Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/classes/java/lang/FdLibm.java
41152 views
1
/*
2
* Copyright (c) 1998, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package java.lang;
27
28
/**
29
* Port of the "Freely Distributable Math Library", version 5.3, from
30
* C to Java.
31
*
32
* <p>The C version of fdlibm relied on the idiom of pointer aliasing
33
* a 64-bit double floating-point value as a two-element array of
34
* 32-bit integers and reading and writing the two halves of the
35
* double independently. This coding pattern was problematic to C
36
* optimizers and not directly expressible in Java. Therefore, rather
37
* than a memory level overlay, if portions of a double need to be
38
* operated on as integer values, the standard library methods for
39
* bitwise floating-point to integer conversion,
40
* Double.longBitsToDouble and Double.doubleToRawLongBits, are directly
41
* or indirectly used.
42
*
43
* <p>The C version of fdlibm also took some pains to signal the
44
* correct IEEE 754 exceptional conditions divide by zero, invalid,
45
* overflow and underflow. For example, overflow would be signaled by
46
* {@code huge * huge} where {@code huge} was a large constant that
47
* would overflow when squared. Since IEEE floating-point exceptional
48
* handling is not supported natively in the JVM, such coding patterns
49
* have been omitted from this port. For example, rather than {@code
50
* return huge * huge}, this port will use {@code return INFINITY}.
51
*
52
* <p>Various comparison and arithmetic operations in fdlibm could be
53
* done either based on the integer view of a value or directly on the
54
* floating-point representation. Which idiom is faster may depend on
55
* platform specific factors. However, for code clarity if no other
56
* reason, this port will favor expressing the semantics of those
57
* operations in terms of floating-point operations when convenient to
58
* do so.
59
*/
60
class FdLibm {
61
// Constants used by multiple algorithms
62
private static final double INFINITY = Double.POSITIVE_INFINITY;
63
64
private FdLibm() {
65
throw new UnsupportedOperationException("No FdLibm instances for you.");
66
}
67
68
/**
69
* Return the low-order 32 bits of the double argument as an int.
70
*/
71
private static int __LO(double x) {
72
long transducer = Double.doubleToRawLongBits(x);
73
return (int)transducer;
74
}
75
76
/**
77
* Return a double with its low-order bits of the second argument
78
* and the high-order bits of the first argument..
79
*/
80
private static double __LO(double x, int low) {
81
long transX = Double.doubleToRawLongBits(x);
82
return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) |
83
(low & 0x0000_0000_FFFF_FFFFL));
84
}
85
86
/**
87
* Return the high-order 32 bits of the double argument as an int.
88
*/
89
private static int __HI(double x) {
90
long transducer = Double.doubleToRawLongBits(x);
91
return (int)(transducer >> 32);
92
}
93
94
/**
95
* Return a double with its high-order bits of the second argument
96
* and the low-order bits of the first argument..
97
*/
98
private static double __HI(double x, int high) {
99
long transX = Double.doubleToRawLongBits(x);
100
return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) |
101
( ((long)high)) << 32 );
102
}
103
104
/**
105
* cbrt(x)
106
* Return cube root of x
107
*/
108
public static class Cbrt {
109
// unsigned
110
private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */
111
private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
112
113
private static final double C = 0x1.15f15f15f15f1p-1; // 19/35 ~= 5.42857142857142815906e-01
114
private static final double D = -0x1.691de2532c834p-1; // -864/1225 ~= 7.05306122448979611050e-01
115
private static final double E = 0x1.6a0ea0ea0ea0fp0; // 99/70 ~= 1.41428571428571436819e+00
116
private static final double F = 0x1.9b6db6db6db6ep0; // 45/28 ~= 1.60714285714285720630e+00
117
private static final double G = 0x1.6db6db6db6db7p-2; // 5/14 ~= 3.57142857142857150787e-01
118
119
private Cbrt() {
120
throw new UnsupportedOperationException();
121
}
122
123
public static double compute(double x) {
124
double t = 0.0;
125
double sign;
126
127
if (x == 0.0 || !Double.isFinite(x))
128
return x; // Handles signed zeros properly
129
130
sign = (x < 0.0) ? -1.0: 1.0;
131
132
x = Math.abs(x); // x <- |x|
133
134
// Rough cbrt to 5 bits
135
if (x < 0x1.0p-1022) { // subnormal number
136
t = 0x1.0p54; // set t= 2**54
137
t *= x;
138
t = __HI(t, __HI(t)/3 + B2);
139
} else {
140
int hx = __HI(x); // high word of x
141
t = __HI(t, hx/3 + B1);
142
}
143
144
// New cbrt to 23 bits, may be implemented in single precision
145
double r, s, w;
146
r = t * t/x;
147
s = C + r*t;
148
t *= G + F/(s + E + D/s);
149
150
// Chopped to 20 bits and make it larger than cbrt(x)
151
t = __LO(t, 0);
152
t = __HI(t, __HI(t) + 0x00000001);
153
154
// One step newton iteration to 53 bits with error less than 0.667 ulps
155
s = t * t; // t*t is exact
156
r = x / s;
157
w = t + t;
158
r = (r - t)/(w + r); // r-s is exact
159
t = t + t*r;
160
161
// Restore the original sign bit
162
return sign * t;
163
}
164
}
165
166
/**
167
* hypot(x,y)
168
*
169
* Method :
170
* If (assume round-to-nearest) z = x*x + y*y
171
* has error less than sqrt(2)/2 ulp, than
172
* sqrt(z) has error less than 1 ulp (exercise).
173
*
174
* So, compute sqrt(x*x + y*y) with some care as
175
* follows to get the error below 1 ulp:
176
*
177
* Assume x > y > 0;
178
* (if possible, set rounding to round-to-nearest)
179
* 1. if x > 2y use
180
* x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y
181
* where x1 = x with lower 32 bits cleared, x2 = x - x1; else
182
* 2. if x <= 2y use
183
* t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y))
184
* where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1,
185
* y1= y with lower 32 bits chopped, y2 = y - y1.
186
*
187
* NOTE: scaling may be necessary if some argument is too
188
* large or too tiny
189
*
190
* Special cases:
191
* hypot(x,y) is INF if x or y is +INF or -INF; else
192
* hypot(x,y) is NAN if x or y is NAN.
193
*
194
* Accuracy:
195
* hypot(x,y) returns sqrt(x^2 + y^2) with error less
196
* than 1 ulp (unit in the last place)
197
*/
198
public static class Hypot {
199
public static final double TWO_MINUS_600 = 0x1.0p-600;
200
public static final double TWO_PLUS_600 = 0x1.0p+600;
201
202
private Hypot() {
203
throw new UnsupportedOperationException();
204
}
205
206
public static double compute(double x, double y) {
207
double a = Math.abs(x);
208
double b = Math.abs(y);
209
210
if (!Double.isFinite(a) || !Double.isFinite(b)) {
211
if (a == INFINITY || b == INFINITY)
212
return INFINITY;
213
else
214
return a + b; // Propagate NaN significand bits
215
}
216
217
if (b > a) {
218
double tmp = a;
219
a = b;
220
b = tmp;
221
}
222
assert a >= b;
223
224
// Doing bitwise conversion after screening for NaN allows
225
// the code to not worry about the possibility of
226
// "negative" NaN values.
227
228
// Note: the ha and hb variables are the high-order
229
// 32-bits of a and b stored as integer values. The ha and
230
// hb values are used first for a rough magnitude
231
// comparison of a and b and second for simulating higher
232
// precision by allowing a and b, respectively, to be
233
// decomposed into non-overlapping portions. Both of these
234
// uses could be eliminated. The magnitude comparison
235
// could be eliminated by extracting and comparing the
236
// exponents of a and b or just be performing a
237
// floating-point divide. Splitting a floating-point
238
// number into non-overlapping portions can be
239
// accomplished by judicious use of multiplies and
240
// additions. For details see T. J. Dekker, A Floating-Point
241
// Technique for Extending the Available Precision,
242
// Numerische Mathematik, vol. 18, 1971, pp.224-242 and
243
// subsequent work.
244
245
int ha = __HI(a); // high word of a
246
int hb = __HI(b); // high word of b
247
248
if ((ha - hb) > 0x3c00000) {
249
return a + b; // x / y > 2**60
250
}
251
252
int k = 0;
253
if (a > 0x1.00000_ffff_ffffp500) { // a > ~2**500
254
// scale a and b by 2**-600
255
ha -= 0x25800000;
256
hb -= 0x25800000;
257
a = a * TWO_MINUS_600;
258
b = b * TWO_MINUS_600;
259
k += 600;
260
}
261
double t1, t2;
262
if (b < 0x1.0p-500) { // b < 2**-500
263
if (b < Double.MIN_NORMAL) { // subnormal b or 0 */
264
if (b == 0.0)
265
return a;
266
t1 = 0x1.0p1022; // t1 = 2^1022
267
b *= t1;
268
a *= t1;
269
k -= 1022;
270
} else { // scale a and b by 2^600
271
ha += 0x25800000; // a *= 2^600
272
hb += 0x25800000; // b *= 2^600
273
a = a * TWO_PLUS_600;
274
b = b * TWO_PLUS_600;
275
k -= 600;
276
}
277
}
278
// medium size a and b
279
double w = a - b;
280
if (w > b) {
281
t1 = 0;
282
t1 = __HI(t1, ha);
283
t2 = a - t1;
284
w = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
285
} else {
286
double y1, y2;
287
a = a + a;
288
y1 = 0;
289
y1 = __HI(y1, hb);
290
y2 = b - y1;
291
t1 = 0;
292
t1 = __HI(t1, ha + 0x00100000);
293
t2 = a - t1;
294
w = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
295
}
296
if (k != 0) {
297
return Math.powerOfTwoD(k) * w;
298
} else
299
return w;
300
}
301
}
302
303
/**
304
* Compute x**y
305
* n
306
* Method: Let x = 2 * (1+f)
307
* 1. Compute and return log2(x) in two pieces:
308
* log2(x) = w1 + w2,
309
* where w1 has 53 - 24 = 29 bit trailing zeros.
310
* 2. Perform y*log2(x) = n+y' by simulating multi-precision
311
* arithmetic, where |y'| <= 0.5.
312
* 3. Return x**y = 2**n*exp(y'*log2)
313
*
314
* Special cases:
315
* 1. (anything) ** 0 is 1
316
* 2. (anything) ** 1 is itself
317
* 3. (anything) ** NAN is NAN
318
* 4. NAN ** (anything except 0) is NAN
319
* 5. +-(|x| > 1) ** +INF is +INF
320
* 6. +-(|x| > 1) ** -INF is +0
321
* 7. +-(|x| < 1) ** +INF is +0
322
* 8. +-(|x| < 1) ** -INF is +INF
323
* 9. +-1 ** +-INF is NAN
324
* 10. +0 ** (+anything except 0, NAN) is +0
325
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
326
* 12. +0 ** (-anything except 0, NAN) is +INF
327
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
328
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
329
* 15. +INF ** (+anything except 0,NAN) is +INF
330
* 16. +INF ** (-anything except 0,NAN) is +0
331
* 17. -INF ** (anything) = -0 ** (-anything)
332
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
333
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
334
*
335
* Accuracy:
336
* pow(x,y) returns x**y nearly rounded. In particular
337
* pow(integer,integer)
338
* always returns the correct integer provided it is
339
* representable.
340
*/
341
public static class Pow {
342
private Pow() {
343
throw new UnsupportedOperationException();
344
}
345
346
public static double compute(final double x, final double y) {
347
double z;
348
double r, s, t, u, v, w;
349
int i, j, k, n;
350
351
// y == zero: x**0 = 1
352
if (y == 0.0)
353
return 1.0;
354
355
// +/-NaN return x + y to propagate NaN significands
356
if (Double.isNaN(x) || Double.isNaN(y))
357
return x + y;
358
359
final double y_abs = Math.abs(y);
360
double x_abs = Math.abs(x);
361
// Special values of y
362
if (y == 2.0) {
363
return x * x;
364
} else if (y == 0.5) {
365
if (x >= -Double.MAX_VALUE) // Handle x == -infinity later
366
return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0
367
} else if (y_abs == 1.0) { // y is +/-1
368
return (y == 1.0) ? x : 1.0 / x;
369
} else if (y_abs == INFINITY) { // y is +/-infinity
370
if (x_abs == 1.0)
371
return y - y; // inf**+/-1 is NaN
372
else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0
373
return (y >= 0) ? y : 0.0;
374
else // (|x| < 1)**-/+inf = inf, 0
375
return (y < 0) ? -y : 0.0;
376
}
377
378
final int hx = __HI(x);
379
int ix = hx & 0x7fffffff;
380
381
/*
382
* When x < 0, determine if y is an odd integer:
383
* y_is_int = 0 ... y is not an integer
384
* y_is_int = 1 ... y is an odd int
385
* y_is_int = 2 ... y is an even int
386
*/
387
int y_is_int = 0;
388
if (hx < 0) {
389
if (y_abs >= 0x1.0p53) // |y| >= 2^53 = 9.007199254740992E15
390
y_is_int = 2; // y is an even integer since ulp(2^53) = 2.0
391
else if (y_abs >= 1.0) { // |y| >= 1.0
392
long y_abs_as_long = (long) y_abs;
393
if ( ((double) y_abs_as_long) == y_abs) {
394
y_is_int = 2 - (int)(y_abs_as_long & 0x1L);
395
}
396
}
397
}
398
399
// Special value of x
400
if (x_abs == 0.0 ||
401
x_abs == INFINITY ||
402
x_abs == 1.0) {
403
z = x_abs; // x is +/-0, +/-inf, +/-1
404
if (y < 0.0)
405
z = 1.0/z; // z = (1/|x|)
406
if (hx < 0) {
407
if (((ix - 0x3ff00000) | y_is_int) == 0) {
408
z = (z-z)/(z-z); // (-1)**non-int is NaN
409
} else if (y_is_int == 1)
410
z = -1.0 * z; // (x < 0)**odd = -(|x|**odd)
411
}
412
return z;
413
}
414
415
n = (hx >> 31) + 1;
416
417
// (x < 0)**(non-int) is NaN
418
if ((n | y_is_int) == 0)
419
return (x-x)/(x-x);
420
421
s = 1.0; // s (sign of result -ve**odd) = -1 else = 1
422
if ( (n | (y_is_int - 1)) == 0)
423
s = -1.0; // (-ve)**(odd int)
424
425
double p_h, p_l, t1, t2;
426
// |y| is huge
427
if (y_abs > 0x1.00000_ffff_ffffp31) { // if |y| > ~2**31
428
final double INV_LN2 = 0x1.7154_7652_b82fep0; // 1.44269504088896338700e+00 = 1/ln2
429
final double INV_LN2_H = 0x1.715476p0; // 1.44269502162933349609e+00 = 24 bits of 1/ln2
430
final double INV_LN2_L = 0x1.4ae0_bf85_ddf44p-26; // 1.92596299112661746887e-08 = 1/ln2 tail
431
432
// Over/underflow if x is not close to one
433
if (x_abs < 0x1.fffff_0000_0000p-1) // |x| < ~0.9999995231628418
434
return (y < 0.0) ? s * INFINITY : s * 0.0;
435
if (x_abs > 0x1.00000_ffff_ffffp0) // |x| > ~1.0
436
return (y > 0.0) ? s * INFINITY : s * 0.0;
437
/*
438
* now |1-x| is tiny <= 2**-20, sufficient to compute
439
* log(x) by x - x^2/2 + x^3/3 - x^4/4
440
*/
441
t = x_abs - 1.0; // t has 20 trailing zeros
442
w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
443
u = INV_LN2_H * t; // INV_LN2_H has 21 sig. bits
444
v = t * INV_LN2_L - w * INV_LN2;
445
t1 = u + v;
446
t1 =__LO(t1, 0);
447
t2 = v - (t1 - u);
448
} else {
449
final double CP = 0x1.ec70_9dc3_a03fdp-1; // 9.61796693925975554329e-01 = 2/(3ln2)
450
final double CP_H = 0x1.ec709ep-1; // 9.61796700954437255859e-01 = (float)cp
451
final double CP_L = -0x1.e2fe_0145_b01f5p-28; // -7.02846165095275826516e-09 = tail of CP_H
452
453
double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l;
454
n = 0;
455
// Take care of subnormal numbers
456
if (ix < 0x00100000) {
457
x_abs *= 0x1.0p53; // 2^53 = 9007199254740992.0
458
n -= 53;
459
ix = __HI(x_abs);
460
}
461
n += ((ix) >> 20) - 0x3ff;
462
j = ix & 0x000fffff;
463
// Determine interval
464
ix = j | 0x3ff00000; // Normalize ix
465
if (j <= 0x3988E)
466
k = 0; // |x| <sqrt(3/2)
467
else if (j < 0xBB67A)
468
k = 1; // |x| <sqrt(3)
469
else {
470
k = 0;
471
n += 1;
472
ix -= 0x00100000;
473
}
474
x_abs = __HI(x_abs, ix);
475
476
// Compute ss = s_h + s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5)
477
478
final double BP[] = {1.0,
479
1.5};
480
final double DP_H[] = {0.0,
481
0x1.2b80_34p-1}; // 5.84962487220764160156e-01
482
final double DP_L[] = {0.0,
483
0x1.cfde_b43c_fd006p-27};// 1.35003920212974897128e-08
484
485
// Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
486
final double L1 = 0x1.3333_3333_33303p-1; // 5.99999999999994648725e-01
487
final double L2 = 0x1.b6db_6db6_fabffp-2; // 4.28571428578550184252e-01
488
final double L3 = 0x1.5555_5518_f264dp-2; // 3.33333329818377432918e-01
489
final double L4 = 0x1.1746_0a91_d4101p-2; // 2.72728123808534006489e-01
490
final double L5 = 0x1.d864_a93c_9db65p-3; // 2.30660745775561754067e-01
491
final double L6 = 0x1.a7e2_84a4_54eefp-3; // 2.06975017800338417784e-01
492
u = x_abs - BP[k]; // BP[0]=1.0, BP[1]=1.5
493
v = 1.0 / (x_abs + BP[k]);
494
ss = u * v;
495
s_h = ss;
496
s_h = __LO(s_h, 0);
497
// t_h=x_abs + BP[k] High
498
t_h = 0.0;
499
t_h = __HI(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18) );
500
t_l = x_abs - (t_h - BP[k]);
501
s_l = v * ((u - s_h * t_h) - s_h * t_l);
502
// Compute log(x_abs)
503
s2 = ss * ss;
504
r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
505
r += s_l * (s_h + ss);
506
s2 = s_h * s_h;
507
t_h = 3.0 + s2 + r;
508
t_h = __LO(t_h, 0);
509
t_l = r - ((t_h - 3.0) - s2);
510
// u+v = ss*(1+...)
511
u = s_h * t_h;
512
v = s_l * t_h + t_l * ss;
513
// 2/(3log2)*(ss + ...)
514
p_h = u + v;
515
p_h = __LO(p_h, 0);
516
p_l = v - (p_h - u);
517
z_h = CP_H * p_h; // CP_H + CP_L = 2/(3*log2)
518
z_l = CP_L * p_h + p_l * CP + DP_L[k];
519
// log2(x_abs) = (ss + ..)*2/(3*log2) = n + DP_H + z_h + z_l
520
t = (double)n;
521
t1 = (((z_h + z_l) + DP_H[k]) + t);
522
t1 = __LO(t1, 0);
523
t2 = z_l - (((t1 - t) - DP_H[k]) - z_h);
524
}
525
526
// Split up y into (y1 + y2) and compute (y1 + y2) * (t1 + t2)
527
double y1 = y;
528
y1 = __LO(y1, 0);
529
p_l = (y - y1) * t1 + y * t2;
530
p_h = y1 * t1;
531
z = p_l + p_h;
532
j = __HI(z);
533
i = __LO(z);
534
if (j >= 0x40900000) { // z >= 1024
535
if (((j - 0x40900000) | i)!=0) // if z > 1024
536
return s * INFINITY; // Overflow
537
else {
538
final double OVT = 8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp))
539
if (p_l + OVT > z - p_h)
540
return s * INFINITY; // Overflow
541
}
542
} else if ((j & 0x7fffffff) >= 0x4090cc00 ) { // z <= -1075
543
if (((j - 0xc090cc00) | i)!=0) // z < -1075
544
return s * 0.0; // Underflow
545
else {
546
if (p_l <= z - p_h)
547
return s * 0.0; // Underflow
548
}
549
}
550
/*
551
* Compute 2**(p_h+p_l)
552
*/
553
// Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
554
final double P1 = 0x1.5555_5555_5553ep-3; // 1.66666666666666019037e-01
555
final double P2 = -0x1.6c16_c16b_ebd93p-9; // -2.77777777770155933842e-03
556
final double P3 = 0x1.1566_aaf2_5de2cp-14; // 6.61375632143793436117e-05
557
final double P4 = -0x1.bbd4_1c5d_26bf1p-20; // -1.65339022054652515390e-06
558
final double P5 = 0x1.6376_972b_ea4d0p-25; // 4.13813679705723846039e-08
559
final double LG2 = 0x1.62e4_2fef_a39efp-1; // 6.93147180559945286227e-01
560
final double LG2_H = 0x1.62e43p-1; // 6.93147182464599609375e-01
561
final double LG2_L = -0x1.05c6_10ca_86c39p-29; // -1.90465429995776804525e-09
562
i = j & 0x7fffffff;
563
k = (i >> 20) - 0x3ff;
564
n = 0;
565
if (i > 0x3fe00000) { // if |z| > 0.5, set n = [z + 0.5]
566
n = j + (0x00100000 >> (k + 1));
567
k = ((n & 0x7fffffff) >> 20) - 0x3ff; // new k for n
568
t = 0.0;
569
t = __HI(t, (n & ~(0x000fffff >> k)) );
570
n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
571
if (j < 0)
572
n = -n;
573
p_h -= t;
574
}
575
t = p_l + p_h;
576
t = __LO(t, 0);
577
u = t * LG2_H;
578
v = (p_l - (t - p_h)) * LG2 + t * LG2_L;
579
z = u + v;
580
w = v - (z - u);
581
t = z * z;
582
t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
583
r = (z * t1)/(t1 - 2.0) - (w + z * w);
584
z = 1.0 - (r - z);
585
j = __HI(z);
586
j += (n << 20);
587
if ((j >> 20) <= 0)
588
z = Math.scalb(z, n); // subnormal output
589
else {
590
int z_hi = __HI(z);
591
z_hi += (n << 20);
592
z = __HI(z, z_hi);
593
}
594
return s * z;
595
}
596
}
597
598
/**
599
* Returns the exponential of x.
600
*
601
* Method
602
* 1. Argument reduction:
603
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
604
* Given x, find r and integer k such that
605
*
606
* x = k*ln2 + r, |r| <= 0.5*ln2.
607
*
608
* Here r will be represented as r = hi-lo for better
609
* accuracy.
610
*
611
* 2. Approximation of exp(r) by a special rational function on
612
* the interval [0,0.34658]:
613
* Write
614
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
615
* We use a special Reme algorithm on [0,0.34658] to generate
616
* a polynomial of degree 5 to approximate R. The maximum error
617
* of this polynomial approximation is bounded by 2**-59. In
618
* other words,
619
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
620
* (where z=r*r, and the values of P1 to P5 are listed below)
621
* and
622
* | 5 | -59
623
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
624
* | |
625
* The computation of exp(r) thus becomes
626
* 2*r
627
* exp(r) = 1 + -------
628
* R - r
629
* r*R1(r)
630
* = 1 + r + ----------- (for better accuracy)
631
* 2 - R1(r)
632
* where
633
* 2 4 10
634
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
635
*
636
* 3. Scale back to obtain exp(x):
637
* From step 1, we have
638
* exp(x) = 2^k * exp(r)
639
*
640
* Special cases:
641
* exp(INF) is INF, exp(NaN) is NaN;
642
* exp(-INF) is 0, and
643
* for finite argument, only exp(0)=1 is exact.
644
*
645
* Accuracy:
646
* according to an error analysis, the error is always less than
647
* 1 ulp (unit in the last place).
648
*
649
* Misc. info.
650
* For IEEE double
651
* if x > 7.09782712893383973096e+02 then exp(x) overflow
652
* if x < -7.45133219101941108420e+02 then exp(x) underflow
653
*
654
* Constants:
655
* The hexadecimal values are the intended ones for the following
656
* constants. The decimal values may be used, provided that the
657
* compiler will convert from decimal to binary accurately enough
658
* to produce the hexadecimal values shown.
659
*/
660
static class Exp {
661
private static final double one = 1.0;
662
private static final double[] half = {0.5, -0.5,};
663
private static final double huge = 1.0e+300;
664
private static final double twom1000= 0x1.0p-1000; // 9.33263618503218878990e-302 = 2^-1000
665
private static final double o_threshold= 0x1.62e42fefa39efp9; // 7.09782712893383973096e+02
666
private static final double u_threshold= -0x1.74910d52d3051p9; // -7.45133219101941108420e+02;
667
private static final double[] ln2HI ={ 0x1.62e42feep-1, // 6.93147180369123816490e-01
668
-0x1.62e42feep-1}; // -6.93147180369123816490e-01
669
private static final double[] ln2LO ={ 0x1.a39ef35793c76p-33, // 1.90821492927058770002e-10
670
-0x1.a39ef35793c76p-33}; // -1.90821492927058770002e-10
671
private static final double invln2 = 0x1.71547652b82fep0; // 1.44269504088896338700e+00
672
673
private static final double P1 = 0x1.555555555553ep-3; // 1.66666666666666019037e-01
674
private static final double P2 = -0x1.6c16c16bebd93p-9; // -2.77777777770155933842e-03
675
private static final double P3 = 0x1.1566aaf25de2cp-14; // 6.61375632143793436117e-05
676
private static final double P4 = -0x1.bbd41c5d26bf1p-20; // -1.65339022054652515390e-06
677
private static final double P5 = 0x1.6376972bea4d0p-25; // 4.13813679705723846039e-08
678
679
private Exp() {
680
throw new UnsupportedOperationException();
681
}
682
683
public static double compute(double x) {
684
double y;
685
double hi = 0.0;
686
double lo = 0.0;
687
double c;
688
double t;
689
int k = 0;
690
int xsb;
691
/*unsigned*/ int hx;
692
693
hx = __HI(x); /* high word of x */
694
xsb = (hx >> 31) & 1; /* sign bit of x */
695
hx &= 0x7fffffff; /* high word of |x| */
696
697
/* filter out non-finite argument */
698
if (hx >= 0x40862E42) { /* if |x| >= 709.78... */
699
if (hx >= 0x7ff00000) {
700
if (((hx & 0xfffff) | __LO(x)) != 0)
701
return x + x; /* NaN */
702
else
703
return (xsb == 0) ? x : 0.0; /* exp(+-inf) = {inf, 0} */
704
}
705
if (x > o_threshold)
706
return huge * huge; /* overflow */
707
if (x < u_threshold) // unsigned compare needed here?
708
return twom1000 * twom1000; /* underflow */
709
}
710
711
/* argument reduction */
712
if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
713
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
714
hi = x - ln2HI[xsb];
715
lo=ln2LO[xsb];
716
k = 1 - xsb - xsb;
717
} else {
718
k = (int)(invln2 * x + half[xsb]);
719
t = k;
720
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
721
lo = t*ln2LO[0];
722
}
723
x = hi - lo;
724
} else if (hx < 0x3e300000) { /* when |x|<2**-28 */
725
if (huge + x > one)
726
return one + x; /* trigger inexact */
727
} else {
728
k = 0;
729
}
730
731
/* x is now in primary range */
732
t = x * x;
733
c = x - t*(P1 + t*(P2 + t*(P3 + t*(P4 + t*P5))));
734
if (k == 0)
735
return one - ((x*c)/(c - 2.0) - x);
736
else
737
y = one - ((lo - (x*c)/(2.0 - c)) - hi);
738
739
if(k >= -1021) {
740
y = __HI(y, __HI(y) + (k << 20)); /* add k to y's exponent */
741
return y;
742
} else {
743
y = __HI(y, __HI(y) + ((k + 1000) << 20)); /* add k to y's exponent */
744
return y * twom1000;
745
}
746
}
747
}
748
}
749
750