Path: blob/master/src/java.base/share/classes/java/lang/FdLibm.java
41152 views
/*1* Copyright (c) 1998, 2021, Oracle and/or its affiliates. All rights reserved.2* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.3*4* This code is free software; you can redistribute it and/or modify it5* under the terms of the GNU General Public License version 2 only, as6* published by the Free Software Foundation. Oracle designates this7* particular file as subject to the "Classpath" exception as provided8* by Oracle in the LICENSE file that accompanied this code.9*10* This code is distributed in the hope that it will be useful, but WITHOUT11* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or12* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License13* version 2 for more details (a copy is included in the LICENSE file that14* accompanied this code).15*16* You should have received a copy of the GNU General Public License version17* 2 along with this work; if not, write to the Free Software Foundation,18* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.19*20* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA21* or visit www.oracle.com if you need additional information or have any22* questions.23*/2425package java.lang;2627/**28* Port of the "Freely Distributable Math Library", version 5.3, from29* C to Java.30*31* <p>The C version of fdlibm relied on the idiom of pointer aliasing32* a 64-bit double floating-point value as a two-element array of33* 32-bit integers and reading and writing the two halves of the34* double independently. This coding pattern was problematic to C35* optimizers and not directly expressible in Java. Therefore, rather36* than a memory level overlay, if portions of a double need to be37* operated on as integer values, the standard library methods for38* bitwise floating-point to integer conversion,39* Double.longBitsToDouble and Double.doubleToRawLongBits, are directly40* or indirectly used.41*42* <p>The C version of fdlibm also took some pains to signal the43* correct IEEE 754 exceptional conditions divide by zero, invalid,44* overflow and underflow. For example, overflow would be signaled by45* {@code huge * huge} where {@code huge} was a large constant that46* would overflow when squared. Since IEEE floating-point exceptional47* handling is not supported natively in the JVM, such coding patterns48* have been omitted from this port. For example, rather than {@code49* return huge * huge}, this port will use {@code return INFINITY}.50*51* <p>Various comparison and arithmetic operations in fdlibm could be52* done either based on the integer view of a value or directly on the53* floating-point representation. Which idiom is faster may depend on54* platform specific factors. However, for code clarity if no other55* reason, this port will favor expressing the semantics of those56* operations in terms of floating-point operations when convenient to57* do so.58*/59class FdLibm {60// Constants used by multiple algorithms61private static final double INFINITY = Double.POSITIVE_INFINITY;6263private FdLibm() {64throw new UnsupportedOperationException("No FdLibm instances for you.");65}6667/**68* Return the low-order 32 bits of the double argument as an int.69*/70private static int __LO(double x) {71long transducer = Double.doubleToRawLongBits(x);72return (int)transducer;73}7475/**76* Return a double with its low-order bits of the second argument77* and the high-order bits of the first argument..78*/79private static double __LO(double x, int low) {80long transX = Double.doubleToRawLongBits(x);81return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) |82(low & 0x0000_0000_FFFF_FFFFL));83}8485/**86* Return the high-order 32 bits of the double argument as an int.87*/88private static int __HI(double x) {89long transducer = Double.doubleToRawLongBits(x);90return (int)(transducer >> 32);91}9293/**94* Return a double with its high-order bits of the second argument95* and the low-order bits of the first argument..96*/97private static double __HI(double x, int high) {98long transX = Double.doubleToRawLongBits(x);99return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) |100( ((long)high)) << 32 );101}102103/**104* cbrt(x)105* Return cube root of x106*/107public static class Cbrt {108// unsigned109private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */110private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */111112private static final double C = 0x1.15f15f15f15f1p-1; // 19/35 ~= 5.42857142857142815906e-01113private static final double D = -0x1.691de2532c834p-1; // -864/1225 ~= 7.05306122448979611050e-01114private static final double E = 0x1.6a0ea0ea0ea0fp0; // 99/70 ~= 1.41428571428571436819e+00115private static final double F = 0x1.9b6db6db6db6ep0; // 45/28 ~= 1.60714285714285720630e+00116private static final double G = 0x1.6db6db6db6db7p-2; // 5/14 ~= 3.57142857142857150787e-01117118private Cbrt() {119throw new UnsupportedOperationException();120}121122public static double compute(double x) {123double t = 0.0;124double sign;125126if (x == 0.0 || !Double.isFinite(x))127return x; // Handles signed zeros properly128129sign = (x < 0.0) ? -1.0: 1.0;130131x = Math.abs(x); // x <- |x|132133// Rough cbrt to 5 bits134if (x < 0x1.0p-1022) { // subnormal number135t = 0x1.0p54; // set t= 2**54136t *= x;137t = __HI(t, __HI(t)/3 + B2);138} else {139int hx = __HI(x); // high word of x140t = __HI(t, hx/3 + B1);141}142143// New cbrt to 23 bits, may be implemented in single precision144double r, s, w;145r = t * t/x;146s = C + r*t;147t *= G + F/(s + E + D/s);148149// Chopped to 20 bits and make it larger than cbrt(x)150t = __LO(t, 0);151t = __HI(t, __HI(t) + 0x00000001);152153// One step newton iteration to 53 bits with error less than 0.667 ulps154s = t * t; // t*t is exact155r = x / s;156w = t + t;157r = (r - t)/(w + r); // r-s is exact158t = t + t*r;159160// Restore the original sign bit161return sign * t;162}163}164165/**166* hypot(x,y)167*168* Method :169* If (assume round-to-nearest) z = x*x + y*y170* has error less than sqrt(2)/2 ulp, than171* sqrt(z) has error less than 1 ulp (exercise).172*173* So, compute sqrt(x*x + y*y) with some care as174* follows to get the error below 1 ulp:175*176* Assume x > y > 0;177* (if possible, set rounding to round-to-nearest)178* 1. if x > 2y use179* x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y180* where x1 = x with lower 32 bits cleared, x2 = x - x1; else181* 2. if x <= 2y use182* t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y))183* where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1,184* y1= y with lower 32 bits chopped, y2 = y - y1.185*186* NOTE: scaling may be necessary if some argument is too187* large or too tiny188*189* Special cases:190* hypot(x,y) is INF if x or y is +INF or -INF; else191* hypot(x,y) is NAN if x or y is NAN.192*193* Accuracy:194* hypot(x,y) returns sqrt(x^2 + y^2) with error less195* than 1 ulp (unit in the last place)196*/197public static class Hypot {198public static final double TWO_MINUS_600 = 0x1.0p-600;199public static final double TWO_PLUS_600 = 0x1.0p+600;200201private Hypot() {202throw new UnsupportedOperationException();203}204205public static double compute(double x, double y) {206double a = Math.abs(x);207double b = Math.abs(y);208209if (!Double.isFinite(a) || !Double.isFinite(b)) {210if (a == INFINITY || b == INFINITY)211return INFINITY;212else213return a + b; // Propagate NaN significand bits214}215216if (b > a) {217double tmp = a;218a = b;219b = tmp;220}221assert a >= b;222223// Doing bitwise conversion after screening for NaN allows224// the code to not worry about the possibility of225// "negative" NaN values.226227// Note: the ha and hb variables are the high-order228// 32-bits of a and b stored as integer values. The ha and229// hb values are used first for a rough magnitude230// comparison of a and b and second for simulating higher231// precision by allowing a and b, respectively, to be232// decomposed into non-overlapping portions. Both of these233// uses could be eliminated. The magnitude comparison234// could be eliminated by extracting and comparing the235// exponents of a and b or just be performing a236// floating-point divide. Splitting a floating-point237// number into non-overlapping portions can be238// accomplished by judicious use of multiplies and239// additions. For details see T. J. Dekker, A Floating-Point240// Technique for Extending the Available Precision,241// Numerische Mathematik, vol. 18, 1971, pp.224-242 and242// subsequent work.243244int ha = __HI(a); // high word of a245int hb = __HI(b); // high word of b246247if ((ha - hb) > 0x3c00000) {248return a + b; // x / y > 2**60249}250251int k = 0;252if (a > 0x1.00000_ffff_ffffp500) { // a > ~2**500253// scale a and b by 2**-600254ha -= 0x25800000;255hb -= 0x25800000;256a = a * TWO_MINUS_600;257b = b * TWO_MINUS_600;258k += 600;259}260double t1, t2;261if (b < 0x1.0p-500) { // b < 2**-500262if (b < Double.MIN_NORMAL) { // subnormal b or 0 */263if (b == 0.0)264return a;265t1 = 0x1.0p1022; // t1 = 2^1022266b *= t1;267a *= t1;268k -= 1022;269} else { // scale a and b by 2^600270ha += 0x25800000; // a *= 2^600271hb += 0x25800000; // b *= 2^600272a = a * TWO_PLUS_600;273b = b * TWO_PLUS_600;274k -= 600;275}276}277// medium size a and b278double w = a - b;279if (w > b) {280t1 = 0;281t1 = __HI(t1, ha);282t2 = a - t1;283w = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));284} else {285double y1, y2;286a = a + a;287y1 = 0;288y1 = __HI(y1, hb);289y2 = b - y1;290t1 = 0;291t1 = __HI(t1, ha + 0x00100000);292t2 = a - t1;293w = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));294}295if (k != 0) {296return Math.powerOfTwoD(k) * w;297} else298return w;299}300}301302/**303* Compute x**y304* n305* Method: Let x = 2 * (1+f)306* 1. Compute and return log2(x) in two pieces:307* log2(x) = w1 + w2,308* where w1 has 53 - 24 = 29 bit trailing zeros.309* 2. Perform y*log2(x) = n+y' by simulating multi-precision310* arithmetic, where |y'| <= 0.5.311* 3. Return x**y = 2**n*exp(y'*log2)312*313* Special cases:314* 1. (anything) ** 0 is 1315* 2. (anything) ** 1 is itself316* 3. (anything) ** NAN is NAN317* 4. NAN ** (anything except 0) is NAN318* 5. +-(|x| > 1) ** +INF is +INF319* 6. +-(|x| > 1) ** -INF is +0320* 7. +-(|x| < 1) ** +INF is +0321* 8. +-(|x| < 1) ** -INF is +INF322* 9. +-1 ** +-INF is NAN323* 10. +0 ** (+anything except 0, NAN) is +0324* 11. -0 ** (+anything except 0, NAN, odd integer) is +0325* 12. +0 ** (-anything except 0, NAN) is +INF326* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF327* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )328* 15. +INF ** (+anything except 0,NAN) is +INF329* 16. +INF ** (-anything except 0,NAN) is +0330* 17. -INF ** (anything) = -0 ** (-anything)331* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)332* 19. (-anything except 0 and inf) ** (non-integer) is NAN333*334* Accuracy:335* pow(x,y) returns x**y nearly rounded. In particular336* pow(integer,integer)337* always returns the correct integer provided it is338* representable.339*/340public static class Pow {341private Pow() {342throw new UnsupportedOperationException();343}344345public static double compute(final double x, final double y) {346double z;347double r, s, t, u, v, w;348int i, j, k, n;349350// y == zero: x**0 = 1351if (y == 0.0)352return 1.0;353354// +/-NaN return x + y to propagate NaN significands355if (Double.isNaN(x) || Double.isNaN(y))356return x + y;357358final double y_abs = Math.abs(y);359double x_abs = Math.abs(x);360// Special values of y361if (y == 2.0) {362return x * x;363} else if (y == 0.5) {364if (x >= -Double.MAX_VALUE) // Handle x == -infinity later365return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0366} else if (y_abs == 1.0) { // y is +/-1367return (y == 1.0) ? x : 1.0 / x;368} else if (y_abs == INFINITY) { // y is +/-infinity369if (x_abs == 1.0)370return y - y; // inf**+/-1 is NaN371else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0372return (y >= 0) ? y : 0.0;373else // (|x| < 1)**-/+inf = inf, 0374return (y < 0) ? -y : 0.0;375}376377final int hx = __HI(x);378int ix = hx & 0x7fffffff;379380/*381* When x < 0, determine if y is an odd integer:382* y_is_int = 0 ... y is not an integer383* y_is_int = 1 ... y is an odd int384* y_is_int = 2 ... y is an even int385*/386int y_is_int = 0;387if (hx < 0) {388if (y_abs >= 0x1.0p53) // |y| >= 2^53 = 9.007199254740992E15389y_is_int = 2; // y is an even integer since ulp(2^53) = 2.0390else if (y_abs >= 1.0) { // |y| >= 1.0391long y_abs_as_long = (long) y_abs;392if ( ((double) y_abs_as_long) == y_abs) {393y_is_int = 2 - (int)(y_abs_as_long & 0x1L);394}395}396}397398// Special value of x399if (x_abs == 0.0 ||400x_abs == INFINITY ||401x_abs == 1.0) {402z = x_abs; // x is +/-0, +/-inf, +/-1403if (y < 0.0)404z = 1.0/z; // z = (1/|x|)405if (hx < 0) {406if (((ix - 0x3ff00000) | y_is_int) == 0) {407z = (z-z)/(z-z); // (-1)**non-int is NaN408} else if (y_is_int == 1)409z = -1.0 * z; // (x < 0)**odd = -(|x|**odd)410}411return z;412}413414n = (hx >> 31) + 1;415416// (x < 0)**(non-int) is NaN417if ((n | y_is_int) == 0)418return (x-x)/(x-x);419420s = 1.0; // s (sign of result -ve**odd) = -1 else = 1421if ( (n | (y_is_int - 1)) == 0)422s = -1.0; // (-ve)**(odd int)423424double p_h, p_l, t1, t2;425// |y| is huge426if (y_abs > 0x1.00000_ffff_ffffp31) { // if |y| > ~2**31427final double INV_LN2 = 0x1.7154_7652_b82fep0; // 1.44269504088896338700e+00 = 1/ln2428final double INV_LN2_H = 0x1.715476p0; // 1.44269502162933349609e+00 = 24 bits of 1/ln2429final double INV_LN2_L = 0x1.4ae0_bf85_ddf44p-26; // 1.92596299112661746887e-08 = 1/ln2 tail430431// Over/underflow if x is not close to one432if (x_abs < 0x1.fffff_0000_0000p-1) // |x| < ~0.9999995231628418433return (y < 0.0) ? s * INFINITY : s * 0.0;434if (x_abs > 0x1.00000_ffff_ffffp0) // |x| > ~1.0435return (y > 0.0) ? s * INFINITY : s * 0.0;436/*437* now |1-x| is tiny <= 2**-20, sufficient to compute438* log(x) by x - x^2/2 + x^3/3 - x^4/4439*/440t = x_abs - 1.0; // t has 20 trailing zeros441w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));442u = INV_LN2_H * t; // INV_LN2_H has 21 sig. bits443v = t * INV_LN2_L - w * INV_LN2;444t1 = u + v;445t1 =__LO(t1, 0);446t2 = v - (t1 - u);447} else {448final double CP = 0x1.ec70_9dc3_a03fdp-1; // 9.61796693925975554329e-01 = 2/(3ln2)449final double CP_H = 0x1.ec709ep-1; // 9.61796700954437255859e-01 = (float)cp450final double CP_L = -0x1.e2fe_0145_b01f5p-28; // -7.02846165095275826516e-09 = tail of CP_H451452double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l;453n = 0;454// Take care of subnormal numbers455if (ix < 0x00100000) {456x_abs *= 0x1.0p53; // 2^53 = 9007199254740992.0457n -= 53;458ix = __HI(x_abs);459}460n += ((ix) >> 20) - 0x3ff;461j = ix & 0x000fffff;462// Determine interval463ix = j | 0x3ff00000; // Normalize ix464if (j <= 0x3988E)465k = 0; // |x| <sqrt(3/2)466else if (j < 0xBB67A)467k = 1; // |x| <sqrt(3)468else {469k = 0;470n += 1;471ix -= 0x00100000;472}473x_abs = __HI(x_abs, ix);474475// Compute ss = s_h + s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5)476477final double BP[] = {1.0,4781.5};479final double DP_H[] = {0.0,4800x1.2b80_34p-1}; // 5.84962487220764160156e-01481final double DP_L[] = {0.0,4820x1.cfde_b43c_fd006p-27};// 1.35003920212974897128e-08483484// Poly coefs for (3/2)*(log(x)-2s-2/3*s**3485final double L1 = 0x1.3333_3333_33303p-1; // 5.99999999999994648725e-01486final double L2 = 0x1.b6db_6db6_fabffp-2; // 4.28571428578550184252e-01487final double L3 = 0x1.5555_5518_f264dp-2; // 3.33333329818377432918e-01488final double L4 = 0x1.1746_0a91_d4101p-2; // 2.72728123808534006489e-01489final double L5 = 0x1.d864_a93c_9db65p-3; // 2.30660745775561754067e-01490final double L6 = 0x1.a7e2_84a4_54eefp-3; // 2.06975017800338417784e-01491u = x_abs - BP[k]; // BP[0]=1.0, BP[1]=1.5492v = 1.0 / (x_abs + BP[k]);493ss = u * v;494s_h = ss;495s_h = __LO(s_h, 0);496// t_h=x_abs + BP[k] High497t_h = 0.0;498t_h = __HI(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18) );499t_l = x_abs - (t_h - BP[k]);500s_l = v * ((u - s_h * t_h) - s_h * t_l);501// Compute log(x_abs)502s2 = ss * ss;503r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));504r += s_l * (s_h + ss);505s2 = s_h * s_h;506t_h = 3.0 + s2 + r;507t_h = __LO(t_h, 0);508t_l = r - ((t_h - 3.0) - s2);509// u+v = ss*(1+...)510u = s_h * t_h;511v = s_l * t_h + t_l * ss;512// 2/(3log2)*(ss + ...)513p_h = u + v;514p_h = __LO(p_h, 0);515p_l = v - (p_h - u);516z_h = CP_H * p_h; // CP_H + CP_L = 2/(3*log2)517z_l = CP_L * p_h + p_l * CP + DP_L[k];518// log2(x_abs) = (ss + ..)*2/(3*log2) = n + DP_H + z_h + z_l519t = (double)n;520t1 = (((z_h + z_l) + DP_H[k]) + t);521t1 = __LO(t1, 0);522t2 = z_l - (((t1 - t) - DP_H[k]) - z_h);523}524525// Split up y into (y1 + y2) and compute (y1 + y2) * (t1 + t2)526double y1 = y;527y1 = __LO(y1, 0);528p_l = (y - y1) * t1 + y * t2;529p_h = y1 * t1;530z = p_l + p_h;531j = __HI(z);532i = __LO(z);533if (j >= 0x40900000) { // z >= 1024534if (((j - 0x40900000) | i)!=0) // if z > 1024535return s * INFINITY; // Overflow536else {537final double OVT = 8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp))538if (p_l + OVT > z - p_h)539return s * INFINITY; // Overflow540}541} else if ((j & 0x7fffffff) >= 0x4090cc00 ) { // z <= -1075542if (((j - 0xc090cc00) | i)!=0) // z < -1075543return s * 0.0; // Underflow544else {545if (p_l <= z - p_h)546return s * 0.0; // Underflow547}548}549/*550* Compute 2**(p_h+p_l)551*/552// Poly coefs for (3/2)*(log(x)-2s-2/3*s**3553final double P1 = 0x1.5555_5555_5553ep-3; // 1.66666666666666019037e-01554final double P2 = -0x1.6c16_c16b_ebd93p-9; // -2.77777777770155933842e-03555final double P3 = 0x1.1566_aaf2_5de2cp-14; // 6.61375632143793436117e-05556final double P4 = -0x1.bbd4_1c5d_26bf1p-20; // -1.65339022054652515390e-06557final double P5 = 0x1.6376_972b_ea4d0p-25; // 4.13813679705723846039e-08558final double LG2 = 0x1.62e4_2fef_a39efp-1; // 6.93147180559945286227e-01559final double LG2_H = 0x1.62e43p-1; // 6.93147182464599609375e-01560final double LG2_L = -0x1.05c6_10ca_86c39p-29; // -1.90465429995776804525e-09561i = j & 0x7fffffff;562k = (i >> 20) - 0x3ff;563n = 0;564if (i > 0x3fe00000) { // if |z| > 0.5, set n = [z + 0.5]565n = j + (0x00100000 >> (k + 1));566k = ((n & 0x7fffffff) >> 20) - 0x3ff; // new k for n567t = 0.0;568t = __HI(t, (n & ~(0x000fffff >> k)) );569n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);570if (j < 0)571n = -n;572p_h -= t;573}574t = p_l + p_h;575t = __LO(t, 0);576u = t * LG2_H;577v = (p_l - (t - p_h)) * LG2 + t * LG2_L;578z = u + v;579w = v - (z - u);580t = z * z;581t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));582r = (z * t1)/(t1 - 2.0) - (w + z * w);583z = 1.0 - (r - z);584j = __HI(z);585j += (n << 20);586if ((j >> 20) <= 0)587z = Math.scalb(z, n); // subnormal output588else {589int z_hi = __HI(z);590z_hi += (n << 20);591z = __HI(z, z_hi);592}593return s * z;594}595}596597/**598* Returns the exponential of x.599*600* Method601* 1. Argument reduction:602* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.603* Given x, find r and integer k such that604*605* x = k*ln2 + r, |r| <= 0.5*ln2.606*607* Here r will be represented as r = hi-lo for better608* accuracy.609*610* 2. Approximation of exp(r) by a special rational function on611* the interval [0,0.34658]:612* Write613* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...614* We use a special Reme algorithm on [0,0.34658] to generate615* a polynomial of degree 5 to approximate R. The maximum error616* of this polynomial approximation is bounded by 2**-59. In617* other words,618* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5619* (where z=r*r, and the values of P1 to P5 are listed below)620* and621* | 5 | -59622* | 2.0+P1*z+...+P5*z - R(z) | <= 2623* | |624* The computation of exp(r) thus becomes625* 2*r626* exp(r) = 1 + -------627* R - r628* r*R1(r)629* = 1 + r + ----------- (for better accuracy)630* 2 - R1(r)631* where632* 2 4 10633* R1(r) = r - (P1*r + P2*r + ... + P5*r ).634*635* 3. Scale back to obtain exp(x):636* From step 1, we have637* exp(x) = 2^k * exp(r)638*639* Special cases:640* exp(INF) is INF, exp(NaN) is NaN;641* exp(-INF) is 0, and642* for finite argument, only exp(0)=1 is exact.643*644* Accuracy:645* according to an error analysis, the error is always less than646* 1 ulp (unit in the last place).647*648* Misc. info.649* For IEEE double650* if x > 7.09782712893383973096e+02 then exp(x) overflow651* if x < -7.45133219101941108420e+02 then exp(x) underflow652*653* Constants:654* The hexadecimal values are the intended ones for the following655* constants. The decimal values may be used, provided that the656* compiler will convert from decimal to binary accurately enough657* to produce the hexadecimal values shown.658*/659static class Exp {660private static final double one = 1.0;661private static final double[] half = {0.5, -0.5,};662private static final double huge = 1.0e+300;663private static final double twom1000= 0x1.0p-1000; // 9.33263618503218878990e-302 = 2^-1000664private static final double o_threshold= 0x1.62e42fefa39efp9; // 7.09782712893383973096e+02665private static final double u_threshold= -0x1.74910d52d3051p9; // -7.45133219101941108420e+02;666private static final double[] ln2HI ={ 0x1.62e42feep-1, // 6.93147180369123816490e-01667-0x1.62e42feep-1}; // -6.93147180369123816490e-01668private static final double[] ln2LO ={ 0x1.a39ef35793c76p-33, // 1.90821492927058770002e-10669-0x1.a39ef35793c76p-33}; // -1.90821492927058770002e-10670private static final double invln2 = 0x1.71547652b82fep0; // 1.44269504088896338700e+00671672private static final double P1 = 0x1.555555555553ep-3; // 1.66666666666666019037e-01673private static final double P2 = -0x1.6c16c16bebd93p-9; // -2.77777777770155933842e-03674private static final double P3 = 0x1.1566aaf25de2cp-14; // 6.61375632143793436117e-05675private static final double P4 = -0x1.bbd41c5d26bf1p-20; // -1.65339022054652515390e-06676private static final double P5 = 0x1.6376972bea4d0p-25; // 4.13813679705723846039e-08677678private Exp() {679throw new UnsupportedOperationException();680}681682public static double compute(double x) {683double y;684double hi = 0.0;685double lo = 0.0;686double c;687double t;688int k = 0;689int xsb;690/*unsigned*/ int hx;691692hx = __HI(x); /* high word of x */693xsb = (hx >> 31) & 1; /* sign bit of x */694hx &= 0x7fffffff; /* high word of |x| */695696/* filter out non-finite argument */697if (hx >= 0x40862E42) { /* if |x| >= 709.78... */698if (hx >= 0x7ff00000) {699if (((hx & 0xfffff) | __LO(x)) != 0)700return x + x; /* NaN */701else702return (xsb == 0) ? x : 0.0; /* exp(+-inf) = {inf, 0} */703}704if (x > o_threshold)705return huge * huge; /* overflow */706if (x < u_threshold) // unsigned compare needed here?707return twom1000 * twom1000; /* underflow */708}709710/* argument reduction */711if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */712if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */713hi = x - ln2HI[xsb];714lo=ln2LO[xsb];715k = 1 - xsb - xsb;716} else {717k = (int)(invln2 * x + half[xsb]);718t = k;719hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */720lo = t*ln2LO[0];721}722x = hi - lo;723} else if (hx < 0x3e300000) { /* when |x|<2**-28 */724if (huge + x > one)725return one + x; /* trigger inexact */726} else {727k = 0;728}729730/* x is now in primary range */731t = x * x;732c = x - t*(P1 + t*(P2 + t*(P3 + t*(P4 + t*P5))));733if (k == 0)734return one - ((x*c)/(c - 2.0) - x);735else736y = one - ((lo - (x*c)/(2.0 - c)) - hi);737738if(k >= -1021) {739y = __HI(y, __HI(y) + (k << 20)); /* add k to y's exponent */740return y;741} else {742y = __HI(y, __HI(y) + ((k + 1000) << 20)); /* add k to y's exponent */743return y * twom1000;744}745}746}747}748749750