Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/hotspot/share/gc/serial/defNewGeneration.cpp
41152 views
1
/*
2
* Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "gc/serial/defNewGeneration.inline.hpp"
27
#include "gc/serial/serialGcRefProcProxyTask.hpp"
28
#include "gc/serial/serialHeap.inline.hpp"
29
#include "gc/serial/tenuredGeneration.hpp"
30
#include "gc/shared/adaptiveSizePolicy.hpp"
31
#include "gc/shared/ageTable.inline.hpp"
32
#include "gc/shared/cardTableRS.hpp"
33
#include "gc/shared/collectorCounters.hpp"
34
#include "gc/shared/gcArguments.hpp"
35
#include "gc/shared/gcHeapSummary.hpp"
36
#include "gc/shared/gcLocker.hpp"
37
#include "gc/shared/gcPolicyCounters.hpp"
38
#include "gc/shared/gcTimer.hpp"
39
#include "gc/shared/gcTrace.hpp"
40
#include "gc/shared/gcTraceTime.inline.hpp"
41
#include "gc/shared/generationSpec.hpp"
42
#include "gc/shared/genOopClosures.inline.hpp"
43
#include "gc/shared/preservedMarks.inline.hpp"
44
#include "gc/shared/referencePolicy.hpp"
45
#include "gc/shared/referenceProcessorPhaseTimes.hpp"
46
#include "gc/shared/space.inline.hpp"
47
#include "gc/shared/spaceDecorator.inline.hpp"
48
#include "gc/shared/strongRootsScope.hpp"
49
#include "gc/shared/weakProcessor.hpp"
50
#include "logging/log.hpp"
51
#include "memory/iterator.inline.hpp"
52
#include "memory/resourceArea.hpp"
53
#include "oops/instanceRefKlass.hpp"
54
#include "oops/oop.inline.hpp"
55
#include "runtime/java.hpp"
56
#include "runtime/prefetch.inline.hpp"
57
#include "runtime/thread.inline.hpp"
58
#include "utilities/align.hpp"
59
#include "utilities/copy.hpp"
60
#include "utilities/globalDefinitions.hpp"
61
#include "utilities/stack.inline.hpp"
62
63
//
64
// DefNewGeneration functions.
65
66
// Methods of protected closure types.
67
68
DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* young_gen) : _young_gen(young_gen) {
69
assert(_young_gen->kind() == Generation::DefNew, "Expected the young generation here");
70
}
71
72
bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
73
return cast_from_oop<HeapWord*>(p) >= _young_gen->reserved().end() || p->is_forwarded();
74
}
75
76
DefNewGeneration::KeepAliveClosure::
77
KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
78
_rs = GenCollectedHeap::heap()->rem_set();
79
}
80
81
void DefNewGeneration::KeepAliveClosure::do_oop(oop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
82
void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
83
84
85
DefNewGeneration::FastKeepAliveClosure::
86
FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
87
DefNewGeneration::KeepAliveClosure(cl) {
88
_boundary = g->reserved().end();
89
}
90
91
void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
92
void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
93
94
DefNewGeneration::FastEvacuateFollowersClosure::
95
FastEvacuateFollowersClosure(SerialHeap* heap,
96
DefNewScanClosure* cur,
97
DefNewYoungerGenClosure* older) :
98
_heap(heap), _scan_cur_or_nonheap(cur), _scan_older(older)
99
{
100
}
101
102
void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
103
do {
104
_heap->oop_since_save_marks_iterate(_scan_cur_or_nonheap, _scan_older);
105
} while (!_heap->no_allocs_since_save_marks());
106
guarantee(_heap->young_gen()->promo_failure_scan_is_complete(), "Failed to finish scan");
107
}
108
109
void CLDScanClosure::do_cld(ClassLoaderData* cld) {
110
NOT_PRODUCT(ResourceMark rm);
111
log_develop_trace(gc, scavenge)("CLDScanClosure::do_cld " PTR_FORMAT ", %s, dirty: %s",
112
p2i(cld),
113
cld->loader_name_and_id(),
114
cld->has_modified_oops() ? "true" : "false");
115
116
// If the cld has not been dirtied we know that there's
117
// no references into the young gen and we can skip it.
118
if (cld->has_modified_oops()) {
119
120
// Tell the closure which CLD is being scanned so that it can be dirtied
121
// if oops are left pointing into the young gen.
122
_scavenge_closure->set_scanned_cld(cld);
123
124
// Clean the cld since we're going to scavenge all the metadata.
125
cld->oops_do(_scavenge_closure, ClassLoaderData::_claim_none, /*clear_modified_oops*/true);
126
127
_scavenge_closure->set_scanned_cld(NULL);
128
}
129
}
130
131
ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
132
_g(g)
133
{
134
_boundary = _g->reserved().end();
135
}
136
137
DefNewGeneration::DefNewGeneration(ReservedSpace rs,
138
size_t initial_size,
139
size_t min_size,
140
size_t max_size,
141
const char* policy)
142
: Generation(rs, initial_size),
143
_preserved_marks_set(false /* in_c_heap */),
144
_promo_failure_drain_in_progress(false),
145
_should_allocate_from_space(false)
146
{
147
MemRegion cmr((HeapWord*)_virtual_space.low(),
148
(HeapWord*)_virtual_space.high());
149
GenCollectedHeap* gch = GenCollectedHeap::heap();
150
151
gch->rem_set()->resize_covered_region(cmr);
152
153
_eden_space = new ContiguousSpace();
154
_from_space = new ContiguousSpace();
155
_to_space = new ContiguousSpace();
156
157
// Compute the maximum eden and survivor space sizes. These sizes
158
// are computed assuming the entire reserved space is committed.
159
// These values are exported as performance counters.
160
uintx size = _virtual_space.reserved_size();
161
_max_survivor_size = compute_survivor_size(size, SpaceAlignment);
162
_max_eden_size = size - (2*_max_survivor_size);
163
164
// allocate the performance counters
165
166
// Generation counters -- generation 0, 3 subspaces
167
_gen_counters = new GenerationCounters("new", 0, 3,
168
min_size, max_size, &_virtual_space);
169
_gc_counters = new CollectorCounters(policy, 0);
170
171
_eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
172
_gen_counters);
173
_from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
174
_gen_counters);
175
_to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
176
_gen_counters);
177
178
compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
179
update_counters();
180
_old_gen = NULL;
181
_tenuring_threshold = MaxTenuringThreshold;
182
_pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
183
184
_gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
185
}
186
187
void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
188
bool clear_space,
189
bool mangle_space) {
190
// If the spaces are being cleared (only done at heap initialization
191
// currently), the survivor spaces need not be empty.
192
// Otherwise, no care is taken for used areas in the survivor spaces
193
// so check.
194
assert(clear_space || (to()->is_empty() && from()->is_empty()),
195
"Initialization of the survivor spaces assumes these are empty");
196
197
// Compute sizes
198
uintx size = _virtual_space.committed_size();
199
uintx survivor_size = compute_survivor_size(size, SpaceAlignment);
200
uintx eden_size = size - (2*survivor_size);
201
assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
202
203
if (eden_size < minimum_eden_size) {
204
// May happen due to 64Kb rounding, if so adjust eden size back up
205
minimum_eden_size = align_up(minimum_eden_size, SpaceAlignment);
206
uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
207
uintx unaligned_survivor_size =
208
align_down(maximum_survivor_size, SpaceAlignment);
209
survivor_size = MAX2(unaligned_survivor_size, SpaceAlignment);
210
eden_size = size - (2*survivor_size);
211
assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
212
assert(eden_size >= minimum_eden_size, "just checking");
213
}
214
215
char *eden_start = _virtual_space.low();
216
char *from_start = eden_start + eden_size;
217
char *to_start = from_start + survivor_size;
218
char *to_end = to_start + survivor_size;
219
220
assert(to_end == _virtual_space.high(), "just checking");
221
assert(Space::is_aligned(eden_start), "checking alignment");
222
assert(Space::is_aligned(from_start), "checking alignment");
223
assert(Space::is_aligned(to_start), "checking alignment");
224
225
MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
226
MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
227
MemRegion toMR ((HeapWord*)to_start, (HeapWord*)to_end);
228
229
// A minimum eden size implies that there is a part of eden that
230
// is being used and that affects the initialization of any
231
// newly formed eden.
232
bool live_in_eden = minimum_eden_size > 0;
233
234
// If not clearing the spaces, do some checking to verify that
235
// the space are already mangled.
236
if (!clear_space) {
237
// Must check mangling before the spaces are reshaped. Otherwise,
238
// the bottom or end of one space may have moved into another
239
// a failure of the check may not correctly indicate which space
240
// is not properly mangled.
241
if (ZapUnusedHeapArea) {
242
HeapWord* limit = (HeapWord*) _virtual_space.high();
243
eden()->check_mangled_unused_area(limit);
244
from()->check_mangled_unused_area(limit);
245
to()->check_mangled_unused_area(limit);
246
}
247
}
248
249
// Reset the spaces for their new regions.
250
eden()->initialize(edenMR,
251
clear_space && !live_in_eden,
252
SpaceDecorator::Mangle);
253
// If clear_space and live_in_eden, we will not have cleared any
254
// portion of eden above its top. This can cause newly
255
// expanded space not to be mangled if using ZapUnusedHeapArea.
256
// We explicitly do such mangling here.
257
if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
258
eden()->mangle_unused_area();
259
}
260
from()->initialize(fromMR, clear_space, mangle_space);
261
to()->initialize(toMR, clear_space, mangle_space);
262
263
// Set next compaction spaces.
264
eden()->set_next_compaction_space(from());
265
// The to-space is normally empty before a compaction so need
266
// not be considered. The exception is during promotion
267
// failure handling when to-space can contain live objects.
268
from()->set_next_compaction_space(NULL);
269
}
270
271
void DefNewGeneration::swap_spaces() {
272
ContiguousSpace* s = from();
273
_from_space = to();
274
_to_space = s;
275
eden()->set_next_compaction_space(from());
276
// The to-space is normally empty before a compaction so need
277
// not be considered. The exception is during promotion
278
// failure handling when to-space can contain live objects.
279
from()->set_next_compaction_space(NULL);
280
281
if (UsePerfData) {
282
CSpaceCounters* c = _from_counters;
283
_from_counters = _to_counters;
284
_to_counters = c;
285
}
286
}
287
288
bool DefNewGeneration::expand(size_t bytes) {
289
MutexLocker x(ExpandHeap_lock);
290
HeapWord* prev_high = (HeapWord*) _virtual_space.high();
291
bool success = _virtual_space.expand_by(bytes);
292
if (success && ZapUnusedHeapArea) {
293
// Mangle newly committed space immediately because it
294
// can be done here more simply that after the new
295
// spaces have been computed.
296
HeapWord* new_high = (HeapWord*) _virtual_space.high();
297
MemRegion mangle_region(prev_high, new_high);
298
SpaceMangler::mangle_region(mangle_region);
299
}
300
301
// Do not attempt an expand-to-the reserve size. The
302
// request should properly observe the maximum size of
303
// the generation so an expand-to-reserve should be
304
// unnecessary. Also a second call to expand-to-reserve
305
// value potentially can cause an undue expansion.
306
// For example if the first expand fail for unknown reasons,
307
// but the second succeeds and expands the heap to its maximum
308
// value.
309
if (GCLocker::is_active()) {
310
log_debug(gc)("Garbage collection disabled, expanded heap instead");
311
}
312
313
return success;
314
}
315
316
size_t DefNewGeneration::adjust_for_thread_increase(size_t new_size_candidate,
317
size_t new_size_before,
318
size_t alignment) const {
319
size_t desired_new_size = new_size_before;
320
321
if (NewSizeThreadIncrease > 0) {
322
int threads_count;
323
size_t thread_increase_size = 0;
324
325
// 1. Check an overflow at 'threads_count * NewSizeThreadIncrease'.
326
threads_count = Threads::number_of_non_daemon_threads();
327
if (threads_count > 0 && NewSizeThreadIncrease <= max_uintx / threads_count) {
328
thread_increase_size = threads_count * NewSizeThreadIncrease;
329
330
// 2. Check an overflow at 'new_size_candidate + thread_increase_size'.
331
if (new_size_candidate <= max_uintx - thread_increase_size) {
332
new_size_candidate += thread_increase_size;
333
334
// 3. Check an overflow at 'align_up'.
335
size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1));
336
if (new_size_candidate <= aligned_max) {
337
desired_new_size = align_up(new_size_candidate, alignment);
338
}
339
}
340
}
341
}
342
343
return desired_new_size;
344
}
345
346
void DefNewGeneration::compute_new_size() {
347
// This is called after a GC that includes the old generation, so from-space
348
// will normally be empty.
349
// Note that we check both spaces, since if scavenge failed they revert roles.
350
// If not we bail out (otherwise we would have to relocate the objects).
351
if (!from()->is_empty() || !to()->is_empty()) {
352
return;
353
}
354
355
GenCollectedHeap* gch = GenCollectedHeap::heap();
356
357
size_t old_size = gch->old_gen()->capacity();
358
size_t new_size_before = _virtual_space.committed_size();
359
size_t min_new_size = initial_size();
360
size_t max_new_size = reserved().byte_size();
361
assert(min_new_size <= new_size_before &&
362
new_size_before <= max_new_size,
363
"just checking");
364
// All space sizes must be multiples of Generation::GenGrain.
365
size_t alignment = Generation::GenGrain;
366
367
int threads_count = 0;
368
size_t thread_increase_size = 0;
369
370
size_t new_size_candidate = old_size / NewRatio;
371
// Compute desired new generation size based on NewRatio and NewSizeThreadIncrease
372
// and reverts to previous value if any overflow happens
373
size_t desired_new_size = adjust_for_thread_increase(new_size_candidate, new_size_before, alignment);
374
375
// Adjust new generation size
376
desired_new_size = clamp(desired_new_size, min_new_size, max_new_size);
377
assert(desired_new_size <= max_new_size, "just checking");
378
379
bool changed = false;
380
if (desired_new_size > new_size_before) {
381
size_t change = desired_new_size - new_size_before;
382
assert(change % alignment == 0, "just checking");
383
if (expand(change)) {
384
changed = true;
385
}
386
// If the heap failed to expand to the desired size,
387
// "changed" will be false. If the expansion failed
388
// (and at this point it was expected to succeed),
389
// ignore the failure (leaving "changed" as false).
390
}
391
if (desired_new_size < new_size_before && eden()->is_empty()) {
392
// bail out of shrinking if objects in eden
393
size_t change = new_size_before - desired_new_size;
394
assert(change % alignment == 0, "just checking");
395
_virtual_space.shrink_by(change);
396
changed = true;
397
}
398
if (changed) {
399
// The spaces have already been mangled at this point but
400
// may not have been cleared (set top = bottom) and should be.
401
// Mangling was done when the heap was being expanded.
402
compute_space_boundaries(eden()->used(),
403
SpaceDecorator::Clear,
404
SpaceDecorator::DontMangle);
405
MemRegion cmr((HeapWord*)_virtual_space.low(),
406
(HeapWord*)_virtual_space.high());
407
gch->rem_set()->resize_covered_region(cmr);
408
409
log_debug(gc, ergo, heap)(
410
"New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
411
new_size_before/K, _virtual_space.committed_size()/K,
412
eden()->capacity()/K, from()->capacity()/K);
413
log_trace(gc, ergo, heap)(
414
" [allowed " SIZE_FORMAT "K extra for %d threads]",
415
thread_increase_size/K, threads_count);
416
}
417
}
418
419
420
size_t DefNewGeneration::capacity() const {
421
return eden()->capacity()
422
+ from()->capacity(); // to() is only used during scavenge
423
}
424
425
426
size_t DefNewGeneration::used() const {
427
return eden()->used()
428
+ from()->used(); // to() is only used during scavenge
429
}
430
431
432
size_t DefNewGeneration::free() const {
433
return eden()->free()
434
+ from()->free(); // to() is only used during scavenge
435
}
436
437
size_t DefNewGeneration::max_capacity() const {
438
const size_t reserved_bytes = reserved().byte_size();
439
return reserved_bytes - compute_survivor_size(reserved_bytes, SpaceAlignment);
440
}
441
442
size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
443
return eden()->free();
444
}
445
446
size_t DefNewGeneration::capacity_before_gc() const {
447
return eden()->capacity();
448
}
449
450
size_t DefNewGeneration::contiguous_available() const {
451
return eden()->free();
452
}
453
454
455
HeapWord* volatile* DefNewGeneration::top_addr() const { return eden()->top_addr(); }
456
HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
457
458
void DefNewGeneration::object_iterate(ObjectClosure* blk) {
459
eden()->object_iterate(blk);
460
from()->object_iterate(blk);
461
}
462
463
464
void DefNewGeneration::space_iterate(SpaceClosure* blk,
465
bool usedOnly) {
466
blk->do_space(eden());
467
blk->do_space(from());
468
blk->do_space(to());
469
}
470
471
// The last collection bailed out, we are running out of heap space,
472
// so we try to allocate the from-space, too.
473
HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
474
bool should_try_alloc = should_allocate_from_space() || GCLocker::is_active_and_needs_gc();
475
476
// If the Heap_lock is not locked by this thread, this will be called
477
// again later with the Heap_lock held.
478
bool do_alloc = should_try_alloc && (Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()));
479
480
HeapWord* result = NULL;
481
if (do_alloc) {
482
result = from()->allocate(size);
483
}
484
485
log_trace(gc, alloc)("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "): will_fail: %s heap_lock: %s free: " SIZE_FORMAT "%s%s returns %s",
486
size,
487
GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
488
"true" : "false",
489
Heap_lock->is_locked() ? "locked" : "unlocked",
490
from()->free(),
491
should_try_alloc ? "" : " should_allocate_from_space: NOT",
492
do_alloc ? " Heap_lock is not owned by self" : "",
493
result == NULL ? "NULL" : "object");
494
495
return result;
496
}
497
498
HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
499
bool is_tlab,
500
bool parallel) {
501
// We don't attempt to expand the young generation (but perhaps we should.)
502
return allocate(size, is_tlab);
503
}
504
505
void DefNewGeneration::adjust_desired_tenuring_threshold() {
506
// Set the desired survivor size to half the real survivor space
507
size_t const survivor_capacity = to()->capacity() / HeapWordSize;
508
size_t const desired_survivor_size = (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
509
510
_tenuring_threshold = age_table()->compute_tenuring_threshold(desired_survivor_size);
511
512
if (UsePerfData) {
513
GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->counters();
514
gc_counters->tenuring_threshold()->set_value(_tenuring_threshold);
515
gc_counters->desired_survivor_size()->set_value(desired_survivor_size * oopSize);
516
}
517
518
age_table()->print_age_table(_tenuring_threshold);
519
}
520
521
void DefNewGeneration::collect(bool full,
522
bool clear_all_soft_refs,
523
size_t size,
524
bool is_tlab) {
525
assert(full || size > 0, "otherwise we don't want to collect");
526
527
SerialHeap* heap = SerialHeap::heap();
528
529
_gc_timer->register_gc_start();
530
DefNewTracer gc_tracer;
531
gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer->gc_start());
532
533
_old_gen = heap->old_gen();
534
535
// If the next generation is too full to accommodate promotion
536
// from this generation, pass on collection; let the next generation
537
// do it.
538
if (!collection_attempt_is_safe()) {
539
log_trace(gc)(":: Collection attempt not safe ::");
540
heap->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
541
return;
542
}
543
assert(to()->is_empty(), "Else not collection_attempt_is_safe");
544
545
init_assuming_no_promotion_failure();
546
547
GCTraceTime(Trace, gc, phases) tm("DefNew", NULL, heap->gc_cause());
548
549
heap->trace_heap_before_gc(&gc_tracer);
550
551
// These can be shared for all code paths
552
IsAliveClosure is_alive(this);
553
ScanWeakRefClosure scan_weak_ref(this);
554
555
age_table()->clear();
556
to()->clear(SpaceDecorator::Mangle);
557
// The preserved marks should be empty at the start of the GC.
558
_preserved_marks_set.init(1);
559
560
assert(heap->no_allocs_since_save_marks(),
561
"save marks have not been newly set.");
562
563
DefNewScanClosure scan_closure(this);
564
DefNewYoungerGenClosure younger_gen_closure(this, _old_gen);
565
566
CLDScanClosure cld_scan_closure(&scan_closure);
567
568
set_promo_failure_scan_stack_closure(&scan_closure);
569
FastEvacuateFollowersClosure evacuate_followers(heap,
570
&scan_closure,
571
&younger_gen_closure);
572
573
assert(heap->no_allocs_since_save_marks(),
574
"save marks have not been newly set.");
575
576
{
577
StrongRootsScope srs(0);
578
579
heap->young_process_roots(&scan_closure,
580
&younger_gen_closure,
581
&cld_scan_closure);
582
}
583
584
// "evacuate followers".
585
evacuate_followers.do_void();
586
587
FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
588
ReferenceProcessor* rp = ref_processor();
589
rp->setup_policy(clear_all_soft_refs);
590
ReferenceProcessorPhaseTimes pt(_gc_timer, rp->max_num_queues());
591
SerialGCRefProcProxyTask task(is_alive, keep_alive, evacuate_followers);
592
const ReferenceProcessorStats& stats = rp->process_discovered_references(task, pt);
593
gc_tracer.report_gc_reference_stats(stats);
594
gc_tracer.report_tenuring_threshold(tenuring_threshold());
595
pt.print_all_references();
596
597
assert(heap->no_allocs_since_save_marks(), "save marks have not been newly set.");
598
599
WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
600
601
// Verify that the usage of keep_alive didn't copy any objects.
602
assert(heap->no_allocs_since_save_marks(), "save marks have not been newly set.");
603
604
if (!_promotion_failed) {
605
// Swap the survivor spaces.
606
eden()->clear(SpaceDecorator::Mangle);
607
from()->clear(SpaceDecorator::Mangle);
608
if (ZapUnusedHeapArea) {
609
// This is now done here because of the piece-meal mangling which
610
// can check for valid mangling at intermediate points in the
611
// collection(s). When a young collection fails to collect
612
// sufficient space resizing of the young generation can occur
613
// an redistribute the spaces in the young generation. Mangle
614
// here so that unzapped regions don't get distributed to
615
// other spaces.
616
to()->mangle_unused_area();
617
}
618
swap_spaces();
619
620
assert(to()->is_empty(), "to space should be empty now");
621
622
adjust_desired_tenuring_threshold();
623
624
// A successful scavenge should restart the GC time limit count which is
625
// for full GC's.
626
AdaptiveSizePolicy* size_policy = heap->size_policy();
627
size_policy->reset_gc_overhead_limit_count();
628
assert(!heap->incremental_collection_failed(), "Should be clear");
629
} else {
630
assert(_promo_failure_scan_stack.is_empty(), "post condition");
631
_promo_failure_scan_stack.clear(true); // Clear cached segments.
632
633
remove_forwarding_pointers();
634
log_info(gc, promotion)("Promotion failed");
635
// Add to-space to the list of space to compact
636
// when a promotion failure has occurred. In that
637
// case there can be live objects in to-space
638
// as a result of a partial evacuation of eden
639
// and from-space.
640
swap_spaces(); // For uniformity wrt ParNewGeneration.
641
from()->set_next_compaction_space(to());
642
heap->set_incremental_collection_failed();
643
644
// Inform the next generation that a promotion failure occurred.
645
_old_gen->promotion_failure_occurred();
646
gc_tracer.report_promotion_failed(_promotion_failed_info);
647
648
// Reset the PromotionFailureALot counters.
649
NOT_PRODUCT(heap->reset_promotion_should_fail();)
650
}
651
// We should have processed and cleared all the preserved marks.
652
_preserved_marks_set.reclaim();
653
654
heap->trace_heap_after_gc(&gc_tracer);
655
656
_gc_timer->register_gc_end();
657
658
gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
659
}
660
661
void DefNewGeneration::init_assuming_no_promotion_failure() {
662
_promotion_failed = false;
663
_promotion_failed_info.reset();
664
from()->set_next_compaction_space(NULL);
665
}
666
667
void DefNewGeneration::remove_forwarding_pointers() {
668
RemoveForwardedPointerClosure rspc;
669
eden()->object_iterate(&rspc);
670
from()->object_iterate(&rspc);
671
restore_preserved_marks();
672
}
673
674
void DefNewGeneration::restore_preserved_marks() {
675
_preserved_marks_set.restore(NULL);
676
}
677
678
void DefNewGeneration::handle_promotion_failure(oop old) {
679
log_debug(gc, promotion)("Promotion failure size = %d) ", old->size());
680
681
_promotion_failed = true;
682
_promotion_failed_info.register_copy_failure(old->size());
683
_preserved_marks_set.get()->push_if_necessary(old, old->mark());
684
// forward to self
685
old->forward_to(old);
686
687
_promo_failure_scan_stack.push(old);
688
689
if (!_promo_failure_drain_in_progress) {
690
// prevent recursion in copy_to_survivor_space()
691
_promo_failure_drain_in_progress = true;
692
drain_promo_failure_scan_stack();
693
_promo_failure_drain_in_progress = false;
694
}
695
}
696
697
oop DefNewGeneration::copy_to_survivor_space(oop old) {
698
assert(is_in_reserved(old) && !old->is_forwarded(),
699
"shouldn't be scavenging this oop");
700
size_t s = old->size();
701
oop obj = NULL;
702
703
// Try allocating obj in to-space (unless too old)
704
if (old->age() < tenuring_threshold()) {
705
obj = cast_to_oop(to()->allocate(s));
706
}
707
708
// Otherwise try allocating obj tenured
709
if (obj == NULL) {
710
obj = _old_gen->promote(old, s);
711
if (obj == NULL) {
712
handle_promotion_failure(old);
713
return old;
714
}
715
} else {
716
// Prefetch beyond obj
717
const intx interval = PrefetchCopyIntervalInBytes;
718
Prefetch::write(obj, interval);
719
720
// Copy obj
721
Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), cast_from_oop<HeapWord*>(obj), s);
722
723
// Increment age if obj still in new generation
724
obj->incr_age();
725
age_table()->add(obj, s);
726
}
727
728
// Done, insert forward pointer to obj in this header
729
old->forward_to(obj);
730
731
return obj;
732
}
733
734
void DefNewGeneration::drain_promo_failure_scan_stack() {
735
while (!_promo_failure_scan_stack.is_empty()) {
736
oop obj = _promo_failure_scan_stack.pop();
737
obj->oop_iterate(_promo_failure_scan_stack_closure);
738
}
739
}
740
741
void DefNewGeneration::save_marks() {
742
eden()->set_saved_mark();
743
to()->set_saved_mark();
744
from()->set_saved_mark();
745
}
746
747
748
void DefNewGeneration::reset_saved_marks() {
749
eden()->reset_saved_mark();
750
to()->reset_saved_mark();
751
from()->reset_saved_mark();
752
}
753
754
755
bool DefNewGeneration::no_allocs_since_save_marks() {
756
assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
757
assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
758
return to()->saved_mark_at_top();
759
}
760
761
void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
762
size_t max_alloc_words) {
763
if (requestor == this || _promotion_failed) {
764
return;
765
}
766
assert(GenCollectedHeap::heap()->is_old_gen(requestor), "We should not call our own generation");
767
768
/* $$$ Assert this? "trace" is a "MarkSweep" function so that's not appropriate.
769
if (to_space->top() > to_space->bottom()) {
770
trace("to_space not empty when contribute_scratch called");
771
}
772
*/
773
774
ContiguousSpace* to_space = to();
775
assert(to_space->end() >= to_space->top(), "pointers out of order");
776
size_t free_words = pointer_delta(to_space->end(), to_space->top());
777
if (free_words >= MinFreeScratchWords) {
778
ScratchBlock* sb = (ScratchBlock*)to_space->top();
779
sb->num_words = free_words;
780
sb->next = list;
781
list = sb;
782
}
783
}
784
785
void DefNewGeneration::reset_scratch() {
786
// If contributing scratch in to_space, mangle all of
787
// to_space if ZapUnusedHeapArea. This is needed because
788
// top is not maintained while using to-space as scratch.
789
if (ZapUnusedHeapArea) {
790
to()->mangle_unused_area_complete();
791
}
792
}
793
794
bool DefNewGeneration::collection_attempt_is_safe() {
795
if (!to()->is_empty()) {
796
log_trace(gc)(":: to is not empty ::");
797
return false;
798
}
799
if (_old_gen == NULL) {
800
GenCollectedHeap* gch = GenCollectedHeap::heap();
801
_old_gen = gch->old_gen();
802
}
803
return _old_gen->promotion_attempt_is_safe(used());
804
}
805
806
void DefNewGeneration::gc_epilogue(bool full) {
807
DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
808
809
assert(!GCLocker::is_active(), "We should not be executing here");
810
// Check if the heap is approaching full after a collection has
811
// been done. Generally the young generation is empty at
812
// a minimum at the end of a collection. If it is not, then
813
// the heap is approaching full.
814
GenCollectedHeap* gch = GenCollectedHeap::heap();
815
if (full) {
816
DEBUG_ONLY(seen_incremental_collection_failed = false;)
817
if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
818
log_trace(gc)("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
819
GCCause::to_string(gch->gc_cause()));
820
gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
821
set_should_allocate_from_space(); // we seem to be running out of space
822
} else {
823
log_trace(gc)("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
824
GCCause::to_string(gch->gc_cause()));
825
gch->clear_incremental_collection_failed(); // We just did a full collection
826
clear_should_allocate_from_space(); // if set
827
}
828
} else {
829
#ifdef ASSERT
830
// It is possible that incremental_collection_failed() == true
831
// here, because an attempted scavenge did not succeed. The policy
832
// is normally expected to cause a full collection which should
833
// clear that condition, so we should not be here twice in a row
834
// with incremental_collection_failed() == true without having done
835
// a full collection in between.
836
if (!seen_incremental_collection_failed &&
837
gch->incremental_collection_failed()) {
838
log_trace(gc)("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
839
GCCause::to_string(gch->gc_cause()));
840
seen_incremental_collection_failed = true;
841
} else if (seen_incremental_collection_failed) {
842
log_trace(gc)("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
843
GCCause::to_string(gch->gc_cause()));
844
assert(gch->gc_cause() == GCCause::_scavenge_alot ||
845
!gch->incremental_collection_failed(),
846
"Twice in a row");
847
seen_incremental_collection_failed = false;
848
}
849
#endif // ASSERT
850
}
851
852
if (ZapUnusedHeapArea) {
853
eden()->check_mangled_unused_area_complete();
854
from()->check_mangled_unused_area_complete();
855
to()->check_mangled_unused_area_complete();
856
}
857
858
// update the generation and space performance counters
859
update_counters();
860
gch->counters()->update_counters();
861
}
862
863
void DefNewGeneration::record_spaces_top() {
864
assert(ZapUnusedHeapArea, "Not mangling unused space");
865
eden()->set_top_for_allocations();
866
to()->set_top_for_allocations();
867
from()->set_top_for_allocations();
868
}
869
870
void DefNewGeneration::ref_processor_init() {
871
Generation::ref_processor_init();
872
}
873
874
875
void DefNewGeneration::update_counters() {
876
if (UsePerfData) {
877
_eden_counters->update_all();
878
_from_counters->update_all();
879
_to_counters->update_all();
880
_gen_counters->update_all();
881
}
882
}
883
884
void DefNewGeneration::verify() {
885
eden()->verify();
886
from()->verify();
887
to()->verify();
888
}
889
890
void DefNewGeneration::print_on(outputStream* st) const {
891
Generation::print_on(st);
892
st->print(" eden");
893
eden()->print_on(st);
894
st->print(" from");
895
from()->print_on(st);
896
st->print(" to ");
897
to()->print_on(st);
898
}
899
900
901
const char* DefNewGeneration::name() const {
902
return "def new generation";
903
}
904
905
// Moved from inline file as they are not called inline
906
CompactibleSpace* DefNewGeneration::first_compaction_space() const {
907
return eden();
908
}
909
910
HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
911
// This is the slow-path allocation for the DefNewGeneration.
912
// Most allocations are fast-path in compiled code.
913
// We try to allocate from the eden. If that works, we are happy.
914
// Note that since DefNewGeneration supports lock-free allocation, we
915
// have to use it here, as well.
916
HeapWord* result = eden()->par_allocate(word_size);
917
if (result == NULL) {
918
// If the eden is full and the last collection bailed out, we are running
919
// out of heap space, and we try to allocate the from-space, too.
920
// allocate_from_space can't be inlined because that would introduce a
921
// circular dependency at compile time.
922
result = allocate_from_space(word_size);
923
}
924
return result;
925
}
926
927
HeapWord* DefNewGeneration::par_allocate(size_t word_size,
928
bool is_tlab) {
929
return eden()->par_allocate(word_size);
930
}
931
932
size_t DefNewGeneration::tlab_capacity() const {
933
return eden()->capacity();
934
}
935
936
size_t DefNewGeneration::tlab_used() const {
937
return eden()->used();
938
}
939
940
size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
941
return unsafe_max_alloc_nogc();
942
}
943
944