Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/classes/java/time/Instant.java
41152 views
1
/*
2
* Copyright (c) 2012, 2019, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
/*
27
* This file is available under and governed by the GNU General Public
28
* License version 2 only, as published by the Free Software Foundation.
29
* However, the following notice accompanied the original version of this
30
* file:
31
*
32
* Copyright (c) 2007-2012, Stephen Colebourne & Michael Nascimento Santos
33
*
34
* All rights reserved.
35
*
36
* Redistribution and use in source and binary forms, with or without
37
* modification, are permitted provided that the following conditions are met:
38
*
39
* * Redistributions of source code must retain the above copyright notice,
40
* this list of conditions and the following disclaimer.
41
*
42
* * Redistributions in binary form must reproduce the above copyright notice,
43
* this list of conditions and the following disclaimer in the documentation
44
* and/or other materials provided with the distribution.
45
*
46
* * Neither the name of JSR-310 nor the names of its contributors
47
* may be used to endorse or promote products derived from this software
48
* without specific prior written permission.
49
*
50
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
54
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
55
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
56
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
57
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
58
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
59
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
60
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61
*/
62
package java.time;
63
64
import static java.time.LocalTime.NANOS_PER_SECOND;
65
import static java.time.LocalTime.SECONDS_PER_DAY;
66
import static java.time.LocalTime.SECONDS_PER_HOUR;
67
import static java.time.LocalTime.SECONDS_PER_MINUTE;
68
import static java.time.temporal.ChronoField.INSTANT_SECONDS;
69
import static java.time.temporal.ChronoField.MICRO_OF_SECOND;
70
import static java.time.temporal.ChronoField.MILLI_OF_SECOND;
71
import static java.time.temporal.ChronoField.NANO_OF_SECOND;
72
import static java.time.temporal.ChronoUnit.DAYS;
73
import static java.time.temporal.ChronoUnit.NANOS;
74
75
import java.io.DataInput;
76
import java.io.DataOutput;
77
import java.io.IOException;
78
import java.io.InvalidObjectException;
79
import java.io.ObjectInputStream;
80
import java.io.Serializable;
81
import java.time.format.DateTimeFormatter;
82
import java.time.format.DateTimeParseException;
83
import java.time.temporal.ChronoField;
84
import java.time.temporal.ChronoUnit;
85
import java.time.temporal.Temporal;
86
import java.time.temporal.TemporalAccessor;
87
import java.time.temporal.TemporalAdjuster;
88
import java.time.temporal.TemporalAmount;
89
import java.time.temporal.TemporalField;
90
import java.time.temporal.TemporalQueries;
91
import java.time.temporal.TemporalQuery;
92
import java.time.temporal.TemporalUnit;
93
import java.time.temporal.UnsupportedTemporalTypeException;
94
import java.time.temporal.ValueRange;
95
import java.util.Objects;
96
97
/**
98
* An instantaneous point on the time-line.
99
* <p>
100
* This class models a single instantaneous point on the time-line.
101
* This might be used to record event time-stamps in the application.
102
* <p>
103
* The range of an instant requires the storage of a number larger than a {@code long}.
104
* To achieve this, the class stores a {@code long} representing epoch-seconds and an
105
* {@code int} representing nanosecond-of-second, which will always be between 0 and 999,999,999.
106
* The epoch-seconds are measured from the standard Java epoch of {@code 1970-01-01T00:00:00Z}
107
* where instants after the epoch have positive values, and earlier instants have negative values.
108
* For both the epoch-second and nanosecond parts, a larger value is always later on the time-line
109
* than a smaller value.
110
*
111
* <h2>Time-scale</h2>
112
* <p>
113
* The length of the solar day is the standard way that humans measure time.
114
* This has traditionally been subdivided into 24 hours of 60 minutes of 60 seconds,
115
* forming a 86400 second day.
116
* <p>
117
* Modern timekeeping is based on atomic clocks which precisely define an SI second
118
* relative to the transitions of a Caesium atom. The length of an SI second was defined
119
* to be very close to the 86400th fraction of a day.
120
* <p>
121
* Unfortunately, as the Earth rotates the length of the day varies.
122
* In addition, over time the average length of the day is getting longer as the Earth slows.
123
* As a result, the length of a solar day in 2012 is slightly longer than 86400 SI seconds.
124
* The actual length of any given day and the amount by which the Earth is slowing
125
* are not predictable and can only be determined by measurement.
126
* The UT1 time-scale captures the accurate length of day, but is only available some
127
* time after the day has completed.
128
* <p>
129
* The UTC time-scale is a standard approach to bundle up all the additional fractions
130
* of a second from UT1 into whole seconds, known as <i>leap-seconds</i>.
131
* A leap-second may be added or removed depending on the Earth's rotational changes.
132
* As such, UTC permits a day to have 86399 SI seconds or 86401 SI seconds where
133
* necessary in order to keep the day aligned with the Sun.
134
* <p>
135
* The modern UTC time-scale was introduced in 1972, introducing the concept of whole leap-seconds.
136
* Between 1958 and 1972, the definition of UTC was complex, with minor sub-second leaps and
137
* alterations to the length of the notional second. As of 2012, discussions are underway
138
* to change the definition of UTC again, with the potential to remove leap seconds or
139
* introduce other changes.
140
* <p>
141
* Given the complexity of accurate timekeeping described above, this Java API defines
142
* its own time-scale, the <i>Java Time-Scale</i>.
143
* <p>
144
* The Java Time-Scale divides each calendar day into exactly 86400
145
* subdivisions, known as seconds. These seconds may differ from the
146
* SI second. It closely matches the de facto international civil time
147
* scale, the definition of which changes from time to time.
148
* <p>
149
* The Java Time-Scale has slightly different definitions for different
150
* segments of the time-line, each based on the consensus international
151
* time scale that is used as the basis for civil time. Whenever the
152
* internationally-agreed time scale is modified or replaced, a new
153
* segment of the Java Time-Scale must be defined for it. Each segment
154
* must meet these requirements:
155
* <ul>
156
* <li>the Java Time-Scale shall closely match the underlying international
157
* civil time scale;</li>
158
* <li>the Java Time-Scale shall exactly match the international civil
159
* time scale at noon each day;</li>
160
* <li>the Java Time-Scale shall have a precisely-defined relationship to
161
* the international civil time scale.</li>
162
* </ul>
163
* There are currently, as of 2013, two segments in the Java time-scale.
164
* <p>
165
* For the segment from 1972-11-03 (exact boundary discussed below) until
166
* further notice, the consensus international time scale is UTC (with
167
* leap seconds). In this segment, the Java Time-Scale is identical to
168
* <a href="http://www.cl.cam.ac.uk/~mgk25/time/utc-sls/">UTC-SLS</a>.
169
* This is identical to UTC on days that do not have a leap second.
170
* On days that do have a leap second, the leap second is spread equally
171
* over the last 1000 seconds of the day, maintaining the appearance of
172
* exactly 86400 seconds per day.
173
* <p>
174
* For the segment prior to 1972-11-03, extending back arbitrarily far,
175
* the consensus international time scale is defined to be UT1, applied
176
* proleptically, which is equivalent to the (mean) solar time on the
177
* prime meridian (Greenwich). In this segment, the Java Time-Scale is
178
* identical to the consensus international time scale. The exact
179
* boundary between the two segments is the instant where UT1 = UTC
180
* between 1972-11-03T00:00 and 1972-11-04T12:00.
181
* <p>
182
* Implementations of the Java time-scale using the JSR-310 API are not
183
* required to provide any clock that is sub-second accurate, or that
184
* progresses monotonically or smoothly. Implementations are therefore
185
* not required to actually perform the UTC-SLS slew or to otherwise be
186
* aware of leap seconds. JSR-310 does, however, require that
187
* implementations must document the approach they use when defining a
188
* clock representing the current instant.
189
* See {@link Clock} for details on the available clocks.
190
* <p>
191
* The Java time-scale is used for all date-time classes.
192
* This includes {@code Instant}, {@code LocalDate}, {@code LocalTime}, {@code OffsetDateTime},
193
* {@code ZonedDateTime} and {@code Duration}.
194
* <p>
195
* This is a <a href="{@docRoot}/java.base/java/lang/doc-files/ValueBased.html">value-based</a>
196
* class; programmers should treat instances that are
197
* {@linkplain #equals(Object) equal} as interchangeable and should not
198
* use instances for synchronization, or unpredictable behavior may
199
* occur. For example, in a future release, synchronization may fail.
200
* The {@code equals} method should be used for comparisons.
201
*
202
* @implSpec
203
* This class is immutable and thread-safe.
204
*
205
* @since 1.8
206
*/
207
@jdk.internal.ValueBased
208
public final class Instant
209
implements Temporal, TemporalAdjuster, Comparable<Instant>, Serializable {
210
211
/**
212
* Constant for the 1970-01-01T00:00:00Z epoch instant.
213
*/
214
public static final Instant EPOCH = new Instant(0, 0);
215
/**
216
* The minimum supported epoch second.
217
*/
218
private static final long MIN_SECOND = -31557014167219200L;
219
/**
220
* The maximum supported epoch second.
221
*/
222
private static final long MAX_SECOND = 31556889864403199L;
223
/**
224
* The minimum supported {@code Instant}, '-1000000000-01-01T00:00Z'.
225
* This could be used by an application as a "far past" instant.
226
* <p>
227
* This is one year earlier than the minimum {@code LocalDateTime}.
228
* This provides sufficient values to handle the range of {@code ZoneOffset}
229
* which affect the instant in addition to the local date-time.
230
* The value is also chosen such that the value of the year fits in
231
* an {@code int}.
232
*/
233
public static final Instant MIN = Instant.ofEpochSecond(MIN_SECOND, 0);
234
/**
235
* The maximum supported {@code Instant}, '1000000000-12-31T23:59:59.999999999Z'.
236
* This could be used by an application as a "far future" instant.
237
* <p>
238
* This is one year later than the maximum {@code LocalDateTime}.
239
* This provides sufficient values to handle the range of {@code ZoneOffset}
240
* which affect the instant in addition to the local date-time.
241
* The value is also chosen such that the value of the year fits in
242
* an {@code int}.
243
*/
244
public static final Instant MAX = Instant.ofEpochSecond(MAX_SECOND, 999_999_999);
245
246
/**
247
* Serialization version.
248
*/
249
@java.io.Serial
250
private static final long serialVersionUID = -665713676816604388L;
251
252
/**
253
* The number of seconds from the epoch of 1970-01-01T00:00:00Z.
254
*/
255
private final long seconds;
256
/**
257
* The number of nanoseconds, later along the time-line, from the seconds field.
258
* This is always positive, and never exceeds 999,999,999.
259
*/
260
private final int nanos;
261
262
//-----------------------------------------------------------------------
263
/**
264
* Obtains the current instant from the system clock.
265
* <p>
266
* This will query the {@link Clock#systemUTC() system UTC clock} to
267
* obtain the current instant.
268
* <p>
269
* Using this method will prevent the ability to use an alternate time-source for
270
* testing because the clock is effectively hard-coded.
271
*
272
* @return the current instant using the system clock, not null
273
*/
274
public static Instant now() {
275
return Clock.systemUTC().instant();
276
}
277
278
/**
279
* Obtains the current instant from the specified clock.
280
* <p>
281
* This will query the specified clock to obtain the current time.
282
* <p>
283
* Using this method allows the use of an alternate clock for testing.
284
* The alternate clock may be introduced using {@link Clock dependency injection}.
285
*
286
* @param clock the clock to use, not null
287
* @return the current instant, not null
288
*/
289
public static Instant now(Clock clock) {
290
Objects.requireNonNull(clock, "clock");
291
return clock.instant();
292
}
293
294
//-----------------------------------------------------------------------
295
/**
296
* Obtains an instance of {@code Instant} using seconds from the
297
* epoch of 1970-01-01T00:00:00Z.
298
* <p>
299
* The nanosecond field is set to zero.
300
*
301
* @param epochSecond the number of seconds from 1970-01-01T00:00:00Z
302
* @return an instant, not null
303
* @throws DateTimeException if the instant exceeds the maximum or minimum instant
304
*/
305
public static Instant ofEpochSecond(long epochSecond) {
306
return create(epochSecond, 0);
307
}
308
309
/**
310
* Obtains an instance of {@code Instant} using seconds from the
311
* epoch of 1970-01-01T00:00:00Z and nanosecond fraction of second.
312
* <p>
313
* This method allows an arbitrary number of nanoseconds to be passed in.
314
* The factory will alter the values of the second and nanosecond in order
315
* to ensure that the stored nanosecond is in the range 0 to 999,999,999.
316
* For example, the following will result in exactly the same instant:
317
* <pre>
318
* Instant.ofEpochSecond(3, 1);
319
* Instant.ofEpochSecond(4, -999_999_999);
320
* Instant.ofEpochSecond(2, 1000_000_001);
321
* </pre>
322
*
323
* @param epochSecond the number of seconds from 1970-01-01T00:00:00Z
324
* @param nanoAdjustment the nanosecond adjustment to the number of seconds, positive or negative
325
* @return an instant, not null
326
* @throws DateTimeException if the instant exceeds the maximum or minimum instant
327
* @throws ArithmeticException if numeric overflow occurs
328
*/
329
public static Instant ofEpochSecond(long epochSecond, long nanoAdjustment) {
330
long secs = Math.addExact(epochSecond, Math.floorDiv(nanoAdjustment, NANOS_PER_SECOND));
331
int nos = (int)Math.floorMod(nanoAdjustment, NANOS_PER_SECOND);
332
return create(secs, nos);
333
}
334
335
/**
336
* Obtains an instance of {@code Instant} using milliseconds from the
337
* epoch of 1970-01-01T00:00:00Z.
338
* <p>
339
* The seconds and nanoseconds are extracted from the specified milliseconds.
340
*
341
* @param epochMilli the number of milliseconds from 1970-01-01T00:00:00Z
342
* @return an instant, not null
343
* @throws DateTimeException if the instant exceeds the maximum or minimum instant
344
*/
345
public static Instant ofEpochMilli(long epochMilli) {
346
long secs = Math.floorDiv(epochMilli, 1000);
347
int mos = Math.floorMod(epochMilli, 1000);
348
return create(secs, mos * 1000_000);
349
}
350
351
//-----------------------------------------------------------------------
352
/**
353
* Obtains an instance of {@code Instant} from a temporal object.
354
* <p>
355
* This obtains an instant based on the specified temporal.
356
* A {@code TemporalAccessor} represents an arbitrary set of date and time information,
357
* which this factory converts to an instance of {@code Instant}.
358
* <p>
359
* The conversion extracts the {@link ChronoField#INSTANT_SECONDS INSTANT_SECONDS}
360
* and {@link ChronoField#NANO_OF_SECOND NANO_OF_SECOND} fields.
361
* <p>
362
* This method matches the signature of the functional interface {@link TemporalQuery}
363
* allowing it to be used as a query via method reference, {@code Instant::from}.
364
*
365
* @param temporal the temporal object to convert, not null
366
* @return the instant, not null
367
* @throws DateTimeException if unable to convert to an {@code Instant}
368
*/
369
public static Instant from(TemporalAccessor temporal) {
370
if (temporal instanceof Instant) {
371
return (Instant) temporal;
372
}
373
Objects.requireNonNull(temporal, "temporal");
374
try {
375
long instantSecs = temporal.getLong(INSTANT_SECONDS);
376
int nanoOfSecond = temporal.get(NANO_OF_SECOND);
377
return Instant.ofEpochSecond(instantSecs, nanoOfSecond);
378
} catch (DateTimeException ex) {
379
throw new DateTimeException("Unable to obtain Instant from TemporalAccessor: " +
380
temporal + " of type " + temporal.getClass().getName(), ex);
381
}
382
}
383
384
//-----------------------------------------------------------------------
385
/**
386
* Obtains an instance of {@code Instant} from a text string such as
387
* {@code 2007-12-03T10:15:30.00Z}.
388
* <p>
389
* The string must represent a valid instant in UTC and is parsed using
390
* {@link DateTimeFormatter#ISO_INSTANT}.
391
*
392
* @param text the text to parse, not null
393
* @return the parsed instant, not null
394
* @throws DateTimeParseException if the text cannot be parsed
395
*/
396
public static Instant parse(final CharSequence text) {
397
return DateTimeFormatter.ISO_INSTANT.parse(text, Instant::from);
398
}
399
400
//-----------------------------------------------------------------------
401
/**
402
* Obtains an instance of {@code Instant} using seconds and nanoseconds.
403
*
404
* @param seconds the length of the duration in seconds
405
* @param nanoOfSecond the nano-of-second, from 0 to 999,999,999
406
* @throws DateTimeException if the instant exceeds the maximum or minimum instant
407
*/
408
private static Instant create(long seconds, int nanoOfSecond) {
409
if ((seconds | nanoOfSecond) == 0) {
410
return EPOCH;
411
}
412
if (seconds < MIN_SECOND || seconds > MAX_SECOND) {
413
throw new DateTimeException("Instant exceeds minimum or maximum instant");
414
}
415
return new Instant(seconds, nanoOfSecond);
416
}
417
418
/**
419
* Constructs an instance of {@code Instant} using seconds from the epoch of
420
* 1970-01-01T00:00:00Z and nanosecond fraction of second.
421
*
422
* @param epochSecond the number of seconds from 1970-01-01T00:00:00Z
423
* @param nanos the nanoseconds within the second, must be positive
424
*/
425
private Instant(long epochSecond, int nanos) {
426
super();
427
this.seconds = epochSecond;
428
this.nanos = nanos;
429
}
430
431
//-----------------------------------------------------------------------
432
/**
433
* Checks if the specified field is supported.
434
* <p>
435
* This checks if this instant can be queried for the specified field.
436
* If false, then calling the {@link #range(TemporalField) range},
437
* {@link #get(TemporalField) get} and {@link #with(TemporalField, long)}
438
* methods will throw an exception.
439
* <p>
440
* If the field is a {@link ChronoField} then the query is implemented here.
441
* The supported fields are:
442
* <ul>
443
* <li>{@code NANO_OF_SECOND}
444
* <li>{@code MICRO_OF_SECOND}
445
* <li>{@code MILLI_OF_SECOND}
446
* <li>{@code INSTANT_SECONDS}
447
* </ul>
448
* All other {@code ChronoField} instances will return false.
449
* <p>
450
* If the field is not a {@code ChronoField}, then the result of this method
451
* is obtained by invoking {@code TemporalField.isSupportedBy(TemporalAccessor)}
452
* passing {@code this} as the argument.
453
* Whether the field is supported is determined by the field.
454
*
455
* @param field the field to check, null returns false
456
* @return true if the field is supported on this instant, false if not
457
*/
458
@Override
459
public boolean isSupported(TemporalField field) {
460
if (field instanceof ChronoField) {
461
return field == INSTANT_SECONDS || field == NANO_OF_SECOND || field == MICRO_OF_SECOND || field == MILLI_OF_SECOND;
462
}
463
return field != null && field.isSupportedBy(this);
464
}
465
466
/**
467
* Checks if the specified unit is supported.
468
* <p>
469
* This checks if the specified unit can be added to, or subtracted from, this date-time.
470
* If false, then calling the {@link #plus(long, TemporalUnit)} and
471
* {@link #minus(long, TemporalUnit) minus} methods will throw an exception.
472
* <p>
473
* If the unit is a {@link ChronoUnit} then the query is implemented here.
474
* The supported units are:
475
* <ul>
476
* <li>{@code NANOS}
477
* <li>{@code MICROS}
478
* <li>{@code MILLIS}
479
* <li>{@code SECONDS}
480
* <li>{@code MINUTES}
481
* <li>{@code HOURS}
482
* <li>{@code HALF_DAYS}
483
* <li>{@code DAYS}
484
* </ul>
485
* All other {@code ChronoUnit} instances will return false.
486
* <p>
487
* If the unit is not a {@code ChronoUnit}, then the result of this method
488
* is obtained by invoking {@code TemporalUnit.isSupportedBy(Temporal)}
489
* passing {@code this} as the argument.
490
* Whether the unit is supported is determined by the unit.
491
*
492
* @param unit the unit to check, null returns false
493
* @return true if the unit can be added/subtracted, false if not
494
*/
495
@Override
496
public boolean isSupported(TemporalUnit unit) {
497
if (unit instanceof ChronoUnit) {
498
return unit.isTimeBased() || unit == DAYS;
499
}
500
return unit != null && unit.isSupportedBy(this);
501
}
502
503
//-----------------------------------------------------------------------
504
/**
505
* Gets the range of valid values for the specified field.
506
* <p>
507
* The range object expresses the minimum and maximum valid values for a field.
508
* This instant is used to enhance the accuracy of the returned range.
509
* If it is not possible to return the range, because the field is not supported
510
* or for some other reason, an exception is thrown.
511
* <p>
512
* If the field is a {@link ChronoField} then the query is implemented here.
513
* The {@link #isSupported(TemporalField) supported fields} will return
514
* appropriate range instances.
515
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
516
* <p>
517
* If the field is not a {@code ChronoField}, then the result of this method
518
* is obtained by invoking {@code TemporalField.rangeRefinedBy(TemporalAccessor)}
519
* passing {@code this} as the argument.
520
* Whether the range can be obtained is determined by the field.
521
*
522
* @param field the field to query the range for, not null
523
* @return the range of valid values for the field, not null
524
* @throws DateTimeException if the range for the field cannot be obtained
525
* @throws UnsupportedTemporalTypeException if the field is not supported
526
*/
527
@Override // override for Javadoc
528
public ValueRange range(TemporalField field) {
529
return Temporal.super.range(field);
530
}
531
532
/**
533
* Gets the value of the specified field from this instant as an {@code int}.
534
* <p>
535
* This queries this instant for the value of the specified field.
536
* The returned value will always be within the valid range of values for the field.
537
* If it is not possible to return the value, because the field is not supported
538
* or for some other reason, an exception is thrown.
539
* <p>
540
* If the field is a {@link ChronoField} then the query is implemented here.
541
* The {@link #isSupported(TemporalField) supported fields} will return valid
542
* values based on this date-time, except {@code INSTANT_SECONDS} which is too
543
* large to fit in an {@code int} and throws a {@code DateTimeException}.
544
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
545
* <p>
546
* If the field is not a {@code ChronoField}, then the result of this method
547
* is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
548
* passing {@code this} as the argument. Whether the value can be obtained,
549
* and what the value represents, is determined by the field.
550
*
551
* @param field the field to get, not null
552
* @return the value for the field
553
* @throws DateTimeException if a value for the field cannot be obtained or
554
* the value is outside the range of valid values for the field
555
* @throws UnsupportedTemporalTypeException if the field is not supported or
556
* the range of values exceeds an {@code int}
557
* @throws ArithmeticException if numeric overflow occurs
558
*/
559
@Override // override for Javadoc and performance
560
public int get(TemporalField field) {
561
if (field instanceof ChronoField) {
562
switch ((ChronoField) field) {
563
case NANO_OF_SECOND: return nanos;
564
case MICRO_OF_SECOND: return nanos / 1000;
565
case MILLI_OF_SECOND: return nanos / 1000_000;
566
}
567
throw new UnsupportedTemporalTypeException("Unsupported field: " + field);
568
}
569
return range(field).checkValidIntValue(field.getFrom(this), field);
570
}
571
572
/**
573
* Gets the value of the specified field from this instant as a {@code long}.
574
* <p>
575
* This queries this instant for the value of the specified field.
576
* If it is not possible to return the value, because the field is not supported
577
* or for some other reason, an exception is thrown.
578
* <p>
579
* If the field is a {@link ChronoField} then the query is implemented here.
580
* The {@link #isSupported(TemporalField) supported fields} will return valid
581
* values based on this date-time.
582
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
583
* <p>
584
* If the field is not a {@code ChronoField}, then the result of this method
585
* is obtained by invoking {@code TemporalField.getFrom(TemporalAccessor)}
586
* passing {@code this} as the argument. Whether the value can be obtained,
587
* and what the value represents, is determined by the field.
588
*
589
* @param field the field to get, not null
590
* @return the value for the field
591
* @throws DateTimeException if a value for the field cannot be obtained
592
* @throws UnsupportedTemporalTypeException if the field is not supported
593
* @throws ArithmeticException if numeric overflow occurs
594
*/
595
@Override
596
public long getLong(TemporalField field) {
597
if (field instanceof ChronoField) {
598
switch ((ChronoField) field) {
599
case NANO_OF_SECOND: return nanos;
600
case MICRO_OF_SECOND: return nanos / 1000;
601
case MILLI_OF_SECOND: return nanos / 1000_000;
602
case INSTANT_SECONDS: return seconds;
603
}
604
throw new UnsupportedTemporalTypeException("Unsupported field: " + field);
605
}
606
return field.getFrom(this);
607
}
608
609
//-----------------------------------------------------------------------
610
/**
611
* Gets the number of seconds from the Java epoch of 1970-01-01T00:00:00Z.
612
* <p>
613
* The epoch second count is a simple incrementing count of seconds where
614
* second 0 is 1970-01-01T00:00:00Z.
615
* The nanosecond part is returned by {@link #getNano}.
616
*
617
* @return the seconds from the epoch of 1970-01-01T00:00:00Z
618
*/
619
public long getEpochSecond() {
620
return seconds;
621
}
622
623
/**
624
* Gets the number of nanoseconds, later along the time-line, from the start
625
* of the second.
626
* <p>
627
* The nanosecond-of-second value measures the total number of nanoseconds from
628
* the second returned by {@link #getEpochSecond}.
629
*
630
* @return the nanoseconds within the second, always positive, never exceeds 999,999,999
631
*/
632
public int getNano() {
633
return nanos;
634
}
635
636
//-------------------------------------------------------------------------
637
/**
638
* Returns an adjusted copy of this instant.
639
* <p>
640
* This returns an {@code Instant}, based on this one, with the instant adjusted.
641
* The adjustment takes place using the specified adjuster strategy object.
642
* Read the documentation of the adjuster to understand what adjustment will be made.
643
* <p>
644
* The result of this method is obtained by invoking the
645
* {@link TemporalAdjuster#adjustInto(Temporal)} method on the
646
* specified adjuster passing {@code this} as the argument.
647
* <p>
648
* This instance is immutable and unaffected by this method call.
649
*
650
* @param adjuster the adjuster to use, not null
651
* @return an {@code Instant} based on {@code this} with the adjustment made, not null
652
* @throws DateTimeException if the adjustment cannot be made
653
* @throws ArithmeticException if numeric overflow occurs
654
*/
655
@Override
656
public Instant with(TemporalAdjuster adjuster) {
657
return (Instant) adjuster.adjustInto(this);
658
}
659
660
/**
661
* Returns a copy of this instant with the specified field set to a new value.
662
* <p>
663
* This returns an {@code Instant}, based on this one, with the value
664
* for the specified field changed.
665
* If it is not possible to set the value, because the field is not supported or for
666
* some other reason, an exception is thrown.
667
* <p>
668
* If the field is a {@link ChronoField} then the adjustment is implemented here.
669
* The supported fields behave as follows:
670
* <ul>
671
* <li>{@code NANO_OF_SECOND} -
672
* Returns an {@code Instant} with the specified nano-of-second.
673
* The epoch-second will be unchanged.
674
* <li>{@code MICRO_OF_SECOND} -
675
* Returns an {@code Instant} with the nano-of-second replaced by the specified
676
* micro-of-second multiplied by 1,000. The epoch-second will be unchanged.
677
* <li>{@code MILLI_OF_SECOND} -
678
* Returns an {@code Instant} with the nano-of-second replaced by the specified
679
* milli-of-second multiplied by 1,000,000. The epoch-second will be unchanged.
680
* <li>{@code INSTANT_SECONDS} -
681
* Returns an {@code Instant} with the specified epoch-second.
682
* The nano-of-second will be unchanged.
683
* </ul>
684
* <p>
685
* In all cases, if the new value is outside the valid range of values for the field
686
* then a {@code DateTimeException} will be thrown.
687
* <p>
688
* All other {@code ChronoField} instances will throw an {@code UnsupportedTemporalTypeException}.
689
* <p>
690
* If the field is not a {@code ChronoField}, then the result of this method
691
* is obtained by invoking {@code TemporalField.adjustInto(Temporal, long)}
692
* passing {@code this} as the argument. In this case, the field determines
693
* whether and how to adjust the instant.
694
* <p>
695
* This instance is immutable and unaffected by this method call.
696
*
697
* @param field the field to set in the result, not null
698
* @param newValue the new value of the field in the result
699
* @return an {@code Instant} based on {@code this} with the specified field set, not null
700
* @throws DateTimeException if the field cannot be set
701
* @throws UnsupportedTemporalTypeException if the field is not supported
702
* @throws ArithmeticException if numeric overflow occurs
703
*/
704
@Override
705
public Instant with(TemporalField field, long newValue) {
706
if (field instanceof ChronoField chronoField) {
707
chronoField.checkValidValue(newValue);
708
switch (chronoField) {
709
case MILLI_OF_SECOND: {
710
int nval = (int) newValue * 1000_000;
711
return (nval != nanos ? create(seconds, nval) : this);
712
}
713
case MICRO_OF_SECOND: {
714
int nval = (int) newValue * 1000;
715
return (nval != nanos ? create(seconds, nval) : this);
716
}
717
case NANO_OF_SECOND: return (newValue != nanos ? create(seconds, (int) newValue) : this);
718
case INSTANT_SECONDS: return (newValue != seconds ? create(newValue, nanos) : this);
719
}
720
throw new UnsupportedTemporalTypeException("Unsupported field: " + field);
721
}
722
return field.adjustInto(this, newValue);
723
}
724
725
//-----------------------------------------------------------------------
726
/**
727
* Returns a copy of this {@code Instant} truncated to the specified unit.
728
* <p>
729
* Truncating the instant returns a copy of the original with fields
730
* smaller than the specified unit set to zero.
731
* The fields are calculated on the basis of using a UTC offset as seen
732
* in {@code toString}.
733
* For example, truncating with the {@link ChronoUnit#MINUTES MINUTES} unit will
734
* round down to the nearest minute, setting the seconds and nanoseconds to zero.
735
* <p>
736
* The unit must have a {@linkplain TemporalUnit#getDuration() duration}
737
* that divides into the length of a standard day without remainder.
738
* This includes all supplied time units on {@link ChronoUnit} and
739
* {@link ChronoUnit#DAYS DAYS}. Other units throw an exception.
740
* <p>
741
* This instance is immutable and unaffected by this method call.
742
*
743
* @param unit the unit to truncate to, not null
744
* @return an {@code Instant} based on this instant with the time truncated, not null
745
* @throws DateTimeException if the unit is invalid for truncation
746
* @throws UnsupportedTemporalTypeException if the unit is not supported
747
*/
748
public Instant truncatedTo(TemporalUnit unit) {
749
if (unit == ChronoUnit.NANOS) {
750
return this;
751
}
752
Duration unitDur = unit.getDuration();
753
if (unitDur.getSeconds() > LocalTime.SECONDS_PER_DAY) {
754
throw new UnsupportedTemporalTypeException("Unit is too large to be used for truncation");
755
}
756
long dur = unitDur.toNanos();
757
if ((LocalTime.NANOS_PER_DAY % dur) != 0) {
758
throw new UnsupportedTemporalTypeException("Unit must divide into a standard day without remainder");
759
}
760
long nod = (seconds % LocalTime.SECONDS_PER_DAY) * LocalTime.NANOS_PER_SECOND + nanos;
761
long result = Math.floorDiv(nod, dur) * dur;
762
return plusNanos(result - nod);
763
}
764
765
//-----------------------------------------------------------------------
766
/**
767
* Returns a copy of this instant with the specified amount added.
768
* <p>
769
* This returns an {@code Instant}, based on this one, with the specified amount added.
770
* The amount is typically {@link Duration} but may be any other type implementing
771
* the {@link TemporalAmount} interface.
772
* <p>
773
* The calculation is delegated to the amount object by calling
774
* {@link TemporalAmount#addTo(Temporal)}. The amount implementation is free
775
* to implement the addition in any way it wishes, however it typically
776
* calls back to {@link #plus(long, TemporalUnit)}. Consult the documentation
777
* of the amount implementation to determine if it can be successfully added.
778
* <p>
779
* This instance is immutable and unaffected by this method call.
780
*
781
* @param amountToAdd the amount to add, not null
782
* @return an {@code Instant} based on this instant with the addition made, not null
783
* @throws DateTimeException if the addition cannot be made
784
* @throws ArithmeticException if numeric overflow occurs
785
*/
786
@Override
787
public Instant plus(TemporalAmount amountToAdd) {
788
return (Instant) amountToAdd.addTo(this);
789
}
790
791
/**
792
* Returns a copy of this instant with the specified amount added.
793
* <p>
794
* This returns an {@code Instant}, based on this one, with the amount
795
* in terms of the unit added. If it is not possible to add the amount, because the
796
* unit is not supported or for some other reason, an exception is thrown.
797
* <p>
798
* If the field is a {@link ChronoUnit} then the addition is implemented here.
799
* The supported fields behave as follows:
800
* <ul>
801
* <li>{@code NANOS} -
802
* Returns an {@code Instant} with the specified number of nanoseconds added.
803
* This is equivalent to {@link #plusNanos(long)}.
804
* <li>{@code MICROS} -
805
* Returns an {@code Instant} with the specified number of microseconds added.
806
* This is equivalent to {@link #plusNanos(long)} with the amount
807
* multiplied by 1,000.
808
* <li>{@code MILLIS} -
809
* Returns an {@code Instant} with the specified number of milliseconds added.
810
* This is equivalent to {@link #plusNanos(long)} with the amount
811
* multiplied by 1,000,000.
812
* <li>{@code SECONDS} -
813
* Returns an {@code Instant} with the specified number of seconds added.
814
* This is equivalent to {@link #plusSeconds(long)}.
815
* <li>{@code MINUTES} -
816
* Returns an {@code Instant} with the specified number of minutes added.
817
* This is equivalent to {@link #plusSeconds(long)} with the amount
818
* multiplied by 60.
819
* <li>{@code HOURS} -
820
* Returns an {@code Instant} with the specified number of hours added.
821
* This is equivalent to {@link #plusSeconds(long)} with the amount
822
* multiplied by 3,600.
823
* <li>{@code HALF_DAYS} -
824
* Returns an {@code Instant} with the specified number of half-days added.
825
* This is equivalent to {@link #plusSeconds(long)} with the amount
826
* multiplied by 43,200 (12 hours).
827
* <li>{@code DAYS} -
828
* Returns an {@code Instant} with the specified number of days added.
829
* This is equivalent to {@link #plusSeconds(long)} with the amount
830
* multiplied by 86,400 (24 hours).
831
* </ul>
832
* <p>
833
* All other {@code ChronoUnit} instances will throw an {@code UnsupportedTemporalTypeException}.
834
* <p>
835
* If the field is not a {@code ChronoUnit}, then the result of this method
836
* is obtained by invoking {@code TemporalUnit.addTo(Temporal, long)}
837
* passing {@code this} as the argument. In this case, the unit determines
838
* whether and how to perform the addition.
839
* <p>
840
* This instance is immutable and unaffected by this method call.
841
*
842
* @param amountToAdd the amount of the unit to add to the result, may be negative
843
* @param unit the unit of the amount to add, not null
844
* @return an {@code Instant} based on this instant with the specified amount added, not null
845
* @throws DateTimeException if the addition cannot be made
846
* @throws UnsupportedTemporalTypeException if the unit is not supported
847
* @throws ArithmeticException if numeric overflow occurs
848
*/
849
@Override
850
public Instant plus(long amountToAdd, TemporalUnit unit) {
851
if (unit instanceof ChronoUnit) {
852
switch ((ChronoUnit) unit) {
853
case NANOS: return plusNanos(amountToAdd);
854
case MICROS: return plus(amountToAdd / 1000_000, (amountToAdd % 1000_000) * 1000);
855
case MILLIS: return plusMillis(amountToAdd);
856
case SECONDS: return plusSeconds(amountToAdd);
857
case MINUTES: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_MINUTE));
858
case HOURS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_HOUR));
859
case HALF_DAYS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY / 2));
860
case DAYS: return plusSeconds(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY));
861
}
862
throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit);
863
}
864
return unit.addTo(this, amountToAdd);
865
}
866
867
//-----------------------------------------------------------------------
868
/**
869
* Returns a copy of this instant with the specified duration in seconds added.
870
* <p>
871
* This instance is immutable and unaffected by this method call.
872
*
873
* @param secondsToAdd the seconds to add, positive or negative
874
* @return an {@code Instant} based on this instant with the specified seconds added, not null
875
* @throws DateTimeException if the result exceeds the maximum or minimum instant
876
* @throws ArithmeticException if numeric overflow occurs
877
*/
878
public Instant plusSeconds(long secondsToAdd) {
879
return plus(secondsToAdd, 0);
880
}
881
882
/**
883
* Returns a copy of this instant with the specified duration in milliseconds added.
884
* <p>
885
* This instance is immutable and unaffected by this method call.
886
*
887
* @param millisToAdd the milliseconds to add, positive or negative
888
* @return an {@code Instant} based on this instant with the specified milliseconds added, not null
889
* @throws DateTimeException if the result exceeds the maximum or minimum instant
890
* @throws ArithmeticException if numeric overflow occurs
891
*/
892
public Instant plusMillis(long millisToAdd) {
893
return plus(millisToAdd / 1000, (millisToAdd % 1000) * 1000_000);
894
}
895
896
/**
897
* Returns a copy of this instant with the specified duration in nanoseconds added.
898
* <p>
899
* This instance is immutable and unaffected by this method call.
900
*
901
* @param nanosToAdd the nanoseconds to add, positive or negative
902
* @return an {@code Instant} based on this instant with the specified nanoseconds added, not null
903
* @throws DateTimeException if the result exceeds the maximum or minimum instant
904
* @throws ArithmeticException if numeric overflow occurs
905
*/
906
public Instant plusNanos(long nanosToAdd) {
907
return plus(0, nanosToAdd);
908
}
909
910
/**
911
* Returns a copy of this instant with the specified duration added.
912
* <p>
913
* This instance is immutable and unaffected by this method call.
914
*
915
* @param secondsToAdd the seconds to add, positive or negative
916
* @param nanosToAdd the nanos to add, positive or negative
917
* @return an {@code Instant} based on this instant with the specified seconds added, not null
918
* @throws DateTimeException if the result exceeds the maximum or minimum instant
919
* @throws ArithmeticException if numeric overflow occurs
920
*/
921
private Instant plus(long secondsToAdd, long nanosToAdd) {
922
if ((secondsToAdd | nanosToAdd) == 0) {
923
return this;
924
}
925
long epochSec = Math.addExact(seconds, secondsToAdd);
926
epochSec = Math.addExact(epochSec, nanosToAdd / NANOS_PER_SECOND);
927
nanosToAdd = nanosToAdd % NANOS_PER_SECOND;
928
long nanoAdjustment = nanos + nanosToAdd; // safe int+NANOS_PER_SECOND
929
return ofEpochSecond(epochSec, nanoAdjustment);
930
}
931
932
//-----------------------------------------------------------------------
933
/**
934
* Returns a copy of this instant with the specified amount subtracted.
935
* <p>
936
* This returns an {@code Instant}, based on this one, with the specified amount subtracted.
937
* The amount is typically {@link Duration} but may be any other type implementing
938
* the {@link TemporalAmount} interface.
939
* <p>
940
* The calculation is delegated to the amount object by calling
941
* {@link TemporalAmount#subtractFrom(Temporal)}. The amount implementation is free
942
* to implement the subtraction in any way it wishes, however it typically
943
* calls back to {@link #minus(long, TemporalUnit)}. Consult the documentation
944
* of the amount implementation to determine if it can be successfully subtracted.
945
* <p>
946
* This instance is immutable and unaffected by this method call.
947
*
948
* @param amountToSubtract the amount to subtract, not null
949
* @return an {@code Instant} based on this instant with the subtraction made, not null
950
* @throws DateTimeException if the subtraction cannot be made
951
* @throws ArithmeticException if numeric overflow occurs
952
*/
953
@Override
954
public Instant minus(TemporalAmount amountToSubtract) {
955
return (Instant) amountToSubtract.subtractFrom(this);
956
}
957
958
/**
959
* Returns a copy of this instant with the specified amount subtracted.
960
* <p>
961
* This returns an {@code Instant}, based on this one, with the amount
962
* in terms of the unit subtracted. If it is not possible to subtract the amount,
963
* because the unit is not supported or for some other reason, an exception is thrown.
964
* <p>
965
* This method is equivalent to {@link #plus(long, TemporalUnit)} with the amount negated.
966
* See that method for a full description of how addition, and thus subtraction, works.
967
* <p>
968
* This instance is immutable and unaffected by this method call.
969
*
970
* @param amountToSubtract the amount of the unit to subtract from the result, may be negative
971
* @param unit the unit of the amount to subtract, not null
972
* @return an {@code Instant} based on this instant with the specified amount subtracted, not null
973
* @throws DateTimeException if the subtraction cannot be made
974
* @throws UnsupportedTemporalTypeException if the unit is not supported
975
* @throws ArithmeticException if numeric overflow occurs
976
*/
977
@Override
978
public Instant minus(long amountToSubtract, TemporalUnit unit) {
979
return (amountToSubtract == Long.MIN_VALUE ? plus(Long.MAX_VALUE, unit).plus(1, unit) : plus(-amountToSubtract, unit));
980
}
981
982
//-----------------------------------------------------------------------
983
/**
984
* Returns a copy of this instant with the specified duration in seconds subtracted.
985
* <p>
986
* This instance is immutable and unaffected by this method call.
987
*
988
* @param secondsToSubtract the seconds to subtract, positive or negative
989
* @return an {@code Instant} based on this instant with the specified seconds subtracted, not null
990
* @throws DateTimeException if the result exceeds the maximum or minimum instant
991
* @throws ArithmeticException if numeric overflow occurs
992
*/
993
public Instant minusSeconds(long secondsToSubtract) {
994
if (secondsToSubtract == Long.MIN_VALUE) {
995
return plusSeconds(Long.MAX_VALUE).plusSeconds(1);
996
}
997
return plusSeconds(-secondsToSubtract);
998
}
999
1000
/**
1001
* Returns a copy of this instant with the specified duration in milliseconds subtracted.
1002
* <p>
1003
* This instance is immutable and unaffected by this method call.
1004
*
1005
* @param millisToSubtract the milliseconds to subtract, positive or negative
1006
* @return an {@code Instant} based on this instant with the specified milliseconds subtracted, not null
1007
* @throws DateTimeException if the result exceeds the maximum or minimum instant
1008
* @throws ArithmeticException if numeric overflow occurs
1009
*/
1010
public Instant minusMillis(long millisToSubtract) {
1011
if (millisToSubtract == Long.MIN_VALUE) {
1012
return plusMillis(Long.MAX_VALUE).plusMillis(1);
1013
}
1014
return plusMillis(-millisToSubtract);
1015
}
1016
1017
/**
1018
* Returns a copy of this instant with the specified duration in nanoseconds subtracted.
1019
* <p>
1020
* This instance is immutable and unaffected by this method call.
1021
*
1022
* @param nanosToSubtract the nanoseconds to subtract, positive or negative
1023
* @return an {@code Instant} based on this instant with the specified nanoseconds subtracted, not null
1024
* @throws DateTimeException if the result exceeds the maximum or minimum instant
1025
* @throws ArithmeticException if numeric overflow occurs
1026
*/
1027
public Instant minusNanos(long nanosToSubtract) {
1028
if (nanosToSubtract == Long.MIN_VALUE) {
1029
return plusNanos(Long.MAX_VALUE).plusNanos(1);
1030
}
1031
return plusNanos(-nanosToSubtract);
1032
}
1033
1034
//-------------------------------------------------------------------------
1035
/**
1036
* Queries this instant using the specified query.
1037
* <p>
1038
* This queries this instant using the specified query strategy object.
1039
* The {@code TemporalQuery} object defines the logic to be used to
1040
* obtain the result. Read the documentation of the query to understand
1041
* what the result of this method will be.
1042
* <p>
1043
* The result of this method is obtained by invoking the
1044
* {@link TemporalQuery#queryFrom(TemporalAccessor)} method on the
1045
* specified query passing {@code this} as the argument.
1046
*
1047
* @param <R> the type of the result
1048
* @param query the query to invoke, not null
1049
* @return the query result, null may be returned (defined by the query)
1050
* @throws DateTimeException if unable to query (defined by the query)
1051
* @throws ArithmeticException if numeric overflow occurs (defined by the query)
1052
*/
1053
@SuppressWarnings("unchecked")
1054
@Override
1055
public <R> R query(TemporalQuery<R> query) {
1056
if (query == TemporalQueries.precision()) {
1057
return (R) NANOS;
1058
}
1059
// inline TemporalAccessor.super.query(query) as an optimization
1060
if (query == TemporalQueries.chronology() || query == TemporalQueries.zoneId() ||
1061
query == TemporalQueries.zone() || query == TemporalQueries.offset() ||
1062
query == TemporalQueries.localDate() || query == TemporalQueries.localTime()) {
1063
return null;
1064
}
1065
return query.queryFrom(this);
1066
}
1067
1068
/**
1069
* Adjusts the specified temporal object to have this instant.
1070
* <p>
1071
* This returns a temporal object of the same observable type as the input
1072
* with the instant changed to be the same as this.
1073
* <p>
1074
* The adjustment is equivalent to using {@link Temporal#with(TemporalField, long)}
1075
* twice, passing {@link ChronoField#INSTANT_SECONDS} and
1076
* {@link ChronoField#NANO_OF_SECOND} as the fields.
1077
* <p>
1078
* In most cases, it is clearer to reverse the calling pattern by using
1079
* {@link Temporal#with(TemporalAdjuster)}:
1080
* <pre>
1081
* // these two lines are equivalent, but the second approach is recommended
1082
* temporal = thisInstant.adjustInto(temporal);
1083
* temporal = temporal.with(thisInstant);
1084
* </pre>
1085
* <p>
1086
* This instance is immutable and unaffected by this method call.
1087
*
1088
* @param temporal the target object to be adjusted, not null
1089
* @return the adjusted object, not null
1090
* @throws DateTimeException if unable to make the adjustment
1091
* @throws ArithmeticException if numeric overflow occurs
1092
*/
1093
@Override
1094
public Temporal adjustInto(Temporal temporal) {
1095
return temporal.with(INSTANT_SECONDS, seconds).with(NANO_OF_SECOND, nanos);
1096
}
1097
1098
/**
1099
* Calculates the amount of time until another instant in terms of the specified unit.
1100
* <p>
1101
* This calculates the amount of time between two {@code Instant}
1102
* objects in terms of a single {@code TemporalUnit}.
1103
* The start and end points are {@code this} and the specified instant.
1104
* The result will be negative if the end is before the start.
1105
* The calculation returns a whole number, representing the number of
1106
* complete units between the two instants.
1107
* The {@code Temporal} passed to this method is converted to a
1108
* {@code Instant} using {@link #from(TemporalAccessor)}.
1109
* For example, the amount in seconds between two dates can be calculated
1110
* using {@code startInstant.until(endInstant, SECONDS)}.
1111
* <p>
1112
* There are two equivalent ways of using this method.
1113
* The first is to invoke this method.
1114
* The second is to use {@link TemporalUnit#between(Temporal, Temporal)}:
1115
* <pre>
1116
* // these two lines are equivalent
1117
* amount = start.until(end, SECONDS);
1118
* amount = SECONDS.between(start, end);
1119
* </pre>
1120
* The choice should be made based on which makes the code more readable.
1121
* <p>
1122
* The calculation is implemented in this method for {@link ChronoUnit}.
1123
* The units {@code NANOS}, {@code MICROS}, {@code MILLIS}, {@code SECONDS},
1124
* {@code MINUTES}, {@code HOURS}, {@code HALF_DAYS} and {@code DAYS}
1125
* are supported. Other {@code ChronoUnit} values will throw an exception.
1126
* <p>
1127
* If the unit is not a {@code ChronoUnit}, then the result of this method
1128
* is obtained by invoking {@code TemporalUnit.between(Temporal, Temporal)}
1129
* passing {@code this} as the first argument and the converted input temporal
1130
* as the second argument.
1131
* <p>
1132
* This instance is immutable and unaffected by this method call.
1133
*
1134
* @param endExclusive the end date, exclusive, which is converted to an {@code Instant}, not null
1135
* @param unit the unit to measure the amount in, not null
1136
* @return the amount of time between this instant and the end instant
1137
* @throws DateTimeException if the amount cannot be calculated, or the end
1138
* temporal cannot be converted to an {@code Instant}
1139
* @throws UnsupportedTemporalTypeException if the unit is not supported
1140
* @throws ArithmeticException if numeric overflow occurs
1141
*/
1142
@Override
1143
public long until(Temporal endExclusive, TemporalUnit unit) {
1144
Instant end = Instant.from(endExclusive);
1145
if (unit instanceof ChronoUnit chronoUnit) {
1146
switch (chronoUnit) {
1147
case NANOS: return nanosUntil(end);
1148
case MICROS: return nanosUntil(end) / 1000;
1149
case MILLIS: return Math.subtractExact(end.toEpochMilli(), toEpochMilli());
1150
case SECONDS: return secondsUntil(end);
1151
case MINUTES: return secondsUntil(end) / SECONDS_PER_MINUTE;
1152
case HOURS: return secondsUntil(end) / SECONDS_PER_HOUR;
1153
case HALF_DAYS: return secondsUntil(end) / (12 * SECONDS_PER_HOUR);
1154
case DAYS: return secondsUntil(end) / (SECONDS_PER_DAY);
1155
}
1156
throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit);
1157
}
1158
return unit.between(this, end);
1159
}
1160
1161
private long nanosUntil(Instant end) {
1162
long secsDiff = Math.subtractExact(end.seconds, seconds);
1163
long totalNanos = Math.multiplyExact(secsDiff, NANOS_PER_SECOND);
1164
return Math.addExact(totalNanos, end.nanos - nanos);
1165
}
1166
1167
private long secondsUntil(Instant end) {
1168
long secsDiff = Math.subtractExact(end.seconds, seconds);
1169
long nanosDiff = end.nanos - nanos;
1170
if (secsDiff > 0 && nanosDiff < 0) {
1171
secsDiff--;
1172
} else if (secsDiff < 0 && nanosDiff > 0) {
1173
secsDiff++;
1174
}
1175
return secsDiff;
1176
}
1177
1178
//-----------------------------------------------------------------------
1179
/**
1180
* Combines this instant with an offset to create an {@code OffsetDateTime}.
1181
* <p>
1182
* This returns an {@code OffsetDateTime} formed from this instant at the
1183
* specified offset from UTC/Greenwich. An exception will be thrown if the
1184
* instant is too large to fit into an offset date-time.
1185
* <p>
1186
* This method is equivalent to
1187
* {@link OffsetDateTime#ofInstant(Instant, ZoneId) OffsetDateTime.ofInstant(this, offset)}.
1188
*
1189
* @param offset the offset to combine with, not null
1190
* @return the offset date-time formed from this instant and the specified offset, not null
1191
* @throws DateTimeException if the result exceeds the supported range
1192
*/
1193
public OffsetDateTime atOffset(ZoneOffset offset) {
1194
return OffsetDateTime.ofInstant(this, offset);
1195
}
1196
1197
/**
1198
* Combines this instant with a time-zone to create a {@code ZonedDateTime}.
1199
* <p>
1200
* This returns an {@code ZonedDateTime} formed from this instant at the
1201
* specified time-zone. An exception will be thrown if the instant is too
1202
* large to fit into a zoned date-time.
1203
* <p>
1204
* This method is equivalent to
1205
* {@link ZonedDateTime#ofInstant(Instant, ZoneId) ZonedDateTime.ofInstant(this, zone)}.
1206
*
1207
* @param zone the zone to combine with, not null
1208
* @return the zoned date-time formed from this instant and the specified zone, not null
1209
* @throws DateTimeException if the result exceeds the supported range
1210
*/
1211
public ZonedDateTime atZone(ZoneId zone) {
1212
return ZonedDateTime.ofInstant(this, zone);
1213
}
1214
1215
//-----------------------------------------------------------------------
1216
/**
1217
* Converts this instant to the number of milliseconds from the epoch
1218
* of 1970-01-01T00:00:00Z.
1219
* <p>
1220
* If this instant represents a point on the time-line too far in the future
1221
* or past to fit in a {@code long} milliseconds, then an exception is thrown.
1222
* <p>
1223
* If this instant has greater than millisecond precision, then the conversion
1224
* will drop any excess precision information as though the amount in nanoseconds
1225
* was subject to integer division by one million.
1226
*
1227
* @return the number of milliseconds since the epoch of 1970-01-01T00:00:00Z
1228
* @throws ArithmeticException if numeric overflow occurs
1229
*/
1230
public long toEpochMilli() {
1231
if (seconds < 0 && nanos > 0) {
1232
long millis = Math.multiplyExact(seconds+1, 1000);
1233
long adjustment = nanos / 1000_000 - 1000;
1234
return Math.addExact(millis, adjustment);
1235
} else {
1236
long millis = Math.multiplyExact(seconds, 1000);
1237
return Math.addExact(millis, nanos / 1000_000);
1238
}
1239
}
1240
1241
//-----------------------------------------------------------------------
1242
/**
1243
* Compares this instant to the specified instant.
1244
* <p>
1245
* The comparison is based on the time-line position of the instants.
1246
* It is "consistent with equals", as defined by {@link Comparable}.
1247
*
1248
* @param otherInstant the other instant to compare to, not null
1249
* @return the comparator value, negative if less, positive if greater
1250
* @throws NullPointerException if otherInstant is null
1251
*/
1252
@Override
1253
public int compareTo(Instant otherInstant) {
1254
int cmp = Long.compare(seconds, otherInstant.seconds);
1255
if (cmp != 0) {
1256
return cmp;
1257
}
1258
return nanos - otherInstant.nanos;
1259
}
1260
1261
/**
1262
* Checks if this instant is after the specified instant.
1263
* <p>
1264
* The comparison is based on the time-line position of the instants.
1265
*
1266
* @param otherInstant the other instant to compare to, not null
1267
* @return true if this instant is after the specified instant
1268
* @throws NullPointerException if otherInstant is null
1269
*/
1270
public boolean isAfter(Instant otherInstant) {
1271
return compareTo(otherInstant) > 0;
1272
}
1273
1274
/**
1275
* Checks if this instant is before the specified instant.
1276
* <p>
1277
* The comparison is based on the time-line position of the instants.
1278
*
1279
* @param otherInstant the other instant to compare to, not null
1280
* @return true if this instant is before the specified instant
1281
* @throws NullPointerException if otherInstant is null
1282
*/
1283
public boolean isBefore(Instant otherInstant) {
1284
return compareTo(otherInstant) < 0;
1285
}
1286
1287
//-----------------------------------------------------------------------
1288
/**
1289
* Checks if this instant is equal to the specified instant.
1290
* <p>
1291
* The comparison is based on the time-line position of the instants.
1292
*
1293
* @param other the other instant, null returns false
1294
* @return true if the other instant is equal to this one
1295
*/
1296
@Override
1297
public boolean equals(Object other) {
1298
if (this == other) {
1299
return true;
1300
}
1301
return (other instanceof Instant otherInstant)
1302
&& this.seconds == otherInstant.seconds
1303
&& this.nanos == otherInstant.nanos;
1304
}
1305
1306
/**
1307
* Returns a hash code for this instant.
1308
*
1309
* @return a suitable hash code
1310
*/
1311
@Override
1312
public int hashCode() {
1313
return ((int) (seconds ^ (seconds >>> 32))) + 51 * nanos;
1314
}
1315
1316
//-----------------------------------------------------------------------
1317
/**
1318
* A string representation of this instant using ISO-8601 representation.
1319
* <p>
1320
* The format used is the same as {@link DateTimeFormatter#ISO_INSTANT}.
1321
*
1322
* @return an ISO-8601 representation of this instant, not null
1323
*/
1324
@Override
1325
public String toString() {
1326
return DateTimeFormatter.ISO_INSTANT.format(this);
1327
}
1328
1329
// -----------------------------------------------------------------------
1330
/**
1331
* Writes the object using a
1332
* <a href="{@docRoot}/serialized-form.html#java.time.Ser">dedicated serialized form</a>.
1333
* @serialData
1334
* <pre>
1335
* out.writeByte(2); // identifies an Instant
1336
* out.writeLong(seconds);
1337
* out.writeInt(nanos);
1338
* </pre>
1339
*
1340
* @return the instance of {@code Ser}, not null
1341
*/
1342
@java.io.Serial
1343
private Object writeReplace() {
1344
return new Ser(Ser.INSTANT_TYPE, this);
1345
}
1346
1347
/**
1348
* Defend against malicious streams.
1349
*
1350
* @param s the stream to read
1351
* @throws InvalidObjectException always
1352
*/
1353
@java.io.Serial
1354
private void readObject(ObjectInputStream s) throws InvalidObjectException {
1355
throw new InvalidObjectException("Deserialization via serialization delegate");
1356
}
1357
1358
void writeExternal(DataOutput out) throws IOException {
1359
out.writeLong(seconds);
1360
out.writeInt(nanos);
1361
}
1362
1363
static Instant readExternal(DataInput in) throws IOException {
1364
long seconds = in.readLong();
1365
int nanos = in.readInt();
1366
return Instant.ofEpochSecond(seconds, nanos);
1367
}
1368
1369
}
1370
1371