Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/classes/java/math/MutableBigInteger.java
41152 views
1
/*
2
* Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package java.math;
27
28
/**
29
* A class used to represent multiprecision integers that makes efficient
30
* use of allocated space by allowing a number to occupy only part of
31
* an array so that the arrays do not have to be reallocated as often.
32
* When performing an operation with many iterations the array used to
33
* hold a number is only reallocated when necessary and does not have to
34
* be the same size as the number it represents. A mutable number allows
35
* calculations to occur on the same number without having to create
36
* a new number for every step of the calculation as occurs with
37
* BigIntegers.
38
*
39
* @see BigInteger
40
* @author Michael McCloskey
41
* @author Timothy Buktu
42
* @since 1.3
43
*/
44
45
import static java.math.BigDecimal.INFLATED;
46
import static java.math.BigInteger.LONG_MASK;
47
import java.util.Arrays;
48
49
class MutableBigInteger {
50
/**
51
* Holds the magnitude of this MutableBigInteger in big endian order.
52
* The magnitude may start at an offset into the value array, and it may
53
* end before the length of the value array.
54
*/
55
int[] value;
56
57
/**
58
* The number of ints of the value array that are currently used
59
* to hold the magnitude of this MutableBigInteger. The magnitude starts
60
* at an offset and offset + intLen may be less than value.length.
61
*/
62
int intLen;
63
64
/**
65
* The offset into the value array where the magnitude of this
66
* MutableBigInteger begins.
67
*/
68
int offset = 0;
69
70
// Constants
71
/**
72
* MutableBigInteger with one element value array with the value 1. Used by
73
* BigDecimal divideAndRound to increment the quotient. Use this constant
74
* only when the method is not going to modify this object.
75
*/
76
static final MutableBigInteger ONE = new MutableBigInteger(1);
77
78
/**
79
* The minimum {@code intLen} for cancelling powers of two before
80
* dividing.
81
* If the number of ints is less than this threshold,
82
* {@code divideKnuth} does not eliminate common powers of two from
83
* the dividend and divisor.
84
*/
85
static final int KNUTH_POW2_THRESH_LEN = 6;
86
87
/**
88
* The minimum number of trailing zero ints for cancelling powers of two
89
* before dividing.
90
* If the dividend and divisor don't share at least this many zero ints
91
* at the end, {@code divideKnuth} does not eliminate common powers
92
* of two from the dividend and divisor.
93
*/
94
static final int KNUTH_POW2_THRESH_ZEROS = 3;
95
96
// Constructors
97
98
/**
99
* The default constructor. An empty MutableBigInteger is created with
100
* a one word capacity.
101
*/
102
MutableBigInteger() {
103
value = new int[1];
104
intLen = 0;
105
}
106
107
/**
108
* Construct a new MutableBigInteger with a magnitude specified by
109
* the int val.
110
*/
111
MutableBigInteger(int val) {
112
value = new int[1];
113
intLen = 1;
114
value[0] = val;
115
}
116
117
/**
118
* Construct a new MutableBigInteger with the specified value array
119
* up to the length of the array supplied.
120
*/
121
MutableBigInteger(int[] val) {
122
value = val;
123
intLen = val.length;
124
}
125
126
/**
127
* Construct a new MutableBigInteger with a magnitude equal to the
128
* specified BigInteger.
129
*/
130
MutableBigInteger(BigInteger b) {
131
intLen = b.mag.length;
132
value = Arrays.copyOf(b.mag, intLen);
133
}
134
135
/**
136
* Construct a new MutableBigInteger with a magnitude equal to the
137
* specified MutableBigInteger.
138
*/
139
MutableBigInteger(MutableBigInteger val) {
140
intLen = val.intLen;
141
value = Arrays.copyOfRange(val.value, val.offset, val.offset + intLen);
142
}
143
144
/**
145
* Makes this number an {@code n}-int number all of whose bits are ones.
146
* Used by Burnikel-Ziegler division.
147
* @param n number of ints in the {@code value} array
148
*/
149
private void ones(int n) {
150
if (n > value.length)
151
value = new int[n];
152
Arrays.fill(value, -1);
153
offset = 0;
154
intLen = n;
155
}
156
157
/**
158
* Internal helper method to return the magnitude array. The caller is not
159
* supposed to modify the returned array.
160
*/
161
private int[] getMagnitudeArray() {
162
if (offset > 0 || value.length != intLen) {
163
// Shrink value to be the total magnitude
164
int[] tmp = Arrays.copyOfRange(value, offset, offset + intLen);
165
Arrays.fill(value, 0);
166
offset = 0;
167
intLen = tmp.length;
168
value = tmp;
169
}
170
return value;
171
}
172
173
/**
174
* Convert this MutableBigInteger to a long value. The caller has to make
175
* sure this MutableBigInteger can be fit into long.
176
*/
177
private long toLong() {
178
assert (intLen <= 2) : "this MutableBigInteger exceeds the range of long";
179
if (intLen == 0)
180
return 0;
181
long d = value[offset] & LONG_MASK;
182
return (intLen == 2) ? d << 32 | (value[offset + 1] & LONG_MASK) : d;
183
}
184
185
/**
186
* Convert this MutableBigInteger to a BigInteger object.
187
*/
188
BigInteger toBigInteger(int sign) {
189
if (intLen == 0 || sign == 0)
190
return BigInteger.ZERO;
191
return new BigInteger(getMagnitudeArray(), sign);
192
}
193
194
/**
195
* Converts this number to a nonnegative {@code BigInteger}.
196
*/
197
BigInteger toBigInteger() {
198
normalize();
199
return toBigInteger(isZero() ? 0 : 1);
200
}
201
202
/**
203
* Convert this MutableBigInteger to BigDecimal object with the specified sign
204
* and scale.
205
*/
206
BigDecimal toBigDecimal(int sign, int scale) {
207
if (intLen == 0 || sign == 0)
208
return BigDecimal.zeroValueOf(scale);
209
int[] mag = getMagnitudeArray();
210
int len = mag.length;
211
int d = mag[0];
212
// If this MutableBigInteger can't be fit into long, we need to
213
// make a BigInteger object for the resultant BigDecimal object.
214
if (len > 2 || (d < 0 && len == 2))
215
return new BigDecimal(new BigInteger(mag, sign), INFLATED, scale, 0);
216
long v = (len == 2) ?
217
((mag[1] & LONG_MASK) | (d & LONG_MASK) << 32) :
218
d & LONG_MASK;
219
return BigDecimal.valueOf(sign == -1 ? -v : v, scale);
220
}
221
222
/**
223
* This is for internal use in converting from a MutableBigInteger
224
* object into a long value given a specified sign.
225
* returns INFLATED if value is not fit into long
226
*/
227
long toCompactValue(int sign) {
228
if (intLen == 0 || sign == 0)
229
return 0L;
230
int[] mag = getMagnitudeArray();
231
int len = mag.length;
232
int d = mag[0];
233
// If this MutableBigInteger can not be fitted into long, we need to
234
// make a BigInteger object for the resultant BigDecimal object.
235
if (len > 2 || (d < 0 && len == 2))
236
return INFLATED;
237
long v = (len == 2) ?
238
((mag[1] & LONG_MASK) | (d & LONG_MASK) << 32) :
239
d & LONG_MASK;
240
return sign == -1 ? -v : v;
241
}
242
243
/**
244
* Clear out a MutableBigInteger for reuse.
245
*/
246
void clear() {
247
offset = intLen = 0;
248
for (int index=0, n=value.length; index < n; index++)
249
value[index] = 0;
250
}
251
252
/**
253
* Set a MutableBigInteger to zero, removing its offset.
254
*/
255
void reset() {
256
offset = intLen = 0;
257
}
258
259
/**
260
* Compare the magnitude of two MutableBigIntegers. Returns -1, 0 or 1
261
* as this MutableBigInteger is numerically less than, equal to, or
262
* greater than {@code b}.
263
*/
264
final int compare(MutableBigInteger b) {
265
int blen = b.intLen;
266
if (intLen < blen)
267
return -1;
268
if (intLen > blen)
269
return 1;
270
271
// Add Integer.MIN_VALUE to make the comparison act as unsigned integer
272
// comparison.
273
int[] bval = b.value;
274
for (int i = offset, j = b.offset; i < intLen + offset; i++, j++) {
275
int b1 = value[i] + 0x80000000;
276
int b2 = bval[j] + 0x80000000;
277
if (b1 < b2)
278
return -1;
279
if (b1 > b2)
280
return 1;
281
}
282
return 0;
283
}
284
285
/**
286
* Returns a value equal to what {@code b.leftShift(32*ints); return compare(b);}
287
* would return, but doesn't change the value of {@code b}.
288
*/
289
private int compareShifted(MutableBigInteger b, int ints) {
290
int blen = b.intLen;
291
int alen = intLen - ints;
292
if (alen < blen)
293
return -1;
294
if (alen > blen)
295
return 1;
296
297
// Add Integer.MIN_VALUE to make the comparison act as unsigned integer
298
// comparison.
299
int[] bval = b.value;
300
for (int i = offset, j = b.offset; i < alen + offset; i++, j++) {
301
int b1 = value[i] + 0x80000000;
302
int b2 = bval[j] + 0x80000000;
303
if (b1 < b2)
304
return -1;
305
if (b1 > b2)
306
return 1;
307
}
308
return 0;
309
}
310
311
/**
312
* Compare this against half of a MutableBigInteger object (Needed for
313
* remainder tests).
314
* Assumes no leading unnecessary zeros, which holds for results
315
* from divide().
316
*/
317
final int compareHalf(MutableBigInteger b) {
318
int blen = b.intLen;
319
int len = intLen;
320
if (len <= 0)
321
return blen <= 0 ? 0 : -1;
322
if (len > blen)
323
return 1;
324
if (len < blen - 1)
325
return -1;
326
int[] bval = b.value;
327
int bstart = 0;
328
int carry = 0;
329
// Only 2 cases left:len == blen or len == blen - 1
330
if (len != blen) { // len == blen - 1
331
if (bval[bstart] == 1) {
332
++bstart;
333
carry = 0x80000000;
334
} else
335
return -1;
336
}
337
// compare values with right-shifted values of b,
338
// carrying shifted-out bits across words
339
int[] val = value;
340
for (int i = offset, j = bstart; i < len + offset;) {
341
int bv = bval[j++];
342
long hb = ((bv >>> 1) + carry) & LONG_MASK;
343
long v = val[i++] & LONG_MASK;
344
if (v != hb)
345
return v < hb ? -1 : 1;
346
carry = (bv & 1) << 31; // carray will be either 0x80000000 or 0
347
}
348
return carry == 0 ? 0 : -1;
349
}
350
351
/**
352
* Return the index of the lowest set bit in this MutableBigInteger. If the
353
* magnitude of this MutableBigInteger is zero, -1 is returned.
354
*/
355
private final int getLowestSetBit() {
356
if (intLen == 0)
357
return -1;
358
int j, b;
359
for (j=intLen-1; (j > 0) && (value[j+offset] == 0); j--)
360
;
361
b = value[j+offset];
362
if (b == 0)
363
return -1;
364
return ((intLen-1-j)<<5) + Integer.numberOfTrailingZeros(b);
365
}
366
367
/**
368
* Return the int in use in this MutableBigInteger at the specified
369
* index. This method is not used because it is not inlined on all
370
* platforms.
371
*/
372
private final int getInt(int index) {
373
return value[offset+index];
374
}
375
376
/**
377
* Return a long which is equal to the unsigned value of the int in
378
* use in this MutableBigInteger at the specified index. This method is
379
* not used because it is not inlined on all platforms.
380
*/
381
private final long getLong(int index) {
382
return value[offset+index] & LONG_MASK;
383
}
384
385
/**
386
* Ensure that the MutableBigInteger is in normal form, specifically
387
* making sure that there are no leading zeros, and that if the
388
* magnitude is zero, then intLen is zero.
389
*/
390
final void normalize() {
391
if (intLen == 0) {
392
offset = 0;
393
return;
394
}
395
396
int index = offset;
397
if (value[index] != 0)
398
return;
399
400
int indexBound = index+intLen;
401
do {
402
index++;
403
} while(index < indexBound && value[index] == 0);
404
405
int numZeros = index - offset;
406
intLen -= numZeros;
407
offset = (intLen == 0 ? 0 : offset+numZeros);
408
}
409
410
/**
411
* If this MutableBigInteger cannot hold len words, increase the size
412
* of the value array to len words.
413
*/
414
private final void ensureCapacity(int len) {
415
if (value.length < len) {
416
value = new int[len];
417
offset = 0;
418
intLen = len;
419
}
420
}
421
422
/**
423
* Convert this MutableBigInteger into an int array with no leading
424
* zeros, of a length that is equal to this MutableBigInteger's intLen.
425
*/
426
int[] toIntArray() {
427
int[] result = new int[intLen];
428
for(int i=0; i < intLen; i++)
429
result[i] = value[offset+i];
430
return result;
431
}
432
433
/**
434
* Sets the int at index+offset in this MutableBigInteger to val.
435
* This does not get inlined on all platforms so it is not used
436
* as often as originally intended.
437
*/
438
void setInt(int index, int val) {
439
value[offset + index] = val;
440
}
441
442
/**
443
* Sets this MutableBigInteger's value array to the specified array.
444
* The intLen is set to the specified length.
445
*/
446
void setValue(int[] val, int length) {
447
value = val;
448
intLen = length;
449
offset = 0;
450
}
451
452
/**
453
* Sets this MutableBigInteger's value array to a copy of the specified
454
* array. The intLen is set to the length of the new array.
455
*/
456
void copyValue(MutableBigInteger src) {
457
int len = src.intLen;
458
if (value.length < len)
459
value = new int[len];
460
System.arraycopy(src.value, src.offset, value, 0, len);
461
intLen = len;
462
offset = 0;
463
}
464
465
/**
466
* Sets this MutableBigInteger's value array to a copy of the specified
467
* array. The intLen is set to the length of the specified array.
468
*/
469
void copyValue(int[] val) {
470
int len = val.length;
471
if (value.length < len)
472
value = new int[len];
473
System.arraycopy(val, 0, value, 0, len);
474
intLen = len;
475
offset = 0;
476
}
477
478
/**
479
* Returns true iff this MutableBigInteger has a value of one.
480
*/
481
boolean isOne() {
482
return (intLen == 1) && (value[offset] == 1);
483
}
484
485
/**
486
* Returns true iff this MutableBigInteger has a value of zero.
487
*/
488
boolean isZero() {
489
return (intLen == 0);
490
}
491
492
/**
493
* Returns true iff this MutableBigInteger is even.
494
*/
495
boolean isEven() {
496
return (intLen == 0) || ((value[offset + intLen - 1] & 1) == 0);
497
}
498
499
/**
500
* Returns true iff this MutableBigInteger is odd.
501
*/
502
boolean isOdd() {
503
return isZero() ? false : ((value[offset + intLen - 1] & 1) == 1);
504
}
505
506
/**
507
* Returns true iff this MutableBigInteger is in normal form. A
508
* MutableBigInteger is in normal form if it has no leading zeros
509
* after the offset, and intLen + offset <= value.length.
510
*/
511
boolean isNormal() {
512
if (intLen + offset > value.length)
513
return false;
514
if (intLen == 0)
515
return true;
516
return (value[offset] != 0);
517
}
518
519
/**
520
* Returns a String representation of this MutableBigInteger in radix 10.
521
*/
522
public String toString() {
523
BigInteger b = toBigInteger(1);
524
return b.toString();
525
}
526
527
/**
528
* Like {@link #rightShift(int)} but {@code n} can be greater than the length of the number.
529
*/
530
void safeRightShift(int n) {
531
if (n/32 >= intLen) {
532
reset();
533
} else {
534
rightShift(n);
535
}
536
}
537
538
/**
539
* Right shift this MutableBigInteger n bits. The MutableBigInteger is left
540
* in normal form.
541
*/
542
void rightShift(int n) {
543
if (intLen == 0)
544
return;
545
int nInts = n >>> 5;
546
int nBits = n & 0x1F;
547
this.intLen -= nInts;
548
if (nBits == 0)
549
return;
550
int bitsInHighWord = BigInteger.bitLengthForInt(value[offset]);
551
if (nBits >= bitsInHighWord) {
552
this.primitiveLeftShift(32 - nBits);
553
this.intLen--;
554
} else {
555
primitiveRightShift(nBits);
556
}
557
}
558
559
/**
560
* Like {@link #leftShift(int)} but {@code n} can be zero.
561
*/
562
void safeLeftShift(int n) {
563
if (n > 0) {
564
leftShift(n);
565
}
566
}
567
568
/**
569
* Left shift this MutableBigInteger n bits.
570
*/
571
void leftShift(int n) {
572
/*
573
* If there is enough storage space in this MutableBigInteger already
574
* the available space will be used. Space to the right of the used
575
* ints in the value array is faster to utilize, so the extra space
576
* will be taken from the right if possible.
577
*/
578
if (intLen == 0)
579
return;
580
int nInts = n >>> 5;
581
int nBits = n&0x1F;
582
int bitsInHighWord = BigInteger.bitLengthForInt(value[offset]);
583
584
// If shift can be done without moving words, do so
585
if (n <= (32-bitsInHighWord)) {
586
primitiveLeftShift(nBits);
587
return;
588
}
589
590
int newLen = intLen + nInts +1;
591
if (nBits <= (32-bitsInHighWord))
592
newLen--;
593
if (value.length < newLen) {
594
// The array must grow
595
int[] result = new int[newLen];
596
for (int i=0; i < intLen; i++)
597
result[i] = value[offset+i];
598
setValue(result, newLen);
599
} else if (value.length - offset >= newLen) {
600
// Use space on right
601
for(int i=0; i < newLen - intLen; i++)
602
value[offset+intLen+i] = 0;
603
} else {
604
// Must use space on left
605
for (int i=0; i < intLen; i++)
606
value[i] = value[offset+i];
607
for (int i=intLen; i < newLen; i++)
608
value[i] = 0;
609
offset = 0;
610
}
611
intLen = newLen;
612
if (nBits == 0)
613
return;
614
if (nBits <= (32-bitsInHighWord))
615
primitiveLeftShift(nBits);
616
else
617
primitiveRightShift(32 -nBits);
618
}
619
620
/**
621
* A primitive used for division. This method adds in one multiple of the
622
* divisor a back to the dividend result at a specified offset. It is used
623
* when qhat was estimated too large, and must be adjusted.
624
*/
625
private int divadd(int[] a, int[] result, int offset) {
626
long carry = 0;
627
628
for (int j=a.length-1; j >= 0; j--) {
629
long sum = (a[j] & LONG_MASK) +
630
(result[j+offset] & LONG_MASK) + carry;
631
result[j+offset] = (int)sum;
632
carry = sum >>> 32;
633
}
634
return (int)carry;
635
}
636
637
/**
638
* This method is used for division. It multiplies an n word input a by one
639
* word input x, and subtracts the n word product from q. This is needed
640
* when subtracting qhat*divisor from dividend.
641
*/
642
private int mulsub(int[] q, int[] a, int x, int len, int offset) {
643
long xLong = x & LONG_MASK;
644
long carry = 0;
645
offset += len;
646
647
for (int j=len-1; j >= 0; j--) {
648
long product = (a[j] & LONG_MASK) * xLong + carry;
649
long difference = q[offset] - product;
650
q[offset--] = (int)difference;
651
carry = (product >>> 32)
652
+ (((difference & LONG_MASK) >
653
(((~(int)product) & LONG_MASK))) ? 1:0);
654
}
655
return (int)carry;
656
}
657
658
/**
659
* The method is the same as mulsun, except the fact that q array is not
660
* updated, the only result of the method is borrow flag.
661
*/
662
private int mulsubBorrow(int[] q, int[] a, int x, int len, int offset) {
663
long xLong = x & LONG_MASK;
664
long carry = 0;
665
offset += len;
666
for (int j=len-1; j >= 0; j--) {
667
long product = (a[j] & LONG_MASK) * xLong + carry;
668
long difference = q[offset--] - product;
669
carry = (product >>> 32)
670
+ (((difference & LONG_MASK) >
671
(((~(int)product) & LONG_MASK))) ? 1:0);
672
}
673
return (int)carry;
674
}
675
676
/**
677
* Right shift this MutableBigInteger n bits, where n is
678
* less than 32.
679
* Assumes that intLen > 0, n > 0 for speed
680
*/
681
private final void primitiveRightShift(int n) {
682
int[] val = value;
683
int n2 = 32 - n;
684
for (int i=offset+intLen-1, c=val[i]; i > offset; i--) {
685
int b = c;
686
c = val[i-1];
687
val[i] = (c << n2) | (b >>> n);
688
}
689
val[offset] >>>= n;
690
}
691
692
/**
693
* Left shift this MutableBigInteger n bits, where n is
694
* less than 32.
695
* Assumes that intLen > 0, n > 0 for speed
696
*/
697
private final void primitiveLeftShift(int n) {
698
int[] val = value;
699
int n2 = 32 - n;
700
for (int i=offset, c=val[i], m=i+intLen-1; i < m; i++) {
701
int b = c;
702
c = val[i+1];
703
val[i] = (b << n) | (c >>> n2);
704
}
705
val[offset+intLen-1] <<= n;
706
}
707
708
/**
709
* Returns a {@code BigInteger} equal to the {@code n}
710
* low ints of this number.
711
*/
712
private BigInteger getLower(int n) {
713
if (isZero()) {
714
return BigInteger.ZERO;
715
} else if (intLen < n) {
716
return toBigInteger(1);
717
} else {
718
// strip zeros
719
int len = n;
720
while (len > 0 && value[offset+intLen-len] == 0)
721
len--;
722
int sign = len > 0 ? 1 : 0;
723
return new BigInteger(Arrays.copyOfRange(value, offset+intLen-len, offset+intLen), sign);
724
}
725
}
726
727
/**
728
* Discards all ints whose index is greater than {@code n}.
729
*/
730
private void keepLower(int n) {
731
if (intLen >= n) {
732
offset += intLen - n;
733
intLen = n;
734
}
735
}
736
737
/**
738
* Adds the contents of two MutableBigInteger objects.The result
739
* is placed within this MutableBigInteger.
740
* The contents of the addend are not changed.
741
*/
742
void add(MutableBigInteger addend) {
743
int x = intLen;
744
int y = addend.intLen;
745
int resultLen = (intLen > addend.intLen ? intLen : addend.intLen);
746
int[] result = (value.length < resultLen ? new int[resultLen] : value);
747
748
int rstart = result.length-1;
749
long sum;
750
long carry = 0;
751
752
// Add common parts of both numbers
753
while(x > 0 && y > 0) {
754
x--; y--;
755
sum = (value[x+offset] & LONG_MASK) +
756
(addend.value[y+addend.offset] & LONG_MASK) + carry;
757
result[rstart--] = (int)sum;
758
carry = sum >>> 32;
759
}
760
761
// Add remainder of the longer number
762
while(x > 0) {
763
x--;
764
if (carry == 0 && result == value && rstart == (x + offset))
765
return;
766
sum = (value[x+offset] & LONG_MASK) + carry;
767
result[rstart--] = (int)sum;
768
carry = sum >>> 32;
769
}
770
while(y > 0) {
771
y--;
772
sum = (addend.value[y+addend.offset] & LONG_MASK) + carry;
773
result[rstart--] = (int)sum;
774
carry = sum >>> 32;
775
}
776
777
if (carry > 0) { // Result must grow in length
778
resultLen++;
779
if (result.length < resultLen) {
780
int temp[] = new int[resultLen];
781
// Result one word longer from carry-out; copy low-order
782
// bits into new result.
783
System.arraycopy(result, 0, temp, 1, result.length);
784
temp[0] = 1;
785
result = temp;
786
} else {
787
result[rstart--] = 1;
788
}
789
}
790
791
value = result;
792
intLen = resultLen;
793
offset = result.length - resultLen;
794
}
795
796
/**
797
* Adds the value of {@code addend} shifted {@code n} ints to the left.
798
* Has the same effect as {@code addend.leftShift(32*ints); add(addend);}
799
* but doesn't change the value of {@code addend}.
800
*/
801
void addShifted(MutableBigInteger addend, int n) {
802
if (addend.isZero()) {
803
return;
804
}
805
806
int x = intLen;
807
int y = addend.intLen + n;
808
int resultLen = (intLen > y ? intLen : y);
809
int[] result = (value.length < resultLen ? new int[resultLen] : value);
810
811
int rstart = result.length-1;
812
long sum;
813
long carry = 0;
814
815
// Add common parts of both numbers
816
while (x > 0 && y > 0) {
817
x--; y--;
818
int bval = y+addend.offset < addend.value.length ? addend.value[y+addend.offset] : 0;
819
sum = (value[x+offset] & LONG_MASK) +
820
(bval & LONG_MASK) + carry;
821
result[rstart--] = (int)sum;
822
carry = sum >>> 32;
823
}
824
825
// Add remainder of the longer number
826
while (x > 0) {
827
x--;
828
if (carry == 0 && result == value && rstart == (x + offset)) {
829
return;
830
}
831
sum = (value[x+offset] & LONG_MASK) + carry;
832
result[rstart--] = (int)sum;
833
carry = sum >>> 32;
834
}
835
while (y > 0) {
836
y--;
837
int bval = y+addend.offset < addend.value.length ? addend.value[y+addend.offset] : 0;
838
sum = (bval & LONG_MASK) + carry;
839
result[rstart--] = (int)sum;
840
carry = sum >>> 32;
841
}
842
843
if (carry > 0) { // Result must grow in length
844
resultLen++;
845
if (result.length < resultLen) {
846
int temp[] = new int[resultLen];
847
// Result one word longer from carry-out; copy low-order
848
// bits into new result.
849
System.arraycopy(result, 0, temp, 1, result.length);
850
temp[0] = 1;
851
result = temp;
852
} else {
853
result[rstart--] = 1;
854
}
855
}
856
857
value = result;
858
intLen = resultLen;
859
offset = result.length - resultLen;
860
}
861
862
/**
863
* Like {@link #addShifted(MutableBigInteger, int)} but {@code this.intLen} must
864
* not be greater than {@code n}. In other words, concatenates {@code this}
865
* and {@code addend}.
866
*/
867
void addDisjoint(MutableBigInteger addend, int n) {
868
if (addend.isZero())
869
return;
870
871
int x = intLen;
872
int y = addend.intLen + n;
873
int resultLen = (intLen > y ? intLen : y);
874
int[] result;
875
if (value.length < resultLen)
876
result = new int[resultLen];
877
else {
878
result = value;
879
Arrays.fill(value, offset+intLen, value.length, 0);
880
}
881
882
int rstart = result.length-1;
883
884
// copy from this if needed
885
System.arraycopy(value, offset, result, rstart+1-x, x);
886
y -= x;
887
rstart -= x;
888
889
int len = Math.min(y, addend.value.length-addend.offset);
890
System.arraycopy(addend.value, addend.offset, result, rstart+1-y, len);
891
892
// zero the gap
893
for (int i=rstart+1-y+len; i < rstart+1; i++)
894
result[i] = 0;
895
896
value = result;
897
intLen = resultLen;
898
offset = result.length - resultLen;
899
}
900
901
/**
902
* Adds the low {@code n} ints of {@code addend}.
903
*/
904
void addLower(MutableBigInteger addend, int n) {
905
MutableBigInteger a = new MutableBigInteger(addend);
906
if (a.offset + a.intLen >= n) {
907
a.offset = a.offset + a.intLen - n;
908
a.intLen = n;
909
}
910
a.normalize();
911
add(a);
912
}
913
914
/**
915
* Subtracts the smaller of this and b from the larger and places the
916
* result into this MutableBigInteger.
917
*/
918
int subtract(MutableBigInteger b) {
919
MutableBigInteger a = this;
920
921
int[] result = value;
922
int sign = a.compare(b);
923
924
if (sign == 0) {
925
reset();
926
return 0;
927
}
928
if (sign < 0) {
929
MutableBigInteger tmp = a;
930
a = b;
931
b = tmp;
932
}
933
934
int resultLen = a.intLen;
935
if (result.length < resultLen)
936
result = new int[resultLen];
937
938
long diff = 0;
939
int x = a.intLen;
940
int y = b.intLen;
941
int rstart = result.length - 1;
942
943
// Subtract common parts of both numbers
944
while (y > 0) {
945
x--; y--;
946
947
diff = (a.value[x+a.offset] & LONG_MASK) -
948
(b.value[y+b.offset] & LONG_MASK) - ((int)-(diff>>32));
949
result[rstart--] = (int)diff;
950
}
951
// Subtract remainder of longer number
952
while (x > 0) {
953
x--;
954
diff = (a.value[x+a.offset] & LONG_MASK) - ((int)-(diff>>32));
955
result[rstart--] = (int)diff;
956
}
957
958
value = result;
959
intLen = resultLen;
960
offset = value.length - resultLen;
961
normalize();
962
return sign;
963
}
964
965
/**
966
* Subtracts the smaller of a and b from the larger and places the result
967
* into the larger. Returns 1 if the answer is in a, -1 if in b, 0 if no
968
* operation was performed.
969
*/
970
private int difference(MutableBigInteger b) {
971
MutableBigInteger a = this;
972
int sign = a.compare(b);
973
if (sign == 0)
974
return 0;
975
if (sign < 0) {
976
MutableBigInteger tmp = a;
977
a = b;
978
b = tmp;
979
}
980
981
long diff = 0;
982
int x = a.intLen;
983
int y = b.intLen;
984
985
// Subtract common parts of both numbers
986
while (y > 0) {
987
x--; y--;
988
diff = (a.value[a.offset+ x] & LONG_MASK) -
989
(b.value[b.offset+ y] & LONG_MASK) - ((int)-(diff>>32));
990
a.value[a.offset+x] = (int)diff;
991
}
992
// Subtract remainder of longer number
993
while (x > 0) {
994
x--;
995
diff = (a.value[a.offset+ x] & LONG_MASK) - ((int)-(diff>>32));
996
a.value[a.offset+x] = (int)diff;
997
}
998
999
a.normalize();
1000
return sign;
1001
}
1002
1003
/**
1004
* Multiply the contents of two MutableBigInteger objects. The result is
1005
* placed into MutableBigInteger z. The contents of y are not changed.
1006
*/
1007
void multiply(MutableBigInteger y, MutableBigInteger z) {
1008
int xLen = intLen;
1009
int yLen = y.intLen;
1010
int newLen = xLen + yLen;
1011
1012
// Put z into an appropriate state to receive product
1013
if (z.value.length < newLen)
1014
z.value = new int[newLen];
1015
z.offset = 0;
1016
z.intLen = newLen;
1017
1018
// The first iteration is hoisted out of the loop to avoid extra add
1019
long carry = 0;
1020
for (int j=yLen-1, k=yLen+xLen-1; j >= 0; j--, k--) {
1021
long product = (y.value[j+y.offset] & LONG_MASK) *
1022
(value[xLen-1+offset] & LONG_MASK) + carry;
1023
z.value[k] = (int)product;
1024
carry = product >>> 32;
1025
}
1026
z.value[xLen-1] = (int)carry;
1027
1028
// Perform the multiplication word by word
1029
for (int i = xLen-2; i >= 0; i--) {
1030
carry = 0;
1031
for (int j=yLen-1, k=yLen+i; j >= 0; j--, k--) {
1032
long product = (y.value[j+y.offset] & LONG_MASK) *
1033
(value[i+offset] & LONG_MASK) +
1034
(z.value[k] & LONG_MASK) + carry;
1035
z.value[k] = (int)product;
1036
carry = product >>> 32;
1037
}
1038
z.value[i] = (int)carry;
1039
}
1040
1041
// Remove leading zeros from product
1042
z.normalize();
1043
}
1044
1045
/**
1046
* Multiply the contents of this MutableBigInteger by the word y. The
1047
* result is placed into z.
1048
*/
1049
void mul(int y, MutableBigInteger z) {
1050
if (y == 1) {
1051
z.copyValue(this);
1052
return;
1053
}
1054
1055
if (y == 0) {
1056
z.clear();
1057
return;
1058
}
1059
1060
// Perform the multiplication word by word
1061
long ylong = y & LONG_MASK;
1062
int[] zval = (z.value.length < intLen+1 ? new int[intLen + 1]
1063
: z.value);
1064
long carry = 0;
1065
for (int i = intLen-1; i >= 0; i--) {
1066
long product = ylong * (value[i+offset] & LONG_MASK) + carry;
1067
zval[i+1] = (int)product;
1068
carry = product >>> 32;
1069
}
1070
1071
if (carry == 0) {
1072
z.offset = 1;
1073
z.intLen = intLen;
1074
} else {
1075
z.offset = 0;
1076
z.intLen = intLen + 1;
1077
zval[0] = (int)carry;
1078
}
1079
z.value = zval;
1080
}
1081
1082
/**
1083
* This method is used for division of an n word dividend by a one word
1084
* divisor. The quotient is placed into quotient. The one word divisor is
1085
* specified by divisor.
1086
*
1087
* @return the remainder of the division is returned.
1088
*
1089
*/
1090
int divideOneWord(int divisor, MutableBigInteger quotient) {
1091
long divisorLong = divisor & LONG_MASK;
1092
1093
// Special case of one word dividend
1094
if (intLen == 1) {
1095
long dividendValue = value[offset] & LONG_MASK;
1096
int q = (int) (dividendValue / divisorLong);
1097
int r = (int) (dividendValue - q * divisorLong);
1098
quotient.value[0] = q;
1099
quotient.intLen = (q == 0) ? 0 : 1;
1100
quotient.offset = 0;
1101
return r;
1102
}
1103
1104
if (quotient.value.length < intLen)
1105
quotient.value = new int[intLen];
1106
quotient.offset = 0;
1107
quotient.intLen = intLen;
1108
1109
// Normalize the divisor
1110
int shift = Integer.numberOfLeadingZeros(divisor);
1111
1112
int rem = value[offset];
1113
long remLong = rem & LONG_MASK;
1114
if (remLong < divisorLong) {
1115
quotient.value[0] = 0;
1116
} else {
1117
quotient.value[0] = (int)(remLong / divisorLong);
1118
rem = (int) (remLong - (quotient.value[0] * divisorLong));
1119
remLong = rem & LONG_MASK;
1120
}
1121
int xlen = intLen;
1122
while (--xlen > 0) {
1123
long dividendEstimate = (remLong << 32) |
1124
(value[offset + intLen - xlen] & LONG_MASK);
1125
int q;
1126
if (dividendEstimate >= 0) {
1127
q = (int) (dividendEstimate / divisorLong);
1128
rem = (int) (dividendEstimate - q * divisorLong);
1129
} else {
1130
long tmp = divWord(dividendEstimate, divisor);
1131
q = (int) (tmp & LONG_MASK);
1132
rem = (int) (tmp >>> 32);
1133
}
1134
quotient.value[intLen - xlen] = q;
1135
remLong = rem & LONG_MASK;
1136
}
1137
1138
quotient.normalize();
1139
// Unnormalize
1140
if (shift > 0)
1141
return rem % divisor;
1142
else
1143
return rem;
1144
}
1145
1146
/**
1147
* Calculates the quotient of this div b and places the quotient in the
1148
* provided MutableBigInteger objects and the remainder object is returned.
1149
*
1150
*/
1151
MutableBigInteger divide(MutableBigInteger b, MutableBigInteger quotient) {
1152
return divide(b,quotient,true);
1153
}
1154
1155
MutableBigInteger divide(MutableBigInteger b, MutableBigInteger quotient, boolean needRemainder) {
1156
if (b.intLen < BigInteger.BURNIKEL_ZIEGLER_THRESHOLD ||
1157
intLen - b.intLen < BigInteger.BURNIKEL_ZIEGLER_OFFSET) {
1158
return divideKnuth(b, quotient, needRemainder);
1159
} else {
1160
return divideAndRemainderBurnikelZiegler(b, quotient);
1161
}
1162
}
1163
1164
/**
1165
* @see #divideKnuth(MutableBigInteger, MutableBigInteger, boolean)
1166
*/
1167
MutableBigInteger divideKnuth(MutableBigInteger b, MutableBigInteger quotient) {
1168
return divideKnuth(b,quotient,true);
1169
}
1170
1171
/**
1172
* Calculates the quotient of this div b and places the quotient in the
1173
* provided MutableBigInteger objects and the remainder object is returned.
1174
*
1175
* Uses Algorithm D from Knuth TAOCP Vol. 2, 3rd edition, section 4.3.1.
1176
* Many optimizations to that algorithm have been adapted from the Colin
1177
* Plumb C library.
1178
* It special cases one word divisors for speed. The content of b is not
1179
* changed.
1180
*
1181
*/
1182
MutableBigInteger divideKnuth(MutableBigInteger b, MutableBigInteger quotient, boolean needRemainder) {
1183
if (b.intLen == 0)
1184
throw new ArithmeticException("BigInteger divide by zero");
1185
1186
// Dividend is zero
1187
if (intLen == 0) {
1188
quotient.intLen = quotient.offset = 0;
1189
return needRemainder ? new MutableBigInteger() : null;
1190
}
1191
1192
int cmp = compare(b);
1193
// Dividend less than divisor
1194
if (cmp < 0) {
1195
quotient.intLen = quotient.offset = 0;
1196
return needRemainder ? new MutableBigInteger(this) : null;
1197
}
1198
// Dividend equal to divisor
1199
if (cmp == 0) {
1200
quotient.value[0] = quotient.intLen = 1;
1201
quotient.offset = 0;
1202
return needRemainder ? new MutableBigInteger() : null;
1203
}
1204
1205
quotient.clear();
1206
// Special case one word divisor
1207
if (b.intLen == 1) {
1208
int r = divideOneWord(b.value[b.offset], quotient);
1209
if(needRemainder) {
1210
if (r == 0)
1211
return new MutableBigInteger();
1212
return new MutableBigInteger(r);
1213
} else {
1214
return null;
1215
}
1216
}
1217
1218
// Cancel common powers of two if we're above the KNUTH_POW2_* thresholds
1219
if (intLen >= KNUTH_POW2_THRESH_LEN) {
1220
int trailingZeroBits = Math.min(getLowestSetBit(), b.getLowestSetBit());
1221
if (trailingZeroBits >= KNUTH_POW2_THRESH_ZEROS*32) {
1222
MutableBigInteger a = new MutableBigInteger(this);
1223
b = new MutableBigInteger(b);
1224
a.rightShift(trailingZeroBits);
1225
b.rightShift(trailingZeroBits);
1226
MutableBigInteger r = a.divideKnuth(b, quotient);
1227
r.leftShift(trailingZeroBits);
1228
return r;
1229
}
1230
}
1231
1232
return divideMagnitude(b, quotient, needRemainder);
1233
}
1234
1235
/**
1236
* Computes {@code this/b} and {@code this%b} using the
1237
* <a href="http://cr.yp.to/bib/1998/burnikel.ps"> Burnikel-Ziegler algorithm</a>.
1238
* This method implements algorithm 3 from pg. 9 of the Burnikel-Ziegler paper.
1239
* The parameter beta was chosen to b 2<sup>32</sup> so almost all shifts are
1240
* multiples of 32 bits.<br/>
1241
* {@code this} and {@code b} must be nonnegative.
1242
* @param b the divisor
1243
* @param quotient output parameter for {@code this/b}
1244
* @return the remainder
1245
*/
1246
MutableBigInteger divideAndRemainderBurnikelZiegler(MutableBigInteger b, MutableBigInteger quotient) {
1247
int r = intLen;
1248
int s = b.intLen;
1249
1250
// Clear the quotient
1251
quotient.offset = quotient.intLen = 0;
1252
1253
if (r < s) {
1254
return this;
1255
} else {
1256
// Unlike Knuth division, we don't check for common powers of two here because
1257
// BZ already runs faster if both numbers contain powers of two and cancelling them has no
1258
// additional benefit.
1259
1260
// step 1: let m = min{2^k | (2^k)*BURNIKEL_ZIEGLER_THRESHOLD > s}
1261
int m = 1 << (32-Integer.numberOfLeadingZeros(s/BigInteger.BURNIKEL_ZIEGLER_THRESHOLD));
1262
1263
int j = (s+m-1) / m; // step 2a: j = ceil(s/m)
1264
int n = j * m; // step 2b: block length in 32-bit units
1265
long n32 = 32L * n; // block length in bits
1266
int sigma = (int) Math.max(0, n32 - b.bitLength()); // step 3: sigma = max{T | (2^T)*B < beta^n}
1267
MutableBigInteger bShifted = new MutableBigInteger(b);
1268
bShifted.safeLeftShift(sigma); // step 4a: shift b so its length is a multiple of n
1269
MutableBigInteger aShifted = new MutableBigInteger (this);
1270
aShifted.safeLeftShift(sigma); // step 4b: shift a by the same amount
1271
1272
// step 5: t is the number of blocks needed to accommodate a plus one additional bit
1273
int t = (int) ((aShifted.bitLength()+n32) / n32);
1274
if (t < 2) {
1275
t = 2;
1276
}
1277
1278
// step 6: conceptually split a into blocks a[t-1], ..., a[0]
1279
MutableBigInteger a1 = aShifted.getBlock(t-1, t, n); // the most significant block of a
1280
1281
// step 7: z[t-2] = [a[t-1], a[t-2]]
1282
MutableBigInteger z = aShifted.getBlock(t-2, t, n); // the second to most significant block
1283
z.addDisjoint(a1, n); // z[t-2]
1284
1285
// do schoolbook division on blocks, dividing 2-block numbers by 1-block numbers
1286
MutableBigInteger qi = new MutableBigInteger();
1287
MutableBigInteger ri;
1288
for (int i=t-2; i > 0; i--) {
1289
// step 8a: compute (qi,ri) such that z=b*qi+ri
1290
ri = z.divide2n1n(bShifted, qi);
1291
1292
// step 8b: z = [ri, a[i-1]]
1293
z = aShifted.getBlock(i-1, t, n); // a[i-1]
1294
z.addDisjoint(ri, n);
1295
quotient.addShifted(qi, i*n); // update q (part of step 9)
1296
}
1297
// final iteration of step 8: do the loop one more time for i=0 but leave z unchanged
1298
ri = z.divide2n1n(bShifted, qi);
1299
quotient.add(qi);
1300
1301
ri.rightShift(sigma); // step 9: a and b were shifted, so shift back
1302
return ri;
1303
}
1304
}
1305
1306
/**
1307
* This method implements algorithm 1 from pg. 4 of the Burnikel-Ziegler paper.
1308
* It divides a 2n-digit number by a n-digit number.<br/>
1309
* The parameter beta is 2<sup>32</sup> so all shifts are multiples of 32 bits.
1310
* <br/>
1311
* {@code this} must be a nonnegative number such that {@code this.bitLength() <= 2*b.bitLength()}
1312
* @param b a positive number such that {@code b.bitLength()} is even
1313
* @param quotient output parameter for {@code this/b}
1314
* @return {@code this%b}
1315
*/
1316
private MutableBigInteger divide2n1n(MutableBigInteger b, MutableBigInteger quotient) {
1317
int n = b.intLen;
1318
1319
// step 1: base case
1320
if (n%2 != 0 || n < BigInteger.BURNIKEL_ZIEGLER_THRESHOLD) {
1321
return divideKnuth(b, quotient);
1322
}
1323
1324
// step 2: view this as [a1,a2,a3,a4] where each ai is n/2 ints or less
1325
MutableBigInteger aUpper = new MutableBigInteger(this);
1326
aUpper.safeRightShift(32*(n/2)); // aUpper = [a1,a2,a3]
1327
keepLower(n/2); // this = a4
1328
1329
// step 3: q1=aUpper/b, r1=aUpper%b
1330
MutableBigInteger q1 = new MutableBigInteger();
1331
MutableBigInteger r1 = aUpper.divide3n2n(b, q1);
1332
1333
// step 4: quotient=[r1,this]/b, r2=[r1,this]%b
1334
addDisjoint(r1, n/2); // this = [r1,this]
1335
MutableBigInteger r2 = divide3n2n(b, quotient);
1336
1337
// step 5: let quotient=[q1,quotient] and return r2
1338
quotient.addDisjoint(q1, n/2);
1339
return r2;
1340
}
1341
1342
/**
1343
* This method implements algorithm 2 from pg. 5 of the Burnikel-Ziegler paper.
1344
* It divides a 3n-digit number by a 2n-digit number.<br/>
1345
* The parameter beta is 2<sup>32</sup> so all shifts are multiples of 32 bits.<br/>
1346
* <br/>
1347
* {@code this} must be a nonnegative number such that {@code 2*this.bitLength() <= 3*b.bitLength()}
1348
* @param quotient output parameter for {@code this/b}
1349
* @return {@code this%b}
1350
*/
1351
private MutableBigInteger divide3n2n(MutableBigInteger b, MutableBigInteger quotient) {
1352
int n = b.intLen / 2; // half the length of b in ints
1353
1354
// step 1: view this as [a1,a2,a3] where each ai is n ints or less; let a12=[a1,a2]
1355
MutableBigInteger a12 = new MutableBigInteger(this);
1356
a12.safeRightShift(32*n);
1357
1358
// step 2: view b as [b1,b2] where each bi is n ints or less
1359
MutableBigInteger b1 = new MutableBigInteger(b);
1360
b1.safeRightShift(n * 32);
1361
BigInteger b2 = b.getLower(n);
1362
1363
MutableBigInteger r;
1364
MutableBigInteger d;
1365
if (compareShifted(b, n) < 0) {
1366
// step 3a: if a1<b1, let quotient=a12/b1 and r=a12%b1
1367
r = a12.divide2n1n(b1, quotient);
1368
1369
// step 4: d=quotient*b2
1370
d = new MutableBigInteger(quotient.toBigInteger().multiply(b2));
1371
} else {
1372
// step 3b: if a1>=b1, let quotient=beta^n-1 and r=a12-b1*2^n+b1
1373
quotient.ones(n);
1374
a12.add(b1);
1375
b1.leftShift(32*n);
1376
a12.subtract(b1);
1377
r = a12;
1378
1379
// step 4: d=quotient*b2=(b2 << 32*n) - b2
1380
d = new MutableBigInteger(b2);
1381
d.leftShift(32 * n);
1382
d.subtract(new MutableBigInteger(b2));
1383
}
1384
1385
// step 5: r = r*beta^n + a3 - d (paper says a4)
1386
// However, don't subtract d until after the while loop so r doesn't become negative
1387
r.leftShift(32 * n);
1388
r.addLower(this, n);
1389
1390
// step 6: add b until r>=d
1391
while (r.compare(d) < 0) {
1392
r.add(b);
1393
quotient.subtract(MutableBigInteger.ONE);
1394
}
1395
r.subtract(d);
1396
1397
return r;
1398
}
1399
1400
/**
1401
* Returns a {@code MutableBigInteger} containing {@code blockLength} ints from
1402
* {@code this} number, starting at {@code index*blockLength}.<br/>
1403
* Used by Burnikel-Ziegler division.
1404
* @param index the block index
1405
* @param numBlocks the total number of blocks in {@code this} number
1406
* @param blockLength length of one block in units of 32 bits
1407
* @return
1408
*/
1409
private MutableBigInteger getBlock(int index, int numBlocks, int blockLength) {
1410
int blockStart = index * blockLength;
1411
if (blockStart >= intLen) {
1412
return new MutableBigInteger();
1413
}
1414
1415
int blockEnd;
1416
if (index == numBlocks-1) {
1417
blockEnd = intLen;
1418
} else {
1419
blockEnd = (index+1) * blockLength;
1420
}
1421
if (blockEnd > intLen) {
1422
return new MutableBigInteger();
1423
}
1424
1425
int[] newVal = Arrays.copyOfRange(value, offset+intLen-blockEnd, offset+intLen-blockStart);
1426
return new MutableBigInteger(newVal);
1427
}
1428
1429
/** @see BigInteger#bitLength() */
1430
long bitLength() {
1431
if (intLen == 0)
1432
return 0;
1433
return intLen*32L - Integer.numberOfLeadingZeros(value[offset]);
1434
}
1435
1436
/**
1437
* Internally used to calculate the quotient of this div v and places the
1438
* quotient in the provided MutableBigInteger object and the remainder is
1439
* returned.
1440
*
1441
* @return the remainder of the division will be returned.
1442
*/
1443
long divide(long v, MutableBigInteger quotient) {
1444
if (v == 0)
1445
throw new ArithmeticException("BigInteger divide by zero");
1446
1447
// Dividend is zero
1448
if (intLen == 0) {
1449
quotient.intLen = quotient.offset = 0;
1450
return 0;
1451
}
1452
if (v < 0)
1453
v = -v;
1454
1455
int d = (int)(v >>> 32);
1456
quotient.clear();
1457
// Special case on word divisor
1458
if (d == 0)
1459
return divideOneWord((int)v, quotient) & LONG_MASK;
1460
else {
1461
return divideLongMagnitude(v, quotient).toLong();
1462
}
1463
}
1464
1465
private static void copyAndShift(int[] src, int srcFrom, int srcLen, int[] dst, int dstFrom, int shift) {
1466
int n2 = 32 - shift;
1467
int c=src[srcFrom];
1468
for (int i=0; i < srcLen-1; i++) {
1469
int b = c;
1470
c = src[++srcFrom];
1471
dst[dstFrom+i] = (b << shift) | (c >>> n2);
1472
}
1473
dst[dstFrom+srcLen-1] = c << shift;
1474
}
1475
1476
/**
1477
* Divide this MutableBigInteger by the divisor.
1478
* The quotient will be placed into the provided quotient object &
1479
* the remainder object is returned.
1480
*/
1481
private MutableBigInteger divideMagnitude(MutableBigInteger div,
1482
MutableBigInteger quotient,
1483
boolean needRemainder ) {
1484
// assert div.intLen > 1
1485
// D1 normalize the divisor
1486
int shift = Integer.numberOfLeadingZeros(div.value[div.offset]);
1487
// Copy divisor value to protect divisor
1488
final int dlen = div.intLen;
1489
int[] divisor;
1490
MutableBigInteger rem; // Remainder starts as dividend with space for a leading zero
1491
if (shift > 0) {
1492
divisor = new int[dlen];
1493
copyAndShift(div.value,div.offset,dlen,divisor,0,shift);
1494
if (Integer.numberOfLeadingZeros(value[offset]) >= shift) {
1495
int[] remarr = new int[intLen + 1];
1496
rem = new MutableBigInteger(remarr);
1497
rem.intLen = intLen;
1498
rem.offset = 1;
1499
copyAndShift(value,offset,intLen,remarr,1,shift);
1500
} else {
1501
int[] remarr = new int[intLen + 2];
1502
rem = new MutableBigInteger(remarr);
1503
rem.intLen = intLen+1;
1504
rem.offset = 1;
1505
int rFrom = offset;
1506
int c=0;
1507
int n2 = 32 - shift;
1508
for (int i=1; i < intLen+1; i++,rFrom++) {
1509
int b = c;
1510
c = value[rFrom];
1511
remarr[i] = (b << shift) | (c >>> n2);
1512
}
1513
remarr[intLen+1] = c << shift;
1514
}
1515
} else {
1516
divisor = Arrays.copyOfRange(div.value, div.offset, div.offset + div.intLen);
1517
rem = new MutableBigInteger(new int[intLen + 1]);
1518
System.arraycopy(value, offset, rem.value, 1, intLen);
1519
rem.intLen = intLen;
1520
rem.offset = 1;
1521
}
1522
1523
int nlen = rem.intLen;
1524
1525
// Set the quotient size
1526
final int limit = nlen - dlen + 1;
1527
if (quotient.value.length < limit) {
1528
quotient.value = new int[limit];
1529
quotient.offset = 0;
1530
}
1531
quotient.intLen = limit;
1532
int[] q = quotient.value;
1533
1534
1535
// Must insert leading 0 in rem if its length did not change
1536
if (rem.intLen == nlen) {
1537
rem.offset = 0;
1538
rem.value[0] = 0;
1539
rem.intLen++;
1540
}
1541
1542
int dh = divisor[0];
1543
long dhLong = dh & LONG_MASK;
1544
int dl = divisor[1];
1545
1546
// D2 Initialize j
1547
for (int j=0; j < limit-1; j++) {
1548
// D3 Calculate qhat
1549
// estimate qhat
1550
int qhat = 0;
1551
int qrem = 0;
1552
boolean skipCorrection = false;
1553
int nh = rem.value[j+rem.offset];
1554
int nh2 = nh + 0x80000000;
1555
int nm = rem.value[j+1+rem.offset];
1556
1557
if (nh == dh) {
1558
qhat = ~0;
1559
qrem = nh + nm;
1560
skipCorrection = qrem + 0x80000000 < nh2;
1561
} else {
1562
long nChunk = (((long)nh) << 32) | (nm & LONG_MASK);
1563
if (nChunk >= 0) {
1564
qhat = (int) (nChunk / dhLong);
1565
qrem = (int) (nChunk - (qhat * dhLong));
1566
} else {
1567
long tmp = divWord(nChunk, dh);
1568
qhat = (int) (tmp & LONG_MASK);
1569
qrem = (int) (tmp >>> 32);
1570
}
1571
}
1572
1573
if (qhat == 0)
1574
continue;
1575
1576
if (!skipCorrection) { // Correct qhat
1577
long nl = rem.value[j+2+rem.offset] & LONG_MASK;
1578
long rs = ((qrem & LONG_MASK) << 32) | nl;
1579
long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
1580
1581
if (unsignedLongCompare(estProduct, rs)) {
1582
qhat--;
1583
qrem = (int)((qrem & LONG_MASK) + dhLong);
1584
if ((qrem & LONG_MASK) >= dhLong) {
1585
estProduct -= (dl & LONG_MASK);
1586
rs = ((qrem & LONG_MASK) << 32) | nl;
1587
if (unsignedLongCompare(estProduct, rs))
1588
qhat--;
1589
}
1590
}
1591
}
1592
1593
// D4 Multiply and subtract
1594
rem.value[j+rem.offset] = 0;
1595
int borrow = mulsub(rem.value, divisor, qhat, dlen, j+rem.offset);
1596
1597
// D5 Test remainder
1598
if (borrow + 0x80000000 > nh2) {
1599
// D6 Add back
1600
divadd(divisor, rem.value, j+1+rem.offset);
1601
qhat--;
1602
}
1603
1604
// Store the quotient digit
1605
q[j] = qhat;
1606
} // D7 loop on j
1607
// D3 Calculate qhat
1608
// estimate qhat
1609
int qhat = 0;
1610
int qrem = 0;
1611
boolean skipCorrection = false;
1612
int nh = rem.value[limit - 1 + rem.offset];
1613
int nh2 = nh + 0x80000000;
1614
int nm = rem.value[limit + rem.offset];
1615
1616
if (nh == dh) {
1617
qhat = ~0;
1618
qrem = nh + nm;
1619
skipCorrection = qrem + 0x80000000 < nh2;
1620
} else {
1621
long nChunk = (((long) nh) << 32) | (nm & LONG_MASK);
1622
if (nChunk >= 0) {
1623
qhat = (int) (nChunk / dhLong);
1624
qrem = (int) (nChunk - (qhat * dhLong));
1625
} else {
1626
long tmp = divWord(nChunk, dh);
1627
qhat = (int) (tmp & LONG_MASK);
1628
qrem = (int) (tmp >>> 32);
1629
}
1630
}
1631
if (qhat != 0) {
1632
if (!skipCorrection) { // Correct qhat
1633
long nl = rem.value[limit + 1 + rem.offset] & LONG_MASK;
1634
long rs = ((qrem & LONG_MASK) << 32) | nl;
1635
long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
1636
1637
if (unsignedLongCompare(estProduct, rs)) {
1638
qhat--;
1639
qrem = (int) ((qrem & LONG_MASK) + dhLong);
1640
if ((qrem & LONG_MASK) >= dhLong) {
1641
estProduct -= (dl & LONG_MASK);
1642
rs = ((qrem & LONG_MASK) << 32) | nl;
1643
if (unsignedLongCompare(estProduct, rs))
1644
qhat--;
1645
}
1646
}
1647
}
1648
1649
1650
// D4 Multiply and subtract
1651
int borrow;
1652
rem.value[limit - 1 + rem.offset] = 0;
1653
if(needRemainder)
1654
borrow = mulsub(rem.value, divisor, qhat, dlen, limit - 1 + rem.offset);
1655
else
1656
borrow = mulsubBorrow(rem.value, divisor, qhat, dlen, limit - 1 + rem.offset);
1657
1658
// D5 Test remainder
1659
if (borrow + 0x80000000 > nh2) {
1660
// D6 Add back
1661
if(needRemainder)
1662
divadd(divisor, rem.value, limit - 1 + 1 + rem.offset);
1663
qhat--;
1664
}
1665
1666
// Store the quotient digit
1667
q[(limit - 1)] = qhat;
1668
}
1669
1670
1671
if (needRemainder) {
1672
// D8 Unnormalize
1673
if (shift > 0)
1674
rem.rightShift(shift);
1675
rem.normalize();
1676
}
1677
quotient.normalize();
1678
return needRemainder ? rem : null;
1679
}
1680
1681
/**
1682
* Divide this MutableBigInteger by the divisor represented by positive long
1683
* value. The quotient will be placed into the provided quotient object &
1684
* the remainder object is returned.
1685
*/
1686
private MutableBigInteger divideLongMagnitude(long ldivisor, MutableBigInteger quotient) {
1687
// Remainder starts as dividend with space for a leading zero
1688
MutableBigInteger rem = new MutableBigInteger(new int[intLen + 1]);
1689
System.arraycopy(value, offset, rem.value, 1, intLen);
1690
rem.intLen = intLen;
1691
rem.offset = 1;
1692
1693
int nlen = rem.intLen;
1694
1695
int limit = nlen - 2 + 1;
1696
if (quotient.value.length < limit) {
1697
quotient.value = new int[limit];
1698
quotient.offset = 0;
1699
}
1700
quotient.intLen = limit;
1701
int[] q = quotient.value;
1702
1703
// D1 normalize the divisor
1704
int shift = Long.numberOfLeadingZeros(ldivisor);
1705
if (shift > 0) {
1706
ldivisor<<=shift;
1707
rem.leftShift(shift);
1708
}
1709
1710
// Must insert leading 0 in rem if its length did not change
1711
if (rem.intLen == nlen) {
1712
rem.offset = 0;
1713
rem.value[0] = 0;
1714
rem.intLen++;
1715
}
1716
1717
int dh = (int)(ldivisor >>> 32);
1718
long dhLong = dh & LONG_MASK;
1719
int dl = (int)(ldivisor & LONG_MASK);
1720
1721
// D2 Initialize j
1722
for (int j = 0; j < limit; j++) {
1723
// D3 Calculate qhat
1724
// estimate qhat
1725
int qhat = 0;
1726
int qrem = 0;
1727
boolean skipCorrection = false;
1728
int nh = rem.value[j + rem.offset];
1729
int nh2 = nh + 0x80000000;
1730
int nm = rem.value[j + 1 + rem.offset];
1731
1732
if (nh == dh) {
1733
qhat = ~0;
1734
qrem = nh + nm;
1735
skipCorrection = qrem + 0x80000000 < nh2;
1736
} else {
1737
long nChunk = (((long) nh) << 32) | (nm & LONG_MASK);
1738
if (nChunk >= 0) {
1739
qhat = (int) (nChunk / dhLong);
1740
qrem = (int) (nChunk - (qhat * dhLong));
1741
} else {
1742
long tmp = divWord(nChunk, dh);
1743
qhat =(int)(tmp & LONG_MASK);
1744
qrem = (int)(tmp>>>32);
1745
}
1746
}
1747
1748
if (qhat == 0)
1749
continue;
1750
1751
if (!skipCorrection) { // Correct qhat
1752
long nl = rem.value[j + 2 + rem.offset] & LONG_MASK;
1753
long rs = ((qrem & LONG_MASK) << 32) | nl;
1754
long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK);
1755
1756
if (unsignedLongCompare(estProduct, rs)) {
1757
qhat--;
1758
qrem = (int) ((qrem & LONG_MASK) + dhLong);
1759
if ((qrem & LONG_MASK) >= dhLong) {
1760
estProduct -= (dl & LONG_MASK);
1761
rs = ((qrem & LONG_MASK) << 32) | nl;
1762
if (unsignedLongCompare(estProduct, rs))
1763
qhat--;
1764
}
1765
}
1766
}
1767
1768
// D4 Multiply and subtract
1769
rem.value[j + rem.offset] = 0;
1770
int borrow = mulsubLong(rem.value, dh, dl, qhat, j + rem.offset);
1771
1772
// D5 Test remainder
1773
if (borrow + 0x80000000 > nh2) {
1774
// D6 Add back
1775
divaddLong(dh,dl, rem.value, j + 1 + rem.offset);
1776
qhat--;
1777
}
1778
1779
// Store the quotient digit
1780
q[j] = qhat;
1781
} // D7 loop on j
1782
1783
// D8 Unnormalize
1784
if (shift > 0)
1785
rem.rightShift(shift);
1786
1787
quotient.normalize();
1788
rem.normalize();
1789
return rem;
1790
}
1791
1792
/**
1793
* A primitive used for division by long.
1794
* Specialized version of the method divadd.
1795
* dh is a high part of the divisor, dl is a low part
1796
*/
1797
private int divaddLong(int dh, int dl, int[] result, int offset) {
1798
long carry = 0;
1799
1800
long sum = (dl & LONG_MASK) + (result[1+offset] & LONG_MASK);
1801
result[1+offset] = (int)sum;
1802
1803
sum = (dh & LONG_MASK) + (result[offset] & LONG_MASK) + carry;
1804
result[offset] = (int)sum;
1805
carry = sum >>> 32;
1806
return (int)carry;
1807
}
1808
1809
/**
1810
* This method is used for division by long.
1811
* Specialized version of the method sulsub.
1812
* dh is a high part of the divisor, dl is a low part
1813
*/
1814
private int mulsubLong(int[] q, int dh, int dl, int x, int offset) {
1815
long xLong = x & LONG_MASK;
1816
offset += 2;
1817
long product = (dl & LONG_MASK) * xLong;
1818
long difference = q[offset] - product;
1819
q[offset--] = (int)difference;
1820
long carry = (product >>> 32)
1821
+ (((difference & LONG_MASK) >
1822
(((~(int)product) & LONG_MASK))) ? 1:0);
1823
product = (dh & LONG_MASK) * xLong + carry;
1824
difference = q[offset] - product;
1825
q[offset--] = (int)difference;
1826
carry = (product >>> 32)
1827
+ (((difference & LONG_MASK) >
1828
(((~(int)product) & LONG_MASK))) ? 1:0);
1829
return (int)carry;
1830
}
1831
1832
/**
1833
* Compare two longs as if they were unsigned.
1834
* Returns true iff one is bigger than two.
1835
*/
1836
private boolean unsignedLongCompare(long one, long two) {
1837
return (one+Long.MIN_VALUE) > (two+Long.MIN_VALUE);
1838
}
1839
1840
/**
1841
* This method divides a long quantity by an int to estimate
1842
* qhat for two multi precision numbers. It is used when
1843
* the signed value of n is less than zero.
1844
* Returns long value where high 32 bits contain remainder value and
1845
* low 32 bits contain quotient value.
1846
*/
1847
static long divWord(long n, int d) {
1848
long dLong = d & LONG_MASK;
1849
long r;
1850
long q;
1851
if (dLong == 1) {
1852
q = (int)n;
1853
r = 0;
1854
return (r << 32) | (q & LONG_MASK);
1855
}
1856
1857
// Approximate the quotient and remainder
1858
q = (n >>> 1) / (dLong >>> 1);
1859
r = n - q*dLong;
1860
1861
// Correct the approximation
1862
while (r < 0) {
1863
r += dLong;
1864
q--;
1865
}
1866
while (r >= dLong) {
1867
r -= dLong;
1868
q++;
1869
}
1870
// n - q*dlong == r && 0 <= r <dLong, hence we're done.
1871
return (r << 32) | (q & LONG_MASK);
1872
}
1873
1874
/**
1875
* Calculate the integer square root {@code floor(sqrt(this))} where
1876
* {@code sqrt(.)} denotes the mathematical square root. The contents of
1877
* {@code this} are <b>not</b> changed. The value of {@code this} is assumed
1878
* to be non-negative.
1879
*
1880
* @implNote The implementation is based on the material in Henry S. Warren,
1881
* Jr., <i>Hacker's Delight (2nd ed.)</i> (Addison Wesley, 2013), 279-282.
1882
*
1883
* @throws ArithmeticException if the value returned by {@code bitLength()}
1884
* overflows the range of {@code int}.
1885
* @return the integer square root of {@code this}
1886
* @since 9
1887
*/
1888
MutableBigInteger sqrt() {
1889
// Special cases.
1890
if (this.isZero()) {
1891
return new MutableBigInteger(0);
1892
} else if (this.value.length == 1
1893
&& (this.value[0] & LONG_MASK) < 4) { // result is unity
1894
return ONE;
1895
}
1896
1897
if (bitLength() <= 63) {
1898
// Initial estimate is the square root of the positive long value.
1899
long v = new BigInteger(this.value, 1).longValueExact();
1900
long xk = (long)Math.floor(Math.sqrt(v));
1901
1902
// Refine the estimate.
1903
do {
1904
long xk1 = (xk + v/xk)/2;
1905
1906
// Terminate when non-decreasing.
1907
if (xk1 >= xk) {
1908
return new MutableBigInteger(new int[] {
1909
(int)(xk >>> 32), (int)(xk & LONG_MASK)
1910
});
1911
}
1912
1913
xk = xk1;
1914
} while (true);
1915
} else {
1916
// Set up the initial estimate of the iteration.
1917
1918
// Obtain the bitLength > 63.
1919
int bitLength = (int) this.bitLength();
1920
if (bitLength != this.bitLength()) {
1921
throw new ArithmeticException("bitLength() integer overflow");
1922
}
1923
1924
// Determine an even valued right shift into positive long range.
1925
int shift = bitLength - 63;
1926
if (shift % 2 == 1) {
1927
shift++;
1928
}
1929
1930
// Shift the value into positive long range.
1931
MutableBigInteger xk = new MutableBigInteger(this);
1932
xk.rightShift(shift);
1933
xk.normalize();
1934
1935
// Use the square root of the shifted value as an approximation.
1936
double d = new BigInteger(xk.value, 1).doubleValue();
1937
BigInteger bi = BigInteger.valueOf((long)Math.ceil(Math.sqrt(d)));
1938
xk = new MutableBigInteger(bi.mag);
1939
1940
// Shift the approximate square root back into the original range.
1941
xk.leftShift(shift / 2);
1942
1943
// Refine the estimate.
1944
MutableBigInteger xk1 = new MutableBigInteger();
1945
do {
1946
// xk1 = (xk + n/xk)/2
1947
this.divide(xk, xk1, false);
1948
xk1.add(xk);
1949
xk1.rightShift(1);
1950
1951
// Terminate when non-decreasing.
1952
if (xk1.compare(xk) >= 0) {
1953
return xk;
1954
}
1955
1956
// xk = xk1
1957
xk.copyValue(xk1);
1958
1959
xk1.reset();
1960
} while (true);
1961
}
1962
}
1963
1964
/**
1965
* Calculate GCD of this and b. This and b are changed by the computation.
1966
*/
1967
MutableBigInteger hybridGCD(MutableBigInteger b) {
1968
// Use Euclid's algorithm until the numbers are approximately the
1969
// same length, then use the binary GCD algorithm to find the GCD.
1970
MutableBigInteger a = this;
1971
MutableBigInteger q = new MutableBigInteger();
1972
1973
while (b.intLen != 0) {
1974
if (Math.abs(a.intLen - b.intLen) < 2)
1975
return a.binaryGCD(b);
1976
1977
MutableBigInteger r = a.divide(b, q);
1978
a = b;
1979
b = r;
1980
}
1981
return a;
1982
}
1983
1984
/**
1985
* Calculate GCD of this and v.
1986
* Assumes that this and v are not zero.
1987
*/
1988
private MutableBigInteger binaryGCD(MutableBigInteger v) {
1989
// Algorithm B from Knuth TAOCP Vol. 2, 3rd edition, section 4.5.2
1990
MutableBigInteger u = this;
1991
MutableBigInteger r = new MutableBigInteger();
1992
1993
// step B1
1994
int s1 = u.getLowestSetBit();
1995
int s2 = v.getLowestSetBit();
1996
int k = (s1 < s2) ? s1 : s2;
1997
if (k != 0) {
1998
u.rightShift(k);
1999
v.rightShift(k);
2000
}
2001
2002
// step B2
2003
boolean uOdd = (k == s1);
2004
MutableBigInteger t = uOdd ? v: u;
2005
int tsign = uOdd ? -1 : 1;
2006
2007
int lb;
2008
while ((lb = t.getLowestSetBit()) >= 0) {
2009
// steps B3 and B4
2010
t.rightShift(lb);
2011
// step B5
2012
if (tsign > 0)
2013
u = t;
2014
else
2015
v = t;
2016
2017
// Special case one word numbers
2018
if (u.intLen < 2 && v.intLen < 2) {
2019
int x = u.value[u.offset];
2020
int y = v.value[v.offset];
2021
x = binaryGcd(x, y);
2022
r.value[0] = x;
2023
r.intLen = 1;
2024
r.offset = 0;
2025
if (k > 0)
2026
r.leftShift(k);
2027
return r;
2028
}
2029
2030
// step B6
2031
if ((tsign = u.difference(v)) == 0)
2032
break;
2033
t = (tsign >= 0) ? u : v;
2034
}
2035
2036
if (k > 0)
2037
u.leftShift(k);
2038
return u;
2039
}
2040
2041
/**
2042
* Calculate GCD of a and b interpreted as unsigned integers.
2043
*/
2044
static int binaryGcd(int a, int b) {
2045
if (b == 0)
2046
return a;
2047
if (a == 0)
2048
return b;
2049
2050
// Right shift a & b till their last bits equal to 1.
2051
int aZeros = Integer.numberOfTrailingZeros(a);
2052
int bZeros = Integer.numberOfTrailingZeros(b);
2053
a >>>= aZeros;
2054
b >>>= bZeros;
2055
2056
int t = (aZeros < bZeros ? aZeros : bZeros);
2057
2058
while (a != b) {
2059
if ((a+0x80000000) > (b+0x80000000)) { // a > b as unsigned
2060
a -= b;
2061
a >>>= Integer.numberOfTrailingZeros(a);
2062
} else {
2063
b -= a;
2064
b >>>= Integer.numberOfTrailingZeros(b);
2065
}
2066
}
2067
return a<<t;
2068
}
2069
2070
/**
2071
* Returns the modInverse of this mod p. This and p are not affected by
2072
* the operation.
2073
*/
2074
MutableBigInteger mutableModInverse(MutableBigInteger p) {
2075
// Modulus is odd, use Schroeppel's algorithm
2076
if (p.isOdd())
2077
return modInverse(p);
2078
2079
// Base and modulus are even, throw exception
2080
if (isEven())
2081
throw new ArithmeticException("BigInteger not invertible.");
2082
2083
// Get even part of modulus expressed as a power of 2
2084
int powersOf2 = p.getLowestSetBit();
2085
2086
// Construct odd part of modulus
2087
MutableBigInteger oddMod = new MutableBigInteger(p);
2088
oddMod.rightShift(powersOf2);
2089
2090
if (oddMod.isOne())
2091
return modInverseMP2(powersOf2);
2092
2093
// Calculate 1/a mod oddMod
2094
MutableBigInteger oddPart = modInverse(oddMod);
2095
2096
// Calculate 1/a mod evenMod
2097
MutableBigInteger evenPart = modInverseMP2(powersOf2);
2098
2099
// Combine the results using Chinese Remainder Theorem
2100
MutableBigInteger y1 = modInverseBP2(oddMod, powersOf2);
2101
MutableBigInteger y2 = oddMod.modInverseMP2(powersOf2);
2102
2103
MutableBigInteger temp1 = new MutableBigInteger();
2104
MutableBigInteger temp2 = new MutableBigInteger();
2105
MutableBigInteger result = new MutableBigInteger();
2106
2107
oddPart.leftShift(powersOf2);
2108
oddPart.multiply(y1, result);
2109
2110
evenPart.multiply(oddMod, temp1);
2111
temp1.multiply(y2, temp2);
2112
2113
result.add(temp2);
2114
return result.divide(p, temp1);
2115
}
2116
2117
/*
2118
* Calculate the multiplicative inverse of this mod 2^k.
2119
*/
2120
MutableBigInteger modInverseMP2(int k) {
2121
if (isEven())
2122
throw new ArithmeticException("Non-invertible. (GCD != 1)");
2123
2124
if (k > 64)
2125
return euclidModInverse(k);
2126
2127
int t = inverseMod32(value[offset+intLen-1]);
2128
2129
if (k < 33) {
2130
t = (k == 32 ? t : t & ((1 << k) - 1));
2131
return new MutableBigInteger(t);
2132
}
2133
2134
long pLong = (value[offset+intLen-1] & LONG_MASK);
2135
if (intLen > 1)
2136
pLong |= ((long)value[offset+intLen-2] << 32);
2137
long tLong = t & LONG_MASK;
2138
tLong = tLong * (2 - pLong * tLong); // 1 more Newton iter step
2139
tLong = (k == 64 ? tLong : tLong & ((1L << k) - 1));
2140
2141
MutableBigInteger result = new MutableBigInteger(new int[2]);
2142
result.value[0] = (int)(tLong >>> 32);
2143
result.value[1] = (int)tLong;
2144
result.intLen = 2;
2145
result.normalize();
2146
return result;
2147
}
2148
2149
/**
2150
* Returns the multiplicative inverse of val mod 2^32. Assumes val is odd.
2151
*/
2152
static int inverseMod32(int val) {
2153
// Newton's iteration!
2154
int t = val;
2155
t *= 2 - val*t;
2156
t *= 2 - val*t;
2157
t *= 2 - val*t;
2158
t *= 2 - val*t;
2159
return t;
2160
}
2161
2162
/**
2163
* Returns the multiplicative inverse of val mod 2^64. Assumes val is odd.
2164
*/
2165
static long inverseMod64(long val) {
2166
// Newton's iteration!
2167
long t = val;
2168
t *= 2 - val*t;
2169
t *= 2 - val*t;
2170
t *= 2 - val*t;
2171
t *= 2 - val*t;
2172
t *= 2 - val*t;
2173
assert(t * val == 1);
2174
return t;
2175
}
2176
2177
/**
2178
* Calculate the multiplicative inverse of 2^k mod mod, where mod is odd.
2179
*/
2180
static MutableBigInteger modInverseBP2(MutableBigInteger mod, int k) {
2181
// Copy the mod to protect original
2182
return fixup(new MutableBigInteger(1), new MutableBigInteger(mod), k);
2183
}
2184
2185
/**
2186
* Calculate the multiplicative inverse of this modulo mod, where the mod
2187
* argument is odd. This and mod are not changed by the calculation.
2188
*
2189
* This method implements an algorithm due to Richard Schroeppel, that uses
2190
* the same intermediate representation as Montgomery Reduction
2191
* ("Montgomery Form"). The algorithm is described in an unpublished
2192
* manuscript entitled "Fast Modular Reciprocals."
2193
*/
2194
private MutableBigInteger modInverse(MutableBigInteger mod) {
2195
MutableBigInteger p = new MutableBigInteger(mod);
2196
MutableBigInteger f = new MutableBigInteger(this);
2197
MutableBigInteger g = new MutableBigInteger(p);
2198
SignedMutableBigInteger c = new SignedMutableBigInteger(1);
2199
SignedMutableBigInteger d = new SignedMutableBigInteger();
2200
MutableBigInteger temp = null;
2201
SignedMutableBigInteger sTemp = null;
2202
2203
int k = 0;
2204
// Right shift f k times until odd, left shift d k times
2205
if (f.isEven()) {
2206
int trailingZeros = f.getLowestSetBit();
2207
f.rightShift(trailingZeros);
2208
d.leftShift(trailingZeros);
2209
k = trailingZeros;
2210
}
2211
2212
// The Almost Inverse Algorithm
2213
while (!f.isOne()) {
2214
// If gcd(f, g) != 1, number is not invertible modulo mod
2215
if (f.isZero())
2216
throw new ArithmeticException("BigInteger not invertible.");
2217
2218
// If f < g exchange f, g and c, d
2219
if (f.compare(g) < 0) {
2220
temp = f; f = g; g = temp;
2221
sTemp = d; d = c; c = sTemp;
2222
}
2223
2224
// If f == g (mod 4)
2225
if (((f.value[f.offset + f.intLen - 1] ^
2226
g.value[g.offset + g.intLen - 1]) & 3) == 0) {
2227
f.subtract(g);
2228
c.signedSubtract(d);
2229
} else { // If f != g (mod 4)
2230
f.add(g);
2231
c.signedAdd(d);
2232
}
2233
2234
// Right shift f k times until odd, left shift d k times
2235
int trailingZeros = f.getLowestSetBit();
2236
f.rightShift(trailingZeros);
2237
d.leftShift(trailingZeros);
2238
k += trailingZeros;
2239
}
2240
2241
if (c.compare(p) >= 0) { // c has a larger magnitude than p
2242
MutableBigInteger remainder = c.divide(p,
2243
new MutableBigInteger());
2244
// The previous line ignores the sign so we copy the data back
2245
// into c which will restore the sign as needed (and converts
2246
// it back to a SignedMutableBigInteger)
2247
c.copyValue(remainder);
2248
}
2249
2250
if (c.sign < 0) {
2251
c.signedAdd(p);
2252
}
2253
2254
return fixup(c, p, k);
2255
}
2256
2257
/**
2258
* The Fixup Algorithm
2259
* Calculates X such that X = C * 2^(-k) (mod P)
2260
* Assumes C<P and P is odd.
2261
*/
2262
static MutableBigInteger fixup(MutableBigInteger c, MutableBigInteger p,
2263
int k) {
2264
MutableBigInteger temp = new MutableBigInteger();
2265
// Set r to the multiplicative inverse of p mod 2^32
2266
int r = -inverseMod32(p.value[p.offset+p.intLen-1]);
2267
2268
for (int i=0, numWords = k >> 5; i < numWords; i++) {
2269
// V = R * c (mod 2^j)
2270
int v = r * c.value[c.offset + c.intLen-1];
2271
// c = c + (v * p)
2272
p.mul(v, temp);
2273
c.add(temp);
2274
// c = c / 2^j
2275
c.intLen--;
2276
}
2277
int numBits = k & 0x1f;
2278
if (numBits != 0) {
2279
// V = R * c (mod 2^j)
2280
int v = r * c.value[c.offset + c.intLen-1];
2281
v &= ((1<<numBits) - 1);
2282
// c = c + (v * p)
2283
p.mul(v, temp);
2284
c.add(temp);
2285
// c = c / 2^j
2286
c.rightShift(numBits);
2287
}
2288
2289
// In theory, c may be greater than p at this point (Very rare!)
2290
if (c.compare(p) >= 0)
2291
c = c.divide(p, new MutableBigInteger());
2292
2293
return c;
2294
}
2295
2296
/**
2297
* Uses the extended Euclidean algorithm to compute the modInverse of base
2298
* mod a modulus that is a power of 2. The modulus is 2^k.
2299
*/
2300
MutableBigInteger euclidModInverse(int k) {
2301
MutableBigInteger b = new MutableBigInteger(1);
2302
b.leftShift(k);
2303
MutableBigInteger mod = new MutableBigInteger(b);
2304
2305
MutableBigInteger a = new MutableBigInteger(this);
2306
MutableBigInteger q = new MutableBigInteger();
2307
MutableBigInteger r = b.divide(a, q);
2308
2309
MutableBigInteger swapper = b;
2310
// swap b & r
2311
b = r;
2312
r = swapper;
2313
2314
MutableBigInteger t1 = new MutableBigInteger(q);
2315
MutableBigInteger t0 = new MutableBigInteger(1);
2316
MutableBigInteger temp = new MutableBigInteger();
2317
2318
while (!b.isOne()) {
2319
r = a.divide(b, q);
2320
2321
if (r.intLen == 0)
2322
throw new ArithmeticException("BigInteger not invertible.");
2323
2324
swapper = r;
2325
a = swapper;
2326
2327
if (q.intLen == 1)
2328
t1.mul(q.value[q.offset], temp);
2329
else
2330
q.multiply(t1, temp);
2331
swapper = q;
2332
q = temp;
2333
temp = swapper;
2334
t0.add(q);
2335
2336
if (a.isOne())
2337
return t0;
2338
2339
r = b.divide(a, q);
2340
2341
if (r.intLen == 0)
2342
throw new ArithmeticException("BigInteger not invertible.");
2343
2344
swapper = b;
2345
b = r;
2346
2347
if (q.intLen == 1)
2348
t0.mul(q.value[q.offset], temp);
2349
else
2350
q.multiply(t0, temp);
2351
swapper = q; q = temp; temp = swapper;
2352
2353
t1.add(q);
2354
}
2355
mod.subtract(t1);
2356
return mod;
2357
}
2358
}
2359
2360