Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/classes/java/lang/ClassValue.java
41152 views
1
/*
2
* Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package java.lang;
27
28
import java.util.WeakHashMap;
29
import java.lang.ref.WeakReference;
30
import java.util.concurrent.atomic.AtomicInteger;
31
32
import jdk.internal.misc.Unsafe;
33
34
import static java.lang.ClassValue.ClassValueMap.probeHomeLocation;
35
import static java.lang.ClassValue.ClassValueMap.probeBackupLocations;
36
37
/**
38
* Lazily associate a computed value with (potentially) every type.
39
* For example, if a dynamic language needs to construct a message dispatch
40
* table for each class encountered at a message send call site,
41
* it can use a {@code ClassValue} to cache information needed to
42
* perform the message send quickly, for each class encountered.
43
* @author John Rose, JSR 292 EG
44
* @since 1.7
45
*/
46
public abstract class ClassValue<T> {
47
/**
48
* Sole constructor. (For invocation by subclass constructors, typically
49
* implicit.)
50
*/
51
protected ClassValue() {
52
}
53
54
/**
55
* Computes the given class's derived value for this {@code ClassValue}.
56
* <p>
57
* This method will be invoked within the first thread that accesses
58
* the value with the {@link #get get} method.
59
* <p>
60
* Normally, this method is invoked at most once per class,
61
* but it may be invoked again if there has been a call to
62
* {@link #remove remove}.
63
* <p>
64
* If this method throws an exception, the corresponding call to {@code get}
65
* will terminate abnormally with that exception, and no class value will be recorded.
66
*
67
* @param type the type whose class value must be computed
68
* @return the newly computed value associated with this {@code ClassValue}, for the given class or interface
69
* @see #get
70
* @see #remove
71
*/
72
protected abstract T computeValue(Class<?> type);
73
74
/**
75
* Returns the value for the given class.
76
* If no value has yet been computed, it is obtained by
77
* an invocation of the {@link #computeValue computeValue} method.
78
* <p>
79
* The actual installation of the value on the class
80
* is performed atomically.
81
* At that point, if several racing threads have
82
* computed values, one is chosen, and returned to
83
* all the racing threads.
84
* <p>
85
* The {@code type} parameter is typically a class, but it may be any type,
86
* such as an interface, a primitive type (like {@code int.class}), or {@code void.class}.
87
* <p>
88
* In the absence of {@code remove} calls, a class value has a simple
89
* state diagram: uninitialized and initialized.
90
* When {@code remove} calls are made,
91
* the rules for value observation are more complex.
92
* See the documentation for {@link #remove remove} for more information.
93
*
94
* @param type the type whose class value must be computed or retrieved
95
* @return the current value associated with this {@code ClassValue}, for the given class or interface
96
* @throws NullPointerException if the argument is null
97
* @see #remove
98
* @see #computeValue
99
*/
100
public T get(Class<?> type) {
101
// non-racing this.hashCodeForCache : final int
102
Entry<?>[] cache;
103
Entry<T> e = probeHomeLocation(cache = getCacheCarefully(type), this);
104
// racing e : current value <=> stale value from current cache or from stale cache
105
// invariant: e is null or an Entry with readable Entry.version and Entry.value
106
if (match(e))
107
// invariant: No false positive matches. False negatives are OK if rare.
108
// The key fact that makes this work: if this.version == e.version,
109
// then this thread has a right to observe (final) e.value.
110
return e.value();
111
// The fast path can fail for any of these reasons:
112
// 1. no entry has been computed yet
113
// 2. hash code collision (before or after reduction mod cache.length)
114
// 3. an entry has been removed (either on this type or another)
115
// 4. the GC has somehow managed to delete e.version and clear the reference
116
return getFromBackup(cache, type);
117
}
118
119
/**
120
* Removes the associated value for the given class.
121
* If this value is subsequently {@linkplain #get read} for the same class,
122
* its value will be reinitialized by invoking its {@link #computeValue computeValue} method.
123
* This may result in an additional invocation of the
124
* {@code computeValue} method for the given class.
125
* <p>
126
* In order to explain the interaction between {@code get} and {@code remove} calls,
127
* we must model the state transitions of a class value to take into account
128
* the alternation between uninitialized and initialized states.
129
* To do this, number these states sequentially from zero, and note that
130
* uninitialized (or removed) states are numbered with even numbers,
131
* while initialized (or re-initialized) states have odd numbers.
132
* <p>
133
* When a thread {@code T} removes a class value in state {@code 2N},
134
* nothing happens, since the class value is already uninitialized.
135
* Otherwise, the state is advanced atomically to {@code 2N+1}.
136
* <p>
137
* When a thread {@code T} queries a class value in state {@code 2N},
138
* the thread first attempts to initialize the class value to state {@code 2N+1}
139
* by invoking {@code computeValue} and installing the resulting value.
140
* <p>
141
* When {@code T} attempts to install the newly computed value,
142
* if the state is still at {@code 2N}, the class value will be initialized
143
* with the computed value, advancing it to state {@code 2N+1}.
144
* <p>
145
* Otherwise, whether the new state is even or odd,
146
* {@code T} will discard the newly computed value
147
* and retry the {@code get} operation.
148
* <p>
149
* Discarding and retrying is an important proviso,
150
* since otherwise {@code T} could potentially install
151
* a disastrously stale value. For example:
152
* <ul>
153
* <li>{@code T} calls {@code CV.get(C)} and sees state {@code 2N}
154
* <li>{@code T} quickly computes a time-dependent value {@code V0} and gets ready to install it
155
* <li>{@code T} is hit by an unlucky paging or scheduling event, and goes to sleep for a long time
156
* <li>...meanwhile, {@code T2} also calls {@code CV.get(C)} and sees state {@code 2N}
157
* <li>{@code T2} quickly computes a similar time-dependent value {@code V1} and installs it on {@code CV.get(C)}
158
* <li>{@code T2} (or a third thread) then calls {@code CV.remove(C)}, undoing {@code T2}'s work
159
* <li> the previous actions of {@code T2} are repeated several times
160
* <li> also, the relevant computed values change over time: {@code V1}, {@code V2}, ...
161
* <li>...meanwhile, {@code T} wakes up and attempts to install {@code V0}; <em>this must fail</em>
162
* </ul>
163
* We can assume in the above scenario that {@code CV.computeValue} uses locks to properly
164
* observe the time-dependent states as it computes {@code V1}, etc.
165
* This does not remove the threat of a stale value, since there is a window of time
166
* between the return of {@code computeValue} in {@code T} and the installation
167
* of the new value. No user synchronization is possible during this time.
168
*
169
* @param type the type whose class value must be removed
170
* @throws NullPointerException if the argument is null
171
*/
172
public void remove(Class<?> type) {
173
ClassValueMap map = getMap(type);
174
map.removeEntry(this);
175
}
176
177
// Possible functionality for JSR 292 MR 1
178
/*public*/ void put(Class<?> type, T value) {
179
ClassValueMap map = getMap(type);
180
map.changeEntry(this, value);
181
}
182
183
/// --------
184
/// Implementation...
185
/// --------
186
187
/** Return the cache, if it exists, else a dummy empty cache. */
188
private static Entry<?>[] getCacheCarefully(Class<?> type) {
189
// racing type.classValueMap{.cacheArray} : null => new Entry[X] <=> new Entry[Y]
190
ClassValueMap map = type.classValueMap;
191
if (map == null) return EMPTY_CACHE;
192
Entry<?>[] cache = map.getCache();
193
return cache;
194
// invariant: returned value is safe to dereference and check for an Entry
195
}
196
197
/** Initial, one-element, empty cache used by all Class instances. Must never be filled. */
198
private static final Entry<?>[] EMPTY_CACHE = { null };
199
200
/**
201
* Slow tail of ClassValue.get to retry at nearby locations in the cache,
202
* or take a slow lock and check the hash table.
203
* Called only if the first probe was empty or a collision.
204
* This is a separate method, so compilers can process it independently.
205
*/
206
private T getFromBackup(Entry<?>[] cache, Class<?> type) {
207
Entry<T> e = probeBackupLocations(cache, this);
208
if (e != null)
209
return e.value();
210
return getFromHashMap(type);
211
}
212
213
// Hack to suppress warnings on the (T) cast, which is a no-op.
214
@SuppressWarnings("unchecked")
215
Entry<T> castEntry(Entry<?> e) { return (Entry<T>) e; }
216
217
/** Called when the fast path of get fails, and cache reprobe also fails.
218
*/
219
private T getFromHashMap(Class<?> type) {
220
// The fail-safe recovery is to fall back to the underlying classValueMap.
221
ClassValueMap map = getMap(type);
222
for (;;) {
223
Entry<T> e = map.startEntry(this);
224
if (!e.isPromise())
225
return e.value();
226
try {
227
// Try to make a real entry for the promised version.
228
e = makeEntry(e.version(), computeValue(type));
229
} finally {
230
// Whether computeValue throws or returns normally,
231
// be sure to remove the empty entry.
232
e = map.finishEntry(this, e);
233
}
234
if (e != null)
235
return e.value();
236
// else try again, in case a racing thread called remove (so e == null)
237
}
238
}
239
240
/** Check that e is non-null, matches this ClassValue, and is live. */
241
boolean match(Entry<?> e) {
242
// racing e.version : null (blank) => unique Version token => null (GC-ed version)
243
// non-racing this.version : v1 => v2 => ... (updates are read faithfully from volatile)
244
return (e != null && e.get() == this.version);
245
// invariant: No false positives on version match. Null is OK for false negative.
246
// invariant: If version matches, then e.value is readable (final set in Entry.<init>)
247
}
248
249
/** Internal hash code for accessing Class.classValueMap.cacheArray. */
250
final int hashCodeForCache = nextHashCode.getAndAdd(HASH_INCREMENT) & HASH_MASK;
251
252
/** Value stream for hashCodeForCache. See similar structure in ThreadLocal. */
253
private static final AtomicInteger nextHashCode = new AtomicInteger();
254
255
/** Good for power-of-two tables. See similar structure in ThreadLocal. */
256
private static final int HASH_INCREMENT = 0x61c88647;
257
258
/** Mask a hash code to be positive but not too large, to prevent wraparound. */
259
static final int HASH_MASK = (-1 >>> 2);
260
261
/**
262
* Private key for retrieval of this object from ClassValueMap.
263
*/
264
static class Identity {
265
}
266
/**
267
* This ClassValue's identity, expressed as an opaque object.
268
* The main object {@code ClassValue.this} is incorrect since
269
* subclasses may override {@code ClassValue.equals}, which
270
* could confuse keys in the ClassValueMap.
271
*/
272
final Identity identity = new Identity();
273
274
/**
275
* Current version for retrieving this class value from the cache.
276
* Any number of computeValue calls can be cached in association with one version.
277
* But the version changes when a remove (on any type) is executed.
278
* A version change invalidates all cache entries for the affected ClassValue,
279
* by marking them as stale. Stale cache entries do not force another call
280
* to computeValue, but they do require a synchronized visit to a backing map.
281
* <p>
282
* All user-visible state changes on the ClassValue take place under
283
* a lock inside the synchronized methods of ClassValueMap.
284
* Readers (of ClassValue.get) are notified of such state changes
285
* when this.version is bumped to a new token.
286
* This variable must be volatile so that an unsynchronized reader
287
* will receive the notification without delay.
288
* <p>
289
* If version were not volatile, one thread T1 could persistently hold onto
290
* a stale value this.value == V1, while another thread T2 advances
291
* (under a lock) to this.value == V2. This will typically be harmless,
292
* but if T1 and T2 interact causally via some other channel, such that
293
* T1's further actions are constrained (in the JMM) to happen after
294
* the V2 event, then T1's observation of V1 will be an error.
295
* <p>
296
* The practical effect of making this.version be volatile is that it cannot
297
* be hoisted out of a loop (by an optimizing JIT) or otherwise cached.
298
* Some machines may also require a barrier instruction to execute
299
* before this.version.
300
*/
301
private volatile Version<T> version = new Version<>(this);
302
Version<T> version() { return version; }
303
void bumpVersion() { version = new Version<>(this); }
304
static class Version<T> {
305
private final ClassValue<T> classValue;
306
private final Entry<T> promise = new Entry<>(this);
307
Version(ClassValue<T> classValue) { this.classValue = classValue; }
308
ClassValue<T> classValue() { return classValue; }
309
Entry<T> promise() { return promise; }
310
boolean isLive() { return classValue.version() == this; }
311
}
312
313
/** One binding of a value to a class via a ClassValue.
314
* States are:<ul>
315
* <li> promise if value == Entry.this
316
* <li> else dead if version == null
317
* <li> else stale if version != classValue.version
318
* <li> else live </ul>
319
* Promises are never put into the cache; they only live in the
320
* backing map while a computeValue call is in flight.
321
* Once an entry goes stale, it can be reset at any time
322
* into the dead state.
323
*/
324
static class Entry<T> extends WeakReference<Version<T>> {
325
final Object value; // usually of type T, but sometimes (Entry)this
326
Entry(Version<T> version, T value) {
327
super(version);
328
this.value = value; // for a regular entry, value is of type T
329
}
330
private void assertNotPromise() { assert(!isPromise()); }
331
/** For creating a promise. */
332
Entry(Version<T> version) {
333
super(version);
334
this.value = this; // for a promise, value is not of type T, but Entry!
335
}
336
/** Fetch the value. This entry must not be a promise. */
337
@SuppressWarnings("unchecked") // if !isPromise, type is T
338
T value() { assertNotPromise(); return (T) value; }
339
boolean isPromise() { return value == this; }
340
Version<T> version() { return get(); }
341
ClassValue<T> classValueOrNull() {
342
Version<T> v = version();
343
return (v == null) ? null : v.classValue();
344
}
345
boolean isLive() {
346
Version<T> v = version();
347
if (v == null) return false;
348
if (v.isLive()) return true;
349
clear();
350
return false;
351
}
352
Entry<T> refreshVersion(Version<T> v2) {
353
assertNotPromise();
354
@SuppressWarnings("unchecked") // if !isPromise, type is T
355
Entry<T> e2 = new Entry<>(v2, (T) value);
356
clear();
357
// value = null -- caller must drop
358
return e2;
359
}
360
static final Entry<?> DEAD_ENTRY = new Entry<>(null, null);
361
}
362
363
/** Return the backing map associated with this type. */
364
private static ClassValueMap getMap(Class<?> type) {
365
// racing type.classValueMap : null (blank) => unique ClassValueMap
366
// if a null is observed, a map is created (lazily, synchronously, uniquely)
367
// all further access to that map is synchronized
368
ClassValueMap map = type.classValueMap;
369
if (map != null) return map;
370
return initializeMap(type);
371
}
372
373
private static final Object CRITICAL_SECTION = new Object();
374
private static final Unsafe UNSAFE = Unsafe.getUnsafe();
375
private static ClassValueMap initializeMap(Class<?> type) {
376
ClassValueMap map;
377
synchronized (CRITICAL_SECTION) { // private object to avoid deadlocks
378
// happens about once per type
379
if ((map = type.classValueMap) == null) {
380
map = new ClassValueMap();
381
// Place a Store fence after construction and before publishing to emulate
382
// ClassValueMap containing final fields. This ensures it can be
383
// published safely in the non-volatile field Class.classValueMap,
384
// since stores to the fields of ClassValueMap will not be reordered
385
// to occur after the store to the field type.classValueMap
386
UNSAFE.storeFence();
387
388
type.classValueMap = map;
389
}
390
}
391
return map;
392
}
393
394
static <T> Entry<T> makeEntry(Version<T> explicitVersion, T value) {
395
// Note that explicitVersion might be different from this.version.
396
return new Entry<>(explicitVersion, value);
397
398
// As soon as the Entry is put into the cache, the value will be
399
// reachable via a data race (as defined by the Java Memory Model).
400
// This race is benign, assuming the value object itself can be
401
// read safely by multiple threads. This is up to the user.
402
//
403
// The entry and version fields themselves can be safely read via
404
// a race because they are either final or have controlled states.
405
// If the pointer from the entry to the version is still null,
406
// or if the version goes immediately dead and is nulled out,
407
// the reader will take the slow path and retry under a lock.
408
}
409
410
// The following class could also be top level and non-public:
411
412
/** A backing map for all ClassValues.
413
* Gives a fully serialized "true state" for each pair (ClassValue cv, Class type).
414
* Also manages an unserialized fast-path cache.
415
*/
416
static class ClassValueMap extends WeakHashMap<ClassValue.Identity, Entry<?>> {
417
private Entry<?>[] cacheArray;
418
private int cacheLoad, cacheLoadLimit;
419
420
/** Number of entries initially allocated to each type when first used with any ClassValue.
421
* It would be pointless to make this much smaller than the Class and ClassValueMap objects themselves.
422
* Must be a power of 2.
423
*/
424
private static final int INITIAL_ENTRIES = 32;
425
426
/** Build a backing map for ClassValues.
427
* Also, create an empty cache array and install it on the class.
428
*/
429
ClassValueMap() {
430
sizeCache(INITIAL_ENTRIES);
431
}
432
433
Entry<?>[] getCache() { return cacheArray; }
434
435
/** Initiate a query. Store a promise (placeholder) if there is no value yet. */
436
synchronized
437
<T> Entry<T> startEntry(ClassValue<T> classValue) {
438
@SuppressWarnings("unchecked") // one map has entries for all value types <T>
439
Entry<T> e = (Entry<T>) get(classValue.identity);
440
Version<T> v = classValue.version();
441
if (e == null) {
442
e = v.promise();
443
// The presence of a promise means that a value is pending for v.
444
// Eventually, finishEntry will overwrite the promise.
445
put(classValue.identity, e);
446
// Note that the promise is never entered into the cache!
447
return e;
448
} else if (e.isPromise()) {
449
// Somebody else has asked the same question.
450
// Let the races begin!
451
if (e.version() != v) {
452
e = v.promise();
453
put(classValue.identity, e);
454
}
455
return e;
456
} else {
457
// there is already a completed entry here; report it
458
if (e.version() != v) {
459
// There is a stale but valid entry here; make it fresh again.
460
// Once an entry is in the hash table, we don't care what its version is.
461
e = e.refreshVersion(v);
462
put(classValue.identity, e);
463
}
464
// Add to the cache, to enable the fast path, next time.
465
checkCacheLoad();
466
addToCache(classValue, e);
467
return e;
468
}
469
}
470
471
/** Finish a query. Overwrite a matching placeholder. Drop stale incoming values. */
472
synchronized
473
<T> Entry<T> finishEntry(ClassValue<T> classValue, Entry<T> e) {
474
@SuppressWarnings("unchecked") // one map has entries for all value types <T>
475
Entry<T> e0 = (Entry<T>) get(classValue.identity);
476
if (e == e0) {
477
// We can get here during exception processing, unwinding from computeValue.
478
assert(e.isPromise());
479
remove(classValue.identity);
480
return null;
481
} else if (e0 != null && e0.isPromise() && e0.version() == e.version()) {
482
// If e0 matches the intended entry, there has not been a remove call
483
// between the previous startEntry and now. So now overwrite e0.
484
Version<T> v = classValue.version();
485
if (e.version() != v)
486
e = e.refreshVersion(v);
487
put(classValue.identity, e);
488
// Add to the cache, to enable the fast path, next time.
489
checkCacheLoad();
490
addToCache(classValue, e);
491
return e;
492
} else {
493
// Some sort of mismatch; caller must try again.
494
return null;
495
}
496
}
497
498
/** Remove an entry. */
499
synchronized
500
void removeEntry(ClassValue<?> classValue) {
501
Entry<?> e = remove(classValue.identity);
502
if (e == null) {
503
// Uninitialized, and no pending calls to computeValue. No change.
504
} else if (e.isPromise()) {
505
// State is uninitialized, with a pending call to finishEntry.
506
// Since remove is a no-op in such a state, keep the promise
507
// by putting it back into the map.
508
put(classValue.identity, e);
509
} else {
510
// In an initialized state. Bump forward, and de-initialize.
511
classValue.bumpVersion();
512
// Make all cache elements for this guy go stale.
513
removeStaleEntries(classValue);
514
}
515
}
516
517
/** Change the value for an entry. */
518
synchronized
519
<T> void changeEntry(ClassValue<T> classValue, T value) {
520
@SuppressWarnings("unchecked") // one map has entries for all value types <T>
521
Entry<T> e0 = (Entry<T>) get(classValue.identity);
522
Version<T> version = classValue.version();
523
if (e0 != null) {
524
if (e0.version() == version && e0.value() == value)
525
// no value change => no version change needed
526
return;
527
classValue.bumpVersion();
528
removeStaleEntries(classValue);
529
}
530
Entry<T> e = makeEntry(version, value);
531
put(classValue.identity, e);
532
// Add to the cache, to enable the fast path, next time.
533
checkCacheLoad();
534
addToCache(classValue, e);
535
}
536
537
/// --------
538
/// Cache management.
539
/// --------
540
541
// Statics do not need synchronization.
542
543
/** Load the cache entry at the given (hashed) location. */
544
static Entry<?> loadFromCache(Entry<?>[] cache, int i) {
545
// non-racing cache.length : constant
546
// racing cache[i & (mask)] : null <=> Entry
547
return cache[i & (cache.length-1)];
548
// invariant: returned value is null or well-constructed (ready to match)
549
}
550
551
/** Look in the cache, at the home location for the given ClassValue. */
552
static <T> Entry<T> probeHomeLocation(Entry<?>[] cache, ClassValue<T> classValue) {
553
return classValue.castEntry(loadFromCache(cache, classValue.hashCodeForCache));
554
}
555
556
/** Given that first probe was a collision, retry at nearby locations. */
557
static <T> Entry<T> probeBackupLocations(Entry<?>[] cache, ClassValue<T> classValue) {
558
if (PROBE_LIMIT <= 0) return null;
559
// Probe the cache carefully, in a range of slots.
560
int mask = (cache.length-1);
561
int home = (classValue.hashCodeForCache & mask);
562
Entry<?> e2 = cache[home]; // victim, if we find the real guy
563
if (e2 == null) {
564
return null; // if nobody is at home, no need to search nearby
565
}
566
// assume !classValue.match(e2), but do not assert, because of races
567
int pos2 = -1;
568
for (int i = home + 1; i < home + PROBE_LIMIT; i++) {
569
Entry<?> e = cache[i & mask];
570
if (e == null) {
571
break; // only search within non-null runs
572
}
573
if (classValue.match(e)) {
574
// relocate colliding entry e2 (from cache[home]) to first empty slot
575
cache[home] = e;
576
if (pos2 >= 0) {
577
cache[i & mask] = Entry.DEAD_ENTRY;
578
} else {
579
pos2 = i;
580
}
581
cache[pos2 & mask] = ((entryDislocation(cache, pos2, e2) < PROBE_LIMIT)
582
? e2 // put e2 here if it fits
583
: Entry.DEAD_ENTRY);
584
return classValue.castEntry(e);
585
}
586
// Remember first empty slot, if any:
587
if (!e.isLive() && pos2 < 0) pos2 = i;
588
}
589
return null;
590
}
591
592
/** How far out of place is e? */
593
private static int entryDislocation(Entry<?>[] cache, int pos, Entry<?> e) {
594
ClassValue<?> cv = e.classValueOrNull();
595
if (cv == null) return 0; // entry is not live!
596
int mask = (cache.length-1);
597
return (pos - cv.hashCodeForCache) & mask;
598
}
599
600
/// --------
601
/// Below this line all functions are private, and assume synchronized access.
602
/// --------
603
604
private void sizeCache(int length) {
605
assert((length & (length-1)) == 0); // must be power of 2
606
cacheLoad = 0;
607
cacheLoadLimit = (int) ((double) length * CACHE_LOAD_LIMIT / 100);
608
cacheArray = new Entry<?>[length];
609
}
610
611
/** Make sure the cache load stays below its limit, if possible. */
612
private void checkCacheLoad() {
613
if (cacheLoad >= cacheLoadLimit) {
614
reduceCacheLoad();
615
}
616
}
617
private void reduceCacheLoad() {
618
removeStaleEntries();
619
if (cacheLoad < cacheLoadLimit)
620
return; // win
621
Entry<?>[] oldCache = getCache();
622
if (oldCache.length > HASH_MASK)
623
return; // lose
624
sizeCache(oldCache.length * 2);
625
for (Entry<?> e : oldCache) {
626
if (e != null && e.isLive()) {
627
addToCache(e);
628
}
629
}
630
}
631
632
/** Remove stale entries in the given range.
633
* Should be executed under a Map lock.
634
*/
635
private void removeStaleEntries(Entry<?>[] cache, int begin, int count) {
636
if (PROBE_LIMIT <= 0) return;
637
int mask = (cache.length-1);
638
int removed = 0;
639
for (int i = begin; i < begin + count; i++) {
640
Entry<?> e = cache[i & mask];
641
if (e == null || e.isLive())
642
continue; // skip null and live entries
643
Entry<?> replacement = null;
644
if (PROBE_LIMIT > 1) {
645
// avoid breaking up a non-null run
646
replacement = findReplacement(cache, i);
647
}
648
cache[i & mask] = replacement;
649
if (replacement == null) removed += 1;
650
}
651
cacheLoad = Math.max(0, cacheLoad - removed);
652
}
653
654
/** Clearing a cache slot risks disconnecting following entries
655
* from the head of a non-null run, which would allow them
656
* to be found via reprobes. Find an entry after cache[begin]
657
* to plug into the hole, or return null if none is needed.
658
*/
659
private Entry<?> findReplacement(Entry<?>[] cache, int home1) {
660
Entry<?> replacement = null;
661
int haveReplacement = -1, replacementPos = 0;
662
int mask = (cache.length-1);
663
for (int i2 = home1 + 1; i2 < home1 + PROBE_LIMIT; i2++) {
664
Entry<?> e2 = cache[i2 & mask];
665
if (e2 == null) break; // End of non-null run.
666
if (!e2.isLive()) continue; // Doomed anyway.
667
int dis2 = entryDislocation(cache, i2, e2);
668
if (dis2 == 0) continue; // e2 already optimally placed
669
int home2 = i2 - dis2;
670
if (home2 <= home1) {
671
// e2 can replace entry at cache[home1]
672
if (home2 == home1) {
673
// Put e2 exactly where he belongs.
674
haveReplacement = 1;
675
replacementPos = i2;
676
replacement = e2;
677
} else if (haveReplacement <= 0) {
678
haveReplacement = 0;
679
replacementPos = i2;
680
replacement = e2;
681
}
682
// And keep going, so we can favor larger dislocations.
683
}
684
}
685
if (haveReplacement >= 0) {
686
if (cache[(replacementPos+1) & mask] != null) {
687
// Be conservative, to avoid breaking up a non-null run.
688
cache[replacementPos & mask] = (Entry<?>) Entry.DEAD_ENTRY;
689
} else {
690
cache[replacementPos & mask] = null;
691
cacheLoad -= 1;
692
}
693
}
694
return replacement;
695
}
696
697
/** Remove stale entries in the range near classValue. */
698
private void removeStaleEntries(ClassValue<?> classValue) {
699
removeStaleEntries(getCache(), classValue.hashCodeForCache, PROBE_LIMIT);
700
}
701
702
/** Remove all stale entries, everywhere. */
703
private void removeStaleEntries() {
704
Entry<?>[] cache = getCache();
705
removeStaleEntries(cache, 0, cache.length + PROBE_LIMIT - 1);
706
}
707
708
/** Add the given entry to the cache, in its home location, unless it is out of date. */
709
private <T> void addToCache(Entry<T> e) {
710
ClassValue<T> classValue = e.classValueOrNull();
711
if (classValue != null)
712
addToCache(classValue, e);
713
}
714
715
/** Add the given entry to the cache, in its home location. */
716
private <T> void addToCache(ClassValue<T> classValue, Entry<T> e) {
717
if (PROBE_LIMIT <= 0) return; // do not fill cache
718
// Add e to the cache.
719
Entry<?>[] cache = getCache();
720
int mask = (cache.length-1);
721
int home = classValue.hashCodeForCache & mask;
722
Entry<?> e2 = placeInCache(cache, home, e, false);
723
if (e2 == null) return; // done
724
if (PROBE_LIMIT > 1) {
725
// try to move e2 somewhere else in his probe range
726
int dis2 = entryDislocation(cache, home, e2);
727
int home2 = home - dis2;
728
for (int i2 = home2; i2 < home2 + PROBE_LIMIT; i2++) {
729
if (placeInCache(cache, i2 & mask, e2, true) == null) {
730
return;
731
}
732
}
733
}
734
// Note: At this point, e2 is just dropped from the cache.
735
}
736
737
/** Store the given entry. Update cacheLoad, and return any live victim.
738
* 'Gently' means return self rather than dislocating a live victim.
739
*/
740
private Entry<?> placeInCache(Entry<?>[] cache, int pos, Entry<?> e, boolean gently) {
741
Entry<?> e2 = overwrittenEntry(cache[pos]);
742
if (gently && e2 != null) {
743
// do not overwrite a live entry
744
return e;
745
} else {
746
cache[pos] = e;
747
return e2;
748
}
749
}
750
751
/** Note an entry that is about to be overwritten.
752
* If it is not live, quietly replace it by null.
753
* If it is an actual null, increment cacheLoad,
754
* because the caller is going to store something
755
* in its place.
756
*/
757
private <T> Entry<T> overwrittenEntry(Entry<T> e2) {
758
if (e2 == null) cacheLoad += 1;
759
else if (e2.isLive()) return e2;
760
return null;
761
}
762
763
/** Percent loading of cache before resize. */
764
private static final int CACHE_LOAD_LIMIT = 67; // 0..100
765
/** Maximum number of probes to attempt. */
766
private static final int PROBE_LIMIT = 6; // 1..
767
// N.B. Set PROBE_LIMIT=0 to disable all fast paths.
768
}
769
}
770
771