Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/classes/java/text/DigitList.java
41152 views
1
/*
2
* Copyright (c) 1996, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
/*
27
* (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
28
* (C) Copyright IBM Corp. 1996 - 1998 - All Rights Reserved
29
*
30
* The original version of this source code and documentation is copyrighted
31
* and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
32
* materials are provided under terms of a License Agreement between Taligent
33
* and Sun. This technology is protected by multiple US and International
34
* patents. This notice and attribution to Taligent may not be removed.
35
* Taligent is a registered trademark of Taligent, Inc.
36
*
37
*/
38
39
package java.text;
40
41
import java.math.BigDecimal;
42
import java.math.BigInteger;
43
import java.math.RoundingMode;
44
import jdk.internal.math.FloatingDecimal;
45
46
/**
47
* Digit List. Private to DecimalFormat.
48
* Handles the transcoding
49
* between numeric values and strings of characters. Only handles
50
* non-negative numbers. The division of labor between DigitList and
51
* DecimalFormat is that DigitList handles the radix 10 representation
52
* issues; DecimalFormat handles the locale-specific issues such as
53
* positive/negative, grouping, decimal point, currency, and so on.
54
*
55
* A DigitList is really a representation of a floating point value.
56
* It may be an integer value; we assume that a double has sufficient
57
* precision to represent all digits of a long.
58
*
59
* The DigitList representation consists of a string of characters,
60
* which are the digits radix 10, from '0' to '9'. It also has a radix
61
* 10 exponent associated with it. The value represented by a DigitList
62
* object can be computed by mulitplying the fraction f, where 0 <= f < 1,
63
* derived by placing all the digits of the list to the right of the
64
* decimal point, by 10^exponent.
65
*
66
* @see Locale
67
* @see Format
68
* @see NumberFormat
69
* @see DecimalFormat
70
* @see ChoiceFormat
71
* @see MessageFormat
72
* @author Mark Davis, Alan Liu
73
*/
74
final class DigitList implements Cloneable {
75
/**
76
* The maximum number of significant digits in an IEEE 754 double, that
77
* is, in a Java double. This must not be increased, or garbage digits
78
* will be generated, and should not be decreased, or accuracy will be lost.
79
*/
80
public static final int MAX_COUNT = 19; // == Long.toString(Long.MAX_VALUE).length()
81
82
/**
83
* These data members are intentionally public and can be set directly.
84
*
85
* The value represented is given by placing the decimal point before
86
* digits[decimalAt]. If decimalAt is < 0, then leading zeros between
87
* the decimal point and the first nonzero digit are implied. If decimalAt
88
* is > count, then trailing zeros between the digits[count-1] and the
89
* decimal point are implied.
90
*
91
* Equivalently, the represented value is given by f * 10^decimalAt. Here
92
* f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
93
* the right of the decimal.
94
*
95
* DigitList is normalized, so if it is non-zero, figits[0] is non-zero. We
96
* don't allow denormalized numbers because our exponent is effectively of
97
* unlimited magnitude. The count value contains the number of significant
98
* digits present in digits[].
99
*
100
* Zero is represented by any DigitList with count == 0 or with each digits[i]
101
* for all i <= count == '0'.
102
*/
103
public int decimalAt = 0;
104
public int count = 0;
105
public char[] digits = new char[MAX_COUNT];
106
107
private char[] data;
108
private RoundingMode roundingMode = RoundingMode.HALF_EVEN;
109
private boolean isNegative = false;
110
111
/**
112
* Return true if the represented number is zero.
113
*/
114
boolean isZero() {
115
for (int i=0; i < count; ++i) {
116
if (digits[i] != '0') {
117
return false;
118
}
119
}
120
return true;
121
}
122
123
/**
124
* Set the rounding mode
125
*/
126
void setRoundingMode(RoundingMode r) {
127
roundingMode = r;
128
}
129
130
/**
131
* Clears out the digits.
132
* Use before appending them.
133
* Typically, you set a series of digits with append, then at the point
134
* you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
135
* then go on appending digits.
136
*/
137
public void clear () {
138
decimalAt = 0;
139
count = 0;
140
}
141
142
/**
143
* Appends a digit to the list, extending the list when necessary.
144
*/
145
public void append(char digit) {
146
if (count == digits.length) {
147
char[] data = new char[count + 100];
148
System.arraycopy(digits, 0, data, 0, count);
149
digits = data;
150
}
151
digits[count++] = digit;
152
}
153
154
/**
155
* Utility routine to get the value of the digit list
156
* If (count == 0) this throws a NumberFormatException, which
157
* mimics Long.parseLong().
158
*/
159
public final double getDouble() {
160
if (count == 0) {
161
return 0.0;
162
}
163
164
StringBuffer temp = getStringBuffer();
165
temp.append('.');
166
temp.append(digits, 0, count);
167
temp.append('E');
168
temp.append(decimalAt);
169
return Double.parseDouble(temp.toString());
170
}
171
172
/**
173
* Utility routine to get the value of the digit list.
174
* If (count == 0) this returns 0, unlike Long.parseLong().
175
*/
176
public final long getLong() {
177
// for now, simple implementation; later, do proper IEEE native stuff
178
179
if (count == 0) {
180
return 0;
181
}
182
183
// We have to check for this, because this is the one NEGATIVE value
184
// we represent. If we tried to just pass the digits off to parseLong,
185
// we'd get a parse failure.
186
if (isLongMIN_VALUE()) {
187
return Long.MIN_VALUE;
188
}
189
190
StringBuffer temp = getStringBuffer();
191
temp.append(digits, 0, count);
192
for (int i = count; i < decimalAt; ++i) {
193
temp.append('0');
194
}
195
return Long.parseLong(temp.toString());
196
}
197
198
public final BigDecimal getBigDecimal() {
199
if (count == 0) {
200
if (decimalAt == 0) {
201
return BigDecimal.ZERO;
202
} else {
203
return new BigDecimal("0E" + decimalAt);
204
}
205
}
206
207
if (decimalAt == count) {
208
return new BigDecimal(digits, 0, count);
209
} else {
210
return new BigDecimal(digits, 0, count).scaleByPowerOfTen(decimalAt - count);
211
}
212
}
213
214
/**
215
* Return true if the number represented by this object can fit into
216
* a long.
217
* @param isPositive true if this number should be regarded as positive
218
* @param ignoreNegativeZero true if -0 should be regarded as identical to
219
* +0; otherwise they are considered distinct
220
* @return true if this number fits into a Java long
221
*/
222
boolean fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero) {
223
// Figure out if the result will fit in a long. We have to
224
// first look for nonzero digits after the decimal point;
225
// then check the size. If the digit count is 18 or less, then
226
// the value can definitely be represented as a long. If it is 19
227
// then it may be too large.
228
229
// Trim trailing zeros. This does not change the represented value.
230
while (count > 0 && digits[count - 1] == '0') {
231
--count;
232
}
233
234
if (count == 0) {
235
// Positive zero fits into a long, but negative zero can only
236
// be represented as a double. - bug 4162852
237
return isPositive || ignoreNegativeZero;
238
}
239
240
if (decimalAt < count || decimalAt > MAX_COUNT) {
241
return false;
242
}
243
244
if (decimalAt < MAX_COUNT) return true;
245
246
// At this point we have decimalAt == count, and count == MAX_COUNT.
247
// The number will overflow if it is larger than 9223372036854775807
248
// or smaller than -9223372036854775808.
249
for (int i=0; i<count; ++i) {
250
char dig = digits[i], max = LONG_MIN_REP[i];
251
if (dig > max) return false;
252
if (dig < max) return true;
253
}
254
255
// At this point the first count digits match. If decimalAt is less
256
// than count, then the remaining digits are zero, and we return true.
257
if (count < decimalAt) return true;
258
259
// Now we have a representation of Long.MIN_VALUE, without the leading
260
// negative sign. If this represents a positive value, then it does
261
// not fit; otherwise it fits.
262
return !isPositive;
263
}
264
265
/**
266
* Set the digit list to a representation of the given double value.
267
* This method supports fixed-point notation.
268
* @param isNegative Boolean value indicating whether the number is negative.
269
* @param source Value to be converted; must not be Inf, -Inf, Nan,
270
* or a value <= 0.
271
* @param maximumFractionDigits The most fractional digits which should
272
* be converted.
273
*/
274
final void set(boolean isNegative, double source, int maximumFractionDigits) {
275
set(isNegative, source, maximumFractionDigits, true);
276
}
277
278
/**
279
* Set the digit list to a representation of the given double value.
280
* This method supports both fixed-point and exponential notation.
281
* @param isNegative Boolean value indicating whether the number is negative.
282
* @param source Value to be converted; must not be Inf, -Inf, Nan,
283
* or a value <= 0.
284
* @param maximumDigits The most fractional or total digits which should
285
* be converted.
286
* @param fixedPoint If true, then maximumDigits is the maximum
287
* fractional digits to be converted. If false, total digits.
288
*/
289
final void set(boolean isNegative, double source, int maximumDigits, boolean fixedPoint) {
290
291
FloatingDecimal.BinaryToASCIIConverter fdConverter = FloatingDecimal.getBinaryToASCIIConverter(source);
292
boolean hasBeenRoundedUp = fdConverter.digitsRoundedUp();
293
boolean valueExactAsDecimal = fdConverter.decimalDigitsExact();
294
assert !fdConverter.isExceptional();
295
String digitsString = fdConverter.toJavaFormatString();
296
297
set(isNegative, digitsString,
298
hasBeenRoundedUp, valueExactAsDecimal,
299
maximumDigits, fixedPoint);
300
}
301
302
/**
303
* Generate a representation of the form DDDDD, DDDDD.DDDDD, or
304
* DDDDDE+/-DDDDD.
305
* @param roundedUp whether or not rounding up has already happened.
306
* @param valueExactAsDecimal whether or not collected digits provide
307
* an exact decimal representation of the value.
308
*/
309
private void set(boolean isNegative, String s,
310
boolean roundedUp, boolean valueExactAsDecimal,
311
int maximumDigits, boolean fixedPoint) {
312
313
this.isNegative = isNegative;
314
int len = s.length();
315
char[] source = getDataChars(len);
316
s.getChars(0, len, source, 0);
317
318
decimalAt = -1;
319
count = 0;
320
int exponent = 0;
321
// Number of zeros between decimal point and first non-zero digit after
322
// decimal point, for numbers < 1.
323
int leadingZerosAfterDecimal = 0;
324
boolean nonZeroDigitSeen = false;
325
326
for (int i = 0; i < len; ) {
327
char c = source[i++];
328
if (c == '.') {
329
decimalAt = count;
330
} else if (c == 'e' || c == 'E') {
331
exponent = parseInt(source, i, len);
332
break;
333
} else {
334
if (!nonZeroDigitSeen) {
335
nonZeroDigitSeen = (c != '0');
336
if (!nonZeroDigitSeen && decimalAt != -1)
337
++leadingZerosAfterDecimal;
338
}
339
if (nonZeroDigitSeen) {
340
digits[count++] = c;
341
}
342
}
343
}
344
if (decimalAt == -1) {
345
decimalAt = count;
346
}
347
if (nonZeroDigitSeen) {
348
decimalAt += exponent - leadingZerosAfterDecimal;
349
}
350
351
if (fixedPoint) {
352
// The negative of the exponent represents the number of leading
353
// zeros between the decimal and the first non-zero digit, for
354
// a value < 0.1 (e.g., for 0.00123, -decimalAt == 2). If this
355
// is more than the maximum fraction digits, then we have an underflow
356
// for the printed representation.
357
if (-decimalAt > maximumDigits) {
358
// Handle an underflow to zero when we round something like
359
// 0.0009 to 2 fractional digits.
360
count = 0;
361
return;
362
} else if (-decimalAt == maximumDigits) {
363
// If we round 0.0009 to 3 fractional digits, then we have to
364
// create a new one digit in the least significant location.
365
if (shouldRoundUp(0, roundedUp, valueExactAsDecimal)) {
366
count = 1;
367
++decimalAt;
368
digits[0] = '1';
369
} else {
370
count = 0;
371
}
372
return;
373
}
374
// else fall through
375
}
376
377
// Eliminate trailing zeros.
378
while (count > 1 && digits[count - 1] == '0') {
379
--count;
380
}
381
382
// Eliminate digits beyond maximum digits to be displayed.
383
// Round up if appropriate.
384
round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits,
385
roundedUp, valueExactAsDecimal);
386
387
}
388
389
/**
390
* Round the representation to the given number of digits.
391
* @param maximumDigits The maximum number of digits to be shown.
392
* @param alreadyRounded whether or not rounding up has already happened.
393
* @param valueExactAsDecimal whether or not collected digits provide
394
* an exact decimal representation of the value.
395
*
396
* Upon return, count will be less than or equal to maximumDigits.
397
*/
398
private final void round(int maximumDigits,
399
boolean alreadyRounded,
400
boolean valueExactAsDecimal) {
401
// Eliminate digits beyond maximum digits to be displayed.
402
// Round up if appropriate.
403
if (maximumDigits >= 0 && maximumDigits < count) {
404
if (shouldRoundUp(maximumDigits, alreadyRounded, valueExactAsDecimal)) {
405
// Rounding up involved incrementing digits from LSD to MSD.
406
// In most cases this is simple, but in a worst case situation
407
// (9999..99) we have to adjust the decimalAt value.
408
for (;;) {
409
--maximumDigits;
410
if (maximumDigits < 0) {
411
// We have all 9's, so we increment to a single digit
412
// of one and adjust the exponent.
413
digits[0] = '1';
414
++decimalAt;
415
maximumDigits = 0; // Adjust the count
416
break;
417
}
418
419
++digits[maximumDigits];
420
if (digits[maximumDigits] <= '9') break;
421
// digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
422
}
423
++maximumDigits; // Increment for use as count
424
}
425
count = maximumDigits;
426
427
// Eliminate trailing zeros.
428
while (count > 1 && digits[count-1] == '0') {
429
--count;
430
}
431
}
432
}
433
434
435
/**
436
* Return true if truncating the representation to the given number
437
* of digits will result in an increment to the last digit. This
438
* method implements the rounding modes defined in the
439
* java.math.RoundingMode class.
440
* [bnf]
441
* @param maximumDigits the number of digits to keep, from 0 to
442
* {@code count-1}. If 0, then all digits are rounded away, and
443
* this method returns true if a one should be generated (e.g., formatting
444
* 0.09 with "#.#").
445
* @param alreadyRounded whether or not rounding up has already happened.
446
* @param valueExactAsDecimal whether or not collected digits provide
447
* an exact decimal representation of the value.
448
* @throws ArithmeticException if rounding is needed with rounding
449
* mode being set to RoundingMode.UNNECESSARY
450
* @return true if digit {@code maximumDigits-1} should be
451
* incremented
452
*/
453
private boolean shouldRoundUp(int maximumDigits,
454
boolean alreadyRounded,
455
boolean valueExactAsDecimal) {
456
if (maximumDigits < count) {
457
/*
458
* To avoid erroneous double-rounding or truncation when converting
459
* a binary double value to text, information about the exactness
460
* of the conversion result in FloatingDecimal, as well as any
461
* rounding done, is needed in this class.
462
*
463
* - For the HALF_DOWN, HALF_EVEN, HALF_UP rounding rules below:
464
* In the case of formating float or double, We must take into
465
* account what FloatingDecimal has done in the binary to decimal
466
* conversion.
467
*
468
* Considering the tie cases, FloatingDecimal may round up the
469
* value (returning decimal digits equal to tie when it is below),
470
* or "truncate" the value to the tie while value is above it,
471
* or provide the exact decimal digits when the binary value can be
472
* converted exactly to its decimal representation given formating
473
* rules of FloatingDecimal ( we have thus an exact decimal
474
* representation of the binary value).
475
*
476
* - If the double binary value was converted exactly as a decimal
477
* value, then DigitList code must apply the expected rounding
478
* rule.
479
*
480
* - If FloatingDecimal already rounded up the decimal value,
481
* DigitList should neither round up the value again in any of
482
* the three rounding modes above.
483
*
484
* - If FloatingDecimal has truncated the decimal value to
485
* an ending '5' digit, DigitList should round up the value in
486
* all of the three rounding modes above.
487
*
488
*
489
* This has to be considered only if digit at maximumDigits index
490
* is exactly the last one in the set of digits, otherwise there are
491
* remaining digits after that position and we don't have to consider
492
* what FloatingDecimal did.
493
*
494
* - Other rounding modes are not impacted by these tie cases.
495
*
496
* - For other numbers that are always converted to exact digits
497
* (like BigInteger, Long, ...), the passed alreadyRounded boolean
498
* have to be set to false, and valueExactAsDecimal has to be set to
499
* true in the upper DigitList call stack, providing the right state
500
* for those situations..
501
*/
502
503
switch(roundingMode) {
504
case UP:
505
for (int i=maximumDigits; i<count; ++i) {
506
if (digits[i] != '0') {
507
return true;
508
}
509
}
510
break;
511
case DOWN:
512
break;
513
case CEILING:
514
for (int i=maximumDigits; i<count; ++i) {
515
if (digits[i] != '0') {
516
return !isNegative;
517
}
518
}
519
break;
520
case FLOOR:
521
for (int i=maximumDigits; i<count; ++i) {
522
if (digits[i] != '0') {
523
return isNegative;
524
}
525
}
526
break;
527
case HALF_UP:
528
case HALF_DOWN:
529
if (digits[maximumDigits] > '5') {
530
// Value is above tie ==> must round up
531
return true;
532
} else if (digits[maximumDigits] == '5') {
533
// Digit at rounding position is a '5'. Tie cases.
534
if (maximumDigits != (count - 1)) {
535
// There are remaining digits. Above tie => must round up
536
return true;
537
} else {
538
// Digit at rounding position is the last one !
539
if (valueExactAsDecimal) {
540
// Exact binary representation. On the tie.
541
// Apply rounding given by roundingMode.
542
return roundingMode == RoundingMode.HALF_UP;
543
} else {
544
// Not an exact binary representation.
545
// Digit sequence either rounded up or truncated.
546
// Round up only if it was truncated.
547
return !alreadyRounded;
548
}
549
}
550
}
551
// Digit at rounding position is < '5' ==> no round up.
552
// Just let do the default, which is no round up (thus break).
553
break;
554
case HALF_EVEN:
555
// Implement IEEE half-even rounding
556
if (digits[maximumDigits] > '5') {
557
return true;
558
} else if (digits[maximumDigits] == '5' ) {
559
if (maximumDigits == (count - 1)) {
560
// the rounding position is exactly the last index :
561
if (alreadyRounded)
562
// If FloatingDecimal rounded up (value was below tie),
563
// then we should not round up again.
564
return false;
565
566
if (!valueExactAsDecimal)
567
// Otherwise if the digits don't represent exact value,
568
// value was above tie and FloatingDecimal truncated
569
// digits to tie. We must round up.
570
return true;
571
else {
572
// This is an exact tie value, and FloatingDecimal
573
// provided all of the exact digits. We thus apply
574
// HALF_EVEN rounding rule.
575
return ((maximumDigits > 0) &&
576
(digits[maximumDigits-1] % 2 != 0));
577
}
578
} else {
579
// Rounds up if it gives a non null digit after '5'
580
for (int i=maximumDigits+1; i<count; ++i) {
581
if (digits[i] != '0')
582
return true;
583
}
584
}
585
}
586
break;
587
case UNNECESSARY:
588
for (int i=maximumDigits; i<count; ++i) {
589
if (digits[i] != '0') {
590
throw new ArithmeticException(
591
"Rounding needed with the rounding mode being set to RoundingMode.UNNECESSARY");
592
}
593
}
594
break;
595
default:
596
assert false;
597
}
598
}
599
return false;
600
}
601
602
/**
603
* Utility routine to set the value of the digit list from a long
604
*/
605
final void set(boolean isNegative, long source) {
606
set(isNegative, source, 0);
607
}
608
609
/**
610
* Set the digit list to a representation of the given long value.
611
* @param isNegative Boolean value indicating whether the number is negative.
612
* @param source Value to be converted; must be >= 0 or ==
613
* Long.MIN_VALUE.
614
* @param maximumDigits The most digits which should be converted.
615
* If maximumDigits is lower than the number of significant digits
616
* in source, the representation will be rounded. Ignored if <= 0.
617
*/
618
final void set(boolean isNegative, long source, int maximumDigits) {
619
this.isNegative = isNegative;
620
621
// This method does not expect a negative number. However,
622
// "source" can be a Long.MIN_VALUE (-9223372036854775808),
623
// if the number being formatted is a Long.MIN_VALUE. In that
624
// case, it will be formatted as -Long.MIN_VALUE, a number
625
// which is outside the legal range of a long, but which can
626
// be represented by DigitList.
627
if (source <= 0) {
628
if (source == Long.MIN_VALUE) {
629
decimalAt = count = MAX_COUNT;
630
System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
631
} else {
632
decimalAt = count = 0; // Values <= 0 format as zero
633
}
634
} else {
635
// Rewritten to improve performance. I used to call
636
// Long.toString(), which was about 4x slower than this code.
637
int left = MAX_COUNT;
638
int right;
639
while (source > 0) {
640
digits[--left] = (char)('0' + (source % 10));
641
source /= 10;
642
}
643
decimalAt = MAX_COUNT - left;
644
// Don't copy trailing zeros. We are guaranteed that there is at
645
// least one non-zero digit, so we don't have to check lower bounds.
646
for (right = MAX_COUNT - 1; digits[right] == '0'; --right)
647
;
648
count = right - left + 1;
649
System.arraycopy(digits, left, digits, 0, count);
650
}
651
if (maximumDigits > 0) round(maximumDigits, false, true);
652
}
653
654
/**
655
* Set the digit list to a representation of the given BigDecimal value.
656
* This method supports both fixed-point and exponential notation.
657
* @param isNegative Boolean value indicating whether the number is negative.
658
* @param source Value to be converted; must not be a value <= 0.
659
* @param maximumDigits The most fractional or total digits which should
660
* be converted.
661
* @param fixedPoint If true, then maximumDigits is the maximum
662
* fractional digits to be converted. If false, total digits.
663
*/
664
final void set(boolean isNegative, BigDecimal source, int maximumDigits, boolean fixedPoint) {
665
String s = source.toString();
666
extendDigits(s.length());
667
668
set(isNegative, s,
669
false, true,
670
maximumDigits, fixedPoint);
671
}
672
673
/**
674
* Set the digit list to a representation of the given BigInteger value.
675
* @param isNegative Boolean value indicating whether the number is negative.
676
* @param source Value to be converted; must be >= 0.
677
* @param maximumDigits The most digits which should be converted.
678
* If maximumDigits is lower than the number of significant digits
679
* in source, the representation will be rounded. Ignored if <= 0.
680
*/
681
final void set(boolean isNegative, BigInteger source, int maximumDigits) {
682
this.isNegative = isNegative;
683
String s = source.toString();
684
int len = s.length();
685
extendDigits(len);
686
s.getChars(0, len, digits, 0);
687
688
decimalAt = len;
689
int right;
690
for (right = len - 1; right >= 0 && digits[right] == '0'; --right)
691
;
692
count = right + 1;
693
694
if (maximumDigits > 0) {
695
round(maximumDigits, false, true);
696
}
697
}
698
699
/**
700
* equality test between two digit lists.
701
*/
702
public boolean equals(Object obj) {
703
if (this == obj) // quick check
704
return true;
705
if (!(obj instanceof DigitList other)) // (1) same object?
706
return false;
707
if (count != other.count ||
708
decimalAt != other.decimalAt)
709
return false;
710
for (int i = 0; i < count; i++)
711
if (digits[i] != other.digits[i])
712
return false;
713
return true;
714
}
715
716
/**
717
* Generates the hash code for the digit list.
718
*/
719
public int hashCode() {
720
int hashcode = decimalAt;
721
722
for (int i = 0; i < count; i++) {
723
hashcode = hashcode * 37 + digits[i];
724
}
725
726
return hashcode;
727
}
728
729
/**
730
* Creates a copy of this object.
731
* @return a clone of this instance.
732
*/
733
public Object clone() {
734
try {
735
DigitList other = (DigitList) super.clone();
736
char[] newDigits = new char[digits.length];
737
System.arraycopy(digits, 0, newDigits, 0, digits.length);
738
other.digits = newDigits;
739
other.tempBuffer = null;
740
return other;
741
} catch (CloneNotSupportedException e) {
742
throw new InternalError(e);
743
}
744
}
745
746
/**
747
* Returns true if this DigitList represents Long.MIN_VALUE;
748
* false, otherwise. This is required so that getLong() works.
749
*/
750
private boolean isLongMIN_VALUE() {
751
if (decimalAt != count || count != MAX_COUNT) {
752
return false;
753
}
754
755
for (int i = 0; i < count; ++i) {
756
if (digits[i] != LONG_MIN_REP[i]) return false;
757
}
758
759
return true;
760
}
761
762
private static final int parseInt(char[] str, int offset, int strLen) {
763
char c;
764
boolean positive = true;
765
if ((c = str[offset]) == '-') {
766
positive = false;
767
offset++;
768
} else if (c == '+') {
769
offset++;
770
}
771
772
int value = 0;
773
while (offset < strLen) {
774
c = str[offset++];
775
if (c >= '0' && c <= '9') {
776
value = value * 10 + (c - '0');
777
} else {
778
break;
779
}
780
}
781
return positive ? value : -value;
782
}
783
784
// The digit part of -9223372036854775808L
785
private static final char[] LONG_MIN_REP = "9223372036854775808".toCharArray();
786
787
public String toString() {
788
if (isZero()) {
789
return "0";
790
}
791
StringBuffer buf = getStringBuffer();
792
buf.append("0.");
793
buf.append(digits, 0, count);
794
buf.append("x10^");
795
buf.append(decimalAt);
796
return buf.toString();
797
}
798
799
private StringBuffer tempBuffer;
800
801
private StringBuffer getStringBuffer() {
802
if (tempBuffer == null) {
803
tempBuffer = new StringBuffer(MAX_COUNT);
804
} else {
805
tempBuffer.setLength(0);
806
}
807
return tempBuffer;
808
}
809
810
private void extendDigits(int len) {
811
if (len > digits.length) {
812
digits = new char[len];
813
}
814
}
815
816
private final char[] getDataChars(int length) {
817
if (data == null || data.length < length) {
818
data = new char[length];
819
}
820
return data;
821
}
822
}
823
824