill in the block table for the specified region.
1234
static void fill_blocks(size_t region_idx);
1235
1236
// Update the deferred objects in the space.
1237
static void update_deferred_objects(ParCompactionManager* cm, SpaceId id);
1238
1239
static ParMarkBitMap* mark_bitmap() { return &_mark_bitmap; }
1240
static ParallelCompactData& summary_data() { return _summary_data; }
1241
1242
// Reference Processing
1243
static ReferenceProcessor* const ref_processor() { return _ref_processor; }
1244
1245
static STWGCTimer* gc_timer() { return &_gc_timer; }
1246
1247
// Return the SpaceId for the given address.
1248
static SpaceId space_id(HeapWord* addr);
1249
1250
static void print_on_error(outputStream* st);
1251
1252
#ifndef PRODUCT
1253
// Debugging support.
1254
static const char* space_names[last_space_id];
1255
static void print_region_ranges();
1256
static void print_dense_prefix_stats(const char* const algorithm,
1257
const SpaceId id,
1258
const bool maximum_compaction,
1259
HeapWord* const addr);
1260
static void summary_phase_msg(SpaceId dst_space_id,
1261
HeapWord* dst_beg, HeapWord* dst_end,
1262
SpaceId src_space_id,
1263
HeapWord* src_beg, HeapWord* src_end);
1264
#endif // #ifndef PRODUCT
1265
1266
#ifdef ASSERT
1267
// Sanity check the new location of a word in the heap.
1268
static inline void check_new_location(HeapWord* old_addr, HeapWord* new_addr);
1269
// Verify that all the regions have been emptied.
1270
static void verify_complete(SpaceId space_id);
1271
#endif // #ifdef ASSERT
1272
};
1273
1274
class MoveAndUpdateClosure: public ParMarkBitMapClosure {
1275
static inline size_t calculate_words_remaining(size_t region);
1276
public:
1277
inline MoveAndUpdateClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
1278
size_t region);
1279
1280
// Accessors.
1281
HeapWord* destination() const { return _destination; }
1282
HeapWord* copy_destination() const { return _destination + _offset; }
1283
1284
// If the object will fit (size <= words_remaining()), copy it to the current
1285
// destination, update the interior oops and the start array and return either
1286
// full (if the closure is full) or incomplete. If the object will not fit,
1287
// return would_overflow.
1288
IterationStatus do_addr(HeapWord* addr, size_t size);
1289
1290
// Copy enough words to fill this closure, starting at source(). Interior
1291
// oops and the start array are not updated. Return full.
1292
IterationStatus copy_until_full();
1293
1294
// Copy enough words to fill this closure or to the end of an object,
1295
// whichever is smaller, starting at source(). Interior oops and the start
1296
// array are not updated.
1297
void copy_partial_obj();
1298
1299
virtual void complete_region(ParCompactionManager* cm, HeapWord* dest_addr,
1300
PSParallelCompact::RegionData* region_ptr);
1301
1302
protected:
1303
// Update variables to indicate that word_count words were processed.
1304
inline void update_state(size_t word_count);
1305
1306
protected:
1307
HeapWord* _destination; // Next addr to be written.
1308
ObjectStartArray* const _start_array;
1309
size_t _offset;
1310
};
1311
1312
inline size_t MoveAndUpdateClosure::calculate_words_remaining(size_t region) {
1313
HeapWord* dest_addr = PSParallelCompact::summary_data().region_to_addr(region);
1314
PSParallelCompact::SpaceId dest_space_id = PSParallelCompact::space_id(dest_addr);
1315
HeapWord* new_top = PSParallelCompact::new_top(dest_space_id);
1316
assert(dest_addr < new_top, "sanity");
1317
1318
return MIN2(pointer_delta(new_top, dest_addr), ParallelCompactData::RegionSize);
1319
}
1320
1321
inline
1322
MoveAndUpdateClosure::MoveAndUpdateClosure(ParMarkBitMap* bitmap,
1323
ParCompactionManager* cm,
1324
size_t region_idx) :
1325
ParMarkBitMapClosure(bitmap, cm, calculate_words_remaining(region_idx)),
1326
_destination(PSParallelCompact::summary_data().region_to_addr(region_idx)),
1327
_start_array(PSParallelCompact::start_array(PSParallelCompact::space_id(_destination))),
1328
_offset(0) { }
1329
1330
1331
inline void MoveAndUpdateClosure::update_state(size_t words)
1332
{
1333
decrement_words_remaining(words);
1334
_source += words;
1335
_destination += words;
1336
}
1337
1338
class MoveAndUpdateShadowClosure: public MoveAndUpdateClosure {
1339
inline size_t calculate_shadow_offset(size_t region_idx, size_t shadow_idx);
1340
public:
1341
inline MoveAndUpdateShadowClosure(ParMarkBitMap* bitmap, ParCompactionManager* cm,
1342
size_t region, size_t shadow);
1343
1344
virtual void complete_region(ParCompactionManager* cm, HeapWord* dest_addr,
1345
PSParallelCompact::RegionData* region_ptr);
1346
1347
private:
1348
size_t _shadow;
1349
};
1350
1351
inline size_t MoveAndUpdateShadowClosure::calculate_shadow_offset(size_t region_idx, size_t shadow_idx) {
1352
ParallelCompactData& sd = PSParallelCompact::summary_data();
1353
HeapWord* dest_addr = sd.region_to_addr(region_idx);
1354
HeapWord* shadow_addr = sd.region_to_addr(shadow_idx);
1355
return pointer_delta(shadow_addr, dest_addr);
1356
}
1357
1358
inline
1359
MoveAndUpdateShadowClosure::MoveAndUpdateShadowClosure(ParMarkBitMap *bitmap,
1360
ParCompactionManager *cm,
1361
size_t region,
1362
size_t shadow) :
1363
MoveAndUpdateClosure(bitmap, cm, region),
1364
_shadow(shadow) {
1365
_offset = calculate_shadow_offset(region, shadow);
1366
}
1367
1368
class UpdateOnlyClosure: public ParMarkBitMapClosure {
1369
private:
1370
const PSParallelCompact::SpaceId _space_id;
1371
ObjectStartArray* const _start_array;
1372
1373
public:
1374
UpdateOnlyClosure(ParMarkBitMap* mbm,
1375
ParCompactionManager* cm,
1376
PSParallelCompact::SpaceId space_id);
1377
1378
// Update the object.
1379
virtual IterationStatus do_addr(HeapWord* addr, size_t words);
1380
1381
inline void do_addr(HeapWord* addr);
1382
};
1383
1384
class FillClosure: public ParMarkBitMapClosure {
1385
public:
1386
FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id);
1387
1388
virtual IterationStatus do_addr(HeapWord* addr, size_t size);
1389
1390
private:
1391
ObjectStartArray* const _start_array;
1392
};
1393
1394
void steal_marking_work(TaskTerminator& terminator, uint worker_id);
1395
1396
#endif // SHARE_GC_PARALLEL_PSPARALLELCOMPACT_HPP
1397
1398