Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/classes/java/math/BitSieve.java
41152 views
1
/*
2
* Copyright (c) 1999, 2007, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package java.math;
27
28
/**
29
* A simple bit sieve used for finding prime number candidates. Allows setting
30
* and clearing of bits in a storage array. The size of the sieve is assumed to
31
* be constant to reduce overhead. All the bits of a new bitSieve are zero, and
32
* bits are removed from it by setting them.
33
*
34
* To reduce storage space and increase efficiency, no even numbers are
35
* represented in the sieve (each bit in the sieve represents an odd number).
36
* The relationship between the index of a bit and the number it represents is
37
* given by
38
* N = offset + (2*index + 1);
39
* Where N is the integer represented by a bit in the sieve, offset is some
40
* even integer offset indicating where the sieve begins, and index is the
41
* index of a bit in the sieve array.
42
*
43
* @see BigInteger
44
* @author Michael McCloskey
45
* @since 1.3
46
*/
47
class BitSieve {
48
/**
49
* Stores the bits in this bitSieve.
50
*/
51
private long bits[];
52
53
/**
54
* Length is how many bits this sieve holds.
55
*/
56
private int length;
57
58
/**
59
* A small sieve used to filter out multiples of small primes in a search
60
* sieve.
61
*/
62
private static BitSieve smallSieve = new BitSieve();
63
64
/**
65
* Construct a "small sieve" with a base of 0. This constructor is
66
* used internally to generate the set of "small primes" whose multiples
67
* are excluded from sieves generated by the main (package private)
68
* constructor, BitSieve(BigInteger base, int searchLen). The length
69
* of the sieve generated by this constructor was chosen for performance;
70
* it controls a tradeoff between how much time is spent constructing
71
* other sieves, and how much time is wasted testing composite candidates
72
* for primality. The length was chosen experimentally to yield good
73
* performance.
74
*/
75
private BitSieve() {
76
length = 150 * 64;
77
bits = new long[(unitIndex(length - 1) + 1)];
78
79
// Mark 1 as composite
80
set(0);
81
int nextIndex = 1;
82
int nextPrime = 3;
83
84
// Find primes and remove their multiples from sieve
85
do {
86
sieveSingle(length, nextIndex + nextPrime, nextPrime);
87
nextIndex = sieveSearch(length, nextIndex + 1);
88
nextPrime = 2*nextIndex + 1;
89
} while((nextIndex > 0) && (nextPrime < length));
90
}
91
92
/**
93
* Construct a bit sieve of searchLen bits used for finding prime number
94
* candidates. The new sieve begins at the specified base, which must
95
* be even.
96
*/
97
BitSieve(BigInteger base, int searchLen) {
98
/*
99
* Candidates are indicated by clear bits in the sieve. As a candidates
100
* nonprimality is calculated, a bit is set in the sieve to eliminate
101
* it. To reduce storage space and increase efficiency, no even numbers
102
* are represented in the sieve (each bit in the sieve represents an
103
* odd number).
104
*/
105
bits = new long[(unitIndex(searchLen-1) + 1)];
106
length = searchLen;
107
int start = 0;
108
109
int step = smallSieve.sieveSearch(smallSieve.length, start);
110
int convertedStep = (step *2) + 1;
111
112
// Construct the large sieve at an even offset specified by base
113
MutableBigInteger b = new MutableBigInteger(base);
114
MutableBigInteger q = new MutableBigInteger();
115
do {
116
// Calculate base mod convertedStep
117
start = b.divideOneWord(convertedStep, q);
118
119
// Take each multiple of step out of sieve
120
start = convertedStep - start;
121
if (start%2 == 0)
122
start += convertedStep;
123
sieveSingle(searchLen, (start-1)/2, convertedStep);
124
125
// Find next prime from small sieve
126
step = smallSieve.sieveSearch(smallSieve.length, step+1);
127
convertedStep = (step *2) + 1;
128
} while (step > 0);
129
}
130
131
/**
132
* Given a bit index return unit index containing it.
133
*/
134
private static int unitIndex(int bitIndex) {
135
return bitIndex >>> 6;
136
}
137
138
/**
139
* Return a unit that masks the specified bit in its unit.
140
*/
141
private static long bit(int bitIndex) {
142
return 1L << (bitIndex & ((1<<6) - 1));
143
}
144
145
/**
146
* Get the value of the bit at the specified index.
147
*/
148
private boolean get(int bitIndex) {
149
int unitIndex = unitIndex(bitIndex);
150
return ((bits[unitIndex] & bit(bitIndex)) != 0);
151
}
152
153
/**
154
* Set the bit at the specified index.
155
*/
156
private void set(int bitIndex) {
157
int unitIndex = unitIndex(bitIndex);
158
bits[unitIndex] |= bit(bitIndex);
159
}
160
161
/**
162
* This method returns the index of the first clear bit in the search
163
* array that occurs at or after start. It will not search past the
164
* specified limit. It returns -1 if there is no such clear bit.
165
*/
166
private int sieveSearch(int limit, int start) {
167
if (start >= limit)
168
return -1;
169
170
int index = start;
171
do {
172
if (!get(index))
173
return index;
174
index++;
175
} while(index < limit-1);
176
return -1;
177
}
178
179
/**
180
* Sieve a single set of multiples out of the sieve. Begin to remove
181
* multiples of the specified step starting at the specified start index,
182
* up to the specified limit.
183
*/
184
private void sieveSingle(int limit, int start, int step) {
185
while(start < limit) {
186
set(start);
187
start += step;
188
}
189
}
190
191
/**
192
* Test probable primes in the sieve and return successful candidates.
193
*/
194
BigInteger retrieve(BigInteger initValue, int certainty, java.util.Random random) {
195
// Examine the sieve one long at a time to find possible primes
196
int offset = 1;
197
for (int i=0; i<bits.length; i++) {
198
long nextLong = ~bits[i];
199
for (int j=0; j<64; j++) {
200
if ((nextLong & 1) == 1) {
201
BigInteger candidate = initValue.add(
202
BigInteger.valueOf(offset));
203
if (candidate.primeToCertainty(certainty, random))
204
return candidate;
205
}
206
nextLong >>>= 1;
207
offset+=2;
208
}
209
}
210
return null;
211
}
212
}
213
214