Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/classes/java/util/AbstractList.java
41152 views
1
/*
2
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package java.util;
27
28
import java.util.function.Consumer;
29
30
/**
31
* This class provides a skeletal implementation of the {@link List}
32
* interface to minimize the effort required to implement this interface
33
* backed by a "random access" data store (such as an array). For sequential
34
* access data (such as a linked list), {@link AbstractSequentialList} should
35
* be used in preference to this class.
36
*
37
* <p>To implement an unmodifiable list, the programmer needs only to extend
38
* this class and provide implementations for the {@link #get(int)} and
39
* {@link List#size() size()} methods.
40
*
41
* <p>To implement a modifiable list, the programmer must additionally
42
* override the {@link #set(int, Object) set(int, E)} method (which otherwise
43
* throws an {@code UnsupportedOperationException}). If the list is
44
* variable-size the programmer must additionally override the
45
* {@link #add(int, Object) add(int, E)} and {@link #remove(int)} methods.
46
*
47
* <p>The programmer should generally provide a void (no argument) and collection
48
* constructor, as per the recommendation in the {@link Collection} interface
49
* specification.
50
*
51
* <p>Unlike the other abstract collection implementations, the programmer does
52
* <i>not</i> have to provide an iterator implementation; the iterator and
53
* list iterator are implemented by this class, on top of the "random access"
54
* methods:
55
* {@link #get(int)},
56
* {@link #set(int, Object) set(int, E)},
57
* {@link #add(int, Object) add(int, E)} and
58
* {@link #remove(int)}.
59
*
60
* <p>The documentation for each non-abstract method in this class describes its
61
* implementation in detail. Each of these methods may be overridden if the
62
* collection being implemented admits a more efficient implementation.
63
*
64
* <p>This class is a member of the
65
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
66
* Java Collections Framework</a>.
67
*
68
* @author Josh Bloch
69
* @author Neal Gafter
70
* @since 1.2
71
*/
72
73
public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {
74
/**
75
* Sole constructor. (For invocation by subclass constructors, typically
76
* implicit.)
77
*/
78
protected AbstractList() {
79
}
80
81
/**
82
* Appends the specified element to the end of this list (optional
83
* operation).
84
*
85
* <p>Lists that support this operation may place limitations on what
86
* elements may be added to this list. In particular, some
87
* lists will refuse to add null elements, and others will impose
88
* restrictions on the type of elements that may be added. List
89
* classes should clearly specify in their documentation any restrictions
90
* on what elements may be added.
91
*
92
* @implSpec
93
* This implementation calls {@code add(size(), e)}.
94
*
95
* <p>Note that this implementation throws an
96
* {@code UnsupportedOperationException} unless
97
* {@link #add(int, Object) add(int, E)} is overridden.
98
*
99
* @param e element to be appended to this list
100
* @return {@code true} (as specified by {@link Collection#add})
101
* @throws UnsupportedOperationException if the {@code add} operation
102
* is not supported by this list
103
* @throws ClassCastException if the class of the specified element
104
* prevents it from being added to this list
105
* @throws NullPointerException if the specified element is null and this
106
* list does not permit null elements
107
* @throws IllegalArgumentException if some property of this element
108
* prevents it from being added to this list
109
*/
110
public boolean add(E e) {
111
add(size(), e);
112
return true;
113
}
114
115
/**
116
* {@inheritDoc}
117
*
118
* @throws IndexOutOfBoundsException {@inheritDoc}
119
*/
120
public abstract E get(int index);
121
122
/**
123
* {@inheritDoc}
124
*
125
* @implSpec
126
* This implementation always throws an
127
* {@code UnsupportedOperationException}.
128
*
129
* @throws UnsupportedOperationException {@inheritDoc}
130
* @throws ClassCastException {@inheritDoc}
131
* @throws NullPointerException {@inheritDoc}
132
* @throws IllegalArgumentException {@inheritDoc}
133
* @throws IndexOutOfBoundsException {@inheritDoc}
134
*/
135
public E set(int index, E element) {
136
throw new UnsupportedOperationException();
137
}
138
139
/**
140
* {@inheritDoc}
141
*
142
* @implSpec
143
* This implementation always throws an
144
* {@code UnsupportedOperationException}.
145
*
146
* @throws UnsupportedOperationException {@inheritDoc}
147
* @throws ClassCastException {@inheritDoc}
148
* @throws NullPointerException {@inheritDoc}
149
* @throws IllegalArgumentException {@inheritDoc}
150
* @throws IndexOutOfBoundsException {@inheritDoc}
151
*/
152
public void add(int index, E element) {
153
throw new UnsupportedOperationException();
154
}
155
156
/**
157
* {@inheritDoc}
158
*
159
* @implSpec
160
* This implementation always throws an
161
* {@code UnsupportedOperationException}.
162
*
163
* @throws UnsupportedOperationException {@inheritDoc}
164
* @throws IndexOutOfBoundsException {@inheritDoc}
165
*/
166
public E remove(int index) {
167
throw new UnsupportedOperationException();
168
}
169
170
171
// Search Operations
172
173
/**
174
* {@inheritDoc}
175
*
176
* @implSpec
177
* This implementation first gets a list iterator (with
178
* {@code listIterator()}). Then, it iterates over the list until the
179
* specified element is found or the end of the list is reached.
180
*
181
* @throws ClassCastException {@inheritDoc}
182
* @throws NullPointerException {@inheritDoc}
183
*/
184
public int indexOf(Object o) {
185
ListIterator<E> it = listIterator();
186
if (o==null) {
187
while (it.hasNext())
188
if (it.next()==null)
189
return it.previousIndex();
190
} else {
191
while (it.hasNext())
192
if (o.equals(it.next()))
193
return it.previousIndex();
194
}
195
return -1;
196
}
197
198
/**
199
* {@inheritDoc}
200
*
201
* @implSpec
202
* This implementation first gets a list iterator that points to the end
203
* of the list (with {@code listIterator(size())}). Then, it iterates
204
* backwards over the list until the specified element is found, or the
205
* beginning of the list is reached.
206
*
207
* @throws ClassCastException {@inheritDoc}
208
* @throws NullPointerException {@inheritDoc}
209
*/
210
public int lastIndexOf(Object o) {
211
ListIterator<E> it = listIterator(size());
212
if (o==null) {
213
while (it.hasPrevious())
214
if (it.previous()==null)
215
return it.nextIndex();
216
} else {
217
while (it.hasPrevious())
218
if (o.equals(it.previous()))
219
return it.nextIndex();
220
}
221
return -1;
222
}
223
224
225
// Bulk Operations
226
227
/**
228
* Removes all of the elements from this list (optional operation).
229
* The list will be empty after this call returns.
230
*
231
* @implSpec
232
* This implementation calls {@code removeRange(0, size())}.
233
*
234
* <p>Note that this implementation throws an
235
* {@code UnsupportedOperationException} unless {@code remove(int
236
* index)} or {@code removeRange(int fromIndex, int toIndex)} is
237
* overridden.
238
*
239
* @throws UnsupportedOperationException if the {@code clear} operation
240
* is not supported by this list
241
*/
242
public void clear() {
243
removeRange(0, size());
244
}
245
246
/**
247
* {@inheritDoc}
248
*
249
* @implSpec
250
* This implementation gets an iterator over the specified collection
251
* and iterates over it, inserting the elements obtained from the
252
* iterator into this list at the appropriate position, one at a time,
253
* using {@code add(int, E)}.
254
* Many implementations will override this method for efficiency.
255
*
256
* <p>Note that this implementation throws an
257
* {@code UnsupportedOperationException} unless
258
* {@link #add(int, Object) add(int, E)} is overridden.
259
*
260
* @throws UnsupportedOperationException {@inheritDoc}
261
* @throws ClassCastException {@inheritDoc}
262
* @throws NullPointerException {@inheritDoc}
263
* @throws IllegalArgumentException {@inheritDoc}
264
* @throws IndexOutOfBoundsException {@inheritDoc}
265
*/
266
public boolean addAll(int index, Collection<? extends E> c) {
267
rangeCheckForAdd(index);
268
boolean modified = false;
269
for (E e : c) {
270
add(index++, e);
271
modified = true;
272
}
273
return modified;
274
}
275
276
277
// Iterators
278
279
/**
280
* Returns an iterator over the elements in this list in proper sequence.
281
*
282
* @implSpec
283
* This implementation returns a straightforward implementation of the
284
* iterator interface, relying on the backing list's {@code size()},
285
* {@code get(int)}, and {@code remove(int)} methods.
286
*
287
* <p>Note that the iterator returned by this method will throw an
288
* {@link UnsupportedOperationException} in response to its
289
* {@code remove} method unless the list's {@code remove(int)} method is
290
* overridden.
291
*
292
* <p>This implementation can be made to throw runtime exceptions in the
293
* face of concurrent modification, as described in the specification
294
* for the (protected) {@link #modCount} field.
295
*
296
* @return an iterator over the elements in this list in proper sequence
297
*/
298
public Iterator<E> iterator() {
299
return new Itr();
300
}
301
302
/**
303
* {@inheritDoc}
304
*
305
* @implSpec
306
* This implementation returns {@code listIterator(0)}.
307
*
308
* @see #listIterator(int)
309
*/
310
public ListIterator<E> listIterator() {
311
return listIterator(0);
312
}
313
314
/**
315
* {@inheritDoc}
316
*
317
* @implSpec
318
* This implementation returns a straightforward implementation of the
319
* {@code ListIterator} interface that extends the implementation of the
320
* {@code Iterator} interface returned by the {@code iterator()} method.
321
* The {@code ListIterator} implementation relies on the backing list's
322
* {@code get(int)}, {@code set(int, E)}, {@code add(int, E)}
323
* and {@code remove(int)} methods.
324
*
325
* <p>Note that the list iterator returned by this implementation will
326
* throw an {@link UnsupportedOperationException} in response to its
327
* {@code remove}, {@code set} and {@code add} methods unless the
328
* list's {@code remove(int)}, {@code set(int, E)}, and
329
* {@code add(int, E)} methods are overridden.
330
*
331
* <p>This implementation can be made to throw runtime exceptions in the
332
* face of concurrent modification, as described in the specification for
333
* the (protected) {@link #modCount} field.
334
*
335
* @throws IndexOutOfBoundsException {@inheritDoc}
336
*/
337
public ListIterator<E> listIterator(final int index) {
338
rangeCheckForAdd(index);
339
340
return new ListItr(index);
341
}
342
343
private class Itr implements Iterator<E> {
344
/**
345
* Index of element to be returned by subsequent call to next.
346
*/
347
int cursor = 0;
348
349
/**
350
* Index of element returned by most recent call to next or
351
* previous. Reset to -1 if this element is deleted by a call
352
* to remove.
353
*/
354
int lastRet = -1;
355
356
/**
357
* The modCount value that the iterator believes that the backing
358
* List should have. If this expectation is violated, the iterator
359
* has detected concurrent modification.
360
*/
361
int expectedModCount = modCount;
362
363
public boolean hasNext() {
364
return cursor != size();
365
}
366
367
public E next() {
368
checkForComodification();
369
try {
370
int i = cursor;
371
E next = get(i);
372
lastRet = i;
373
cursor = i + 1;
374
return next;
375
} catch (IndexOutOfBoundsException e) {
376
checkForComodification();
377
throw new NoSuchElementException(e);
378
}
379
}
380
381
public void remove() {
382
if (lastRet < 0)
383
throw new IllegalStateException();
384
checkForComodification();
385
386
try {
387
AbstractList.this.remove(lastRet);
388
if (lastRet < cursor)
389
cursor--;
390
lastRet = -1;
391
expectedModCount = modCount;
392
} catch (IndexOutOfBoundsException e) {
393
throw new ConcurrentModificationException();
394
}
395
}
396
397
final void checkForComodification() {
398
if (modCount != expectedModCount)
399
throw new ConcurrentModificationException();
400
}
401
}
402
403
private class ListItr extends Itr implements ListIterator<E> {
404
ListItr(int index) {
405
cursor = index;
406
}
407
408
public boolean hasPrevious() {
409
return cursor != 0;
410
}
411
412
public E previous() {
413
checkForComodification();
414
try {
415
int i = cursor - 1;
416
E previous = get(i);
417
lastRet = cursor = i;
418
return previous;
419
} catch (IndexOutOfBoundsException e) {
420
checkForComodification();
421
throw new NoSuchElementException(e);
422
}
423
}
424
425
public int nextIndex() {
426
return cursor;
427
}
428
429
public int previousIndex() {
430
return cursor-1;
431
}
432
433
public void set(E e) {
434
if (lastRet < 0)
435
throw new IllegalStateException();
436
checkForComodification();
437
438
try {
439
AbstractList.this.set(lastRet, e);
440
expectedModCount = modCount;
441
} catch (IndexOutOfBoundsException ex) {
442
throw new ConcurrentModificationException();
443
}
444
}
445
446
public void add(E e) {
447
checkForComodification();
448
449
try {
450
int i = cursor;
451
AbstractList.this.add(i, e);
452
lastRet = -1;
453
cursor = i + 1;
454
expectedModCount = modCount;
455
} catch (IndexOutOfBoundsException ex) {
456
throw new ConcurrentModificationException();
457
}
458
}
459
}
460
461
/**
462
* {@inheritDoc}
463
*
464
* @implSpec
465
* This implementation returns a list that subclasses
466
* {@code AbstractList}. The subclass stores, in private fields, the
467
* size of the subList (which can change over its lifetime), and the
468
* expected {@code modCount} value of the backing list. There are two
469
* variants of the subclass, one of which implements {@code RandomAccess}.
470
* If this list implements {@code RandomAccess} the returned list will
471
* be an instance of the subclass that implements {@code RandomAccess}.
472
*
473
* <p>The subclass's {@code set(int, E)}, {@code get(int)},
474
* {@code add(int, E)}, {@code remove(int)}, {@code addAll(int,
475
* Collection)} and {@code removeRange(int, int)} methods all
476
* delegate to the corresponding methods on the backing abstract list,
477
* after bounds-checking the index and adjusting for the offset. The
478
* {@code addAll(Collection c)} method merely returns {@code addAll(size,
479
* c)}.
480
*
481
* <p>The {@code listIterator(int)} method returns a "wrapper object"
482
* over a list iterator on the backing list, which is created with the
483
* corresponding method on the backing list. The {@code iterator} method
484
* merely returns {@code listIterator()}, and the {@code size} method
485
* merely returns the subclass's {@code size} field.
486
*
487
* <p>All methods first check to see if the actual {@code modCount} of
488
* the backing list is equal to its expected value, and throw a
489
* {@code ConcurrentModificationException} if it is not.
490
*
491
* @throws IndexOutOfBoundsException if an endpoint index value is out of range
492
* {@code (fromIndex < 0 || toIndex > size)}
493
* @throws IllegalArgumentException if the endpoint indices are out of order
494
* {@code (fromIndex > toIndex)}
495
*/
496
public List<E> subList(int fromIndex, int toIndex) {
497
subListRangeCheck(fromIndex, toIndex, size());
498
return (this instanceof RandomAccess ?
499
new RandomAccessSubList<>(this, fromIndex, toIndex) :
500
new SubList<>(this, fromIndex, toIndex));
501
}
502
503
static void subListRangeCheck(int fromIndex, int toIndex, int size) {
504
if (fromIndex < 0)
505
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
506
if (toIndex > size)
507
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
508
if (fromIndex > toIndex)
509
throw new IllegalArgumentException("fromIndex(" + fromIndex +
510
") > toIndex(" + toIndex + ")");
511
}
512
513
// Comparison and hashing
514
515
/**
516
* Compares the specified object with this list for equality. Returns
517
* {@code true} if and only if the specified object is also a list, both
518
* lists have the same size, and all corresponding pairs of elements in
519
* the two lists are <i>equal</i>. (Two elements {@code e1} and
520
* {@code e2} are <i>equal</i> if {@code (e1==null ? e2==null :
521
* e1.equals(e2))}.) In other words, two lists are defined to be
522
* equal if they contain the same elements in the same order.
523
*
524
* @implSpec
525
* This implementation first checks if the specified object is this
526
* list. If so, it returns {@code true}; if not, it checks if the
527
* specified object is a list. If not, it returns {@code false}; if so,
528
* it iterates over both lists, comparing corresponding pairs of elements.
529
* If any comparison returns {@code false}, this method returns
530
* {@code false}. If either iterator runs out of elements before the
531
* other it returns {@code false} (as the lists are of unequal length);
532
* otherwise it returns {@code true} when the iterations complete.
533
*
534
* @param o the object to be compared for equality with this list
535
* @return {@code true} if the specified object is equal to this list
536
*/
537
public boolean equals(Object o) {
538
if (o == this)
539
return true;
540
if (!(o instanceof List))
541
return false;
542
543
ListIterator<E> e1 = listIterator();
544
ListIterator<?> e2 = ((List<?>) o).listIterator();
545
while (e1.hasNext() && e2.hasNext()) {
546
E o1 = e1.next();
547
Object o2 = e2.next();
548
if (!(o1==null ? o2==null : o1.equals(o2)))
549
return false;
550
}
551
return !(e1.hasNext() || e2.hasNext());
552
}
553
554
/**
555
* Returns the hash code value for this list.
556
*
557
* @implSpec
558
* This implementation uses exactly the code that is used to define the
559
* list hash function in the documentation for the {@link List#hashCode}
560
* method.
561
*
562
* @return the hash code value for this list
563
*/
564
public int hashCode() {
565
int hashCode = 1;
566
for (E e : this)
567
hashCode = 31*hashCode + (e==null ? 0 : e.hashCode());
568
return hashCode;
569
}
570
571
/**
572
* Removes from this list all of the elements whose index is between
573
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
574
* Shifts any succeeding elements to the left (reduces their index).
575
* This call shortens the list by {@code (toIndex - fromIndex)} elements.
576
* (If {@code toIndex==fromIndex}, this operation has no effect.)
577
*
578
* <p>This method is called by the {@code clear} operation on this list
579
* and its subLists. Overriding this method to take advantage of
580
* the internals of the list implementation can <i>substantially</i>
581
* improve the performance of the {@code clear} operation on this list
582
* and its subLists.
583
*
584
* @implSpec
585
* This implementation gets a list iterator positioned before
586
* {@code fromIndex}, and repeatedly calls {@code ListIterator.next}
587
* followed by {@code ListIterator.remove} until the entire range has
588
* been removed. <b>Note: if {@code ListIterator.remove} requires linear
589
* time, this implementation requires quadratic time.</b>
590
*
591
* @param fromIndex index of first element to be removed
592
* @param toIndex index after last element to be removed
593
*/
594
protected void removeRange(int fromIndex, int toIndex) {
595
ListIterator<E> it = listIterator(fromIndex);
596
for (int i=0, n=toIndex-fromIndex; i<n; i++) {
597
it.next();
598
it.remove();
599
}
600
}
601
602
/**
603
* The number of times this list has been <i>structurally modified</i>.
604
* Structural modifications are those that change the size of the
605
* list, or otherwise perturb it in such a fashion that iterations in
606
* progress may yield incorrect results.
607
*
608
* <p>This field is used by the iterator and list iterator implementation
609
* returned by the {@code iterator} and {@code listIterator} methods.
610
* If the value of this field changes unexpectedly, the iterator (or list
611
* iterator) will throw a {@code ConcurrentModificationException} in
612
* response to the {@code next}, {@code remove}, {@code previous},
613
* {@code set} or {@code add} operations. This provides
614
* <i>fail-fast</i> behavior, rather than non-deterministic behavior in
615
* the face of concurrent modification during iteration.
616
*
617
* <p><b>Use of this field by subclasses is optional.</b> If a subclass
618
* wishes to provide fail-fast iterators (and list iterators), then it
619
* merely has to increment this field in its {@code add(int, E)} and
620
* {@code remove(int)} methods (and any other methods that it overrides
621
* that result in structural modifications to the list). A single call to
622
* {@code add(int, E)} or {@code remove(int)} must add no more than
623
* one to this field, or the iterators (and list iterators) will throw
624
* bogus {@code ConcurrentModificationExceptions}. If an implementation
625
* does not wish to provide fail-fast iterators, this field may be
626
* ignored.
627
*/
628
protected transient int modCount = 0;
629
630
private void rangeCheckForAdd(int index) {
631
if (index < 0 || index > size())
632
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
633
}
634
635
private String outOfBoundsMsg(int index) {
636
return "Index: "+index+", Size: "+size();
637
}
638
639
/**
640
* An index-based split-by-two, lazily initialized Spliterator covering
641
* a List that access elements via {@link List#get}.
642
*
643
* If access results in an IndexOutOfBoundsException then a
644
* ConcurrentModificationException is thrown instead (since the list has
645
* been structurally modified while traversing).
646
*
647
* If the List is an instance of AbstractList then concurrent modification
648
* checking is performed using the AbstractList's modCount field.
649
*/
650
static final class RandomAccessSpliterator<E> implements Spliterator<E> {
651
652
private final List<E> list;
653
private int index; // current index, modified on advance/split
654
private int fence; // -1 until used; then one past last index
655
656
// The following fields are valid if covering an AbstractList
657
private final AbstractList<E> alist;
658
private int expectedModCount; // initialized when fence set
659
660
RandomAccessSpliterator(List<E> list) {
661
assert list instanceof RandomAccess;
662
663
this.list = list;
664
this.index = 0;
665
this.fence = -1;
666
667
this.alist = list instanceof AbstractList ? (AbstractList<E>) list : null;
668
this.expectedModCount = alist != null ? alist.modCount : 0;
669
}
670
671
/** Create new spliterator covering the given range */
672
private RandomAccessSpliterator(RandomAccessSpliterator<E> parent,
673
int origin, int fence) {
674
this.list = parent.list;
675
this.index = origin;
676
this.fence = fence;
677
678
this.alist = parent.alist;
679
this.expectedModCount = parent.expectedModCount;
680
}
681
682
private int getFence() { // initialize fence to size on first use
683
int hi;
684
List<E> lst = list;
685
if ((hi = fence) < 0) {
686
if (alist != null) {
687
expectedModCount = alist.modCount;
688
}
689
hi = fence = lst.size();
690
}
691
return hi;
692
}
693
694
public Spliterator<E> trySplit() {
695
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
696
return (lo >= mid) ? null : // divide range in half unless too small
697
new RandomAccessSpliterator<>(this, lo, index = mid);
698
}
699
700
public boolean tryAdvance(Consumer<? super E> action) {
701
if (action == null)
702
throw new NullPointerException();
703
int hi = getFence(), i = index;
704
if (i < hi) {
705
index = i + 1;
706
action.accept(get(list, i));
707
checkAbstractListModCount(alist, expectedModCount);
708
return true;
709
}
710
return false;
711
}
712
713
public void forEachRemaining(Consumer<? super E> action) {
714
Objects.requireNonNull(action);
715
List<E> lst = list;
716
int hi = getFence();
717
int i = index;
718
index = hi;
719
for (; i < hi; i++) {
720
action.accept(get(lst, i));
721
}
722
checkAbstractListModCount(alist, expectedModCount);
723
}
724
725
public long estimateSize() {
726
return (long) (getFence() - index);
727
}
728
729
public int characteristics() {
730
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
731
}
732
733
private static <E> E get(List<E> list, int i) {
734
try {
735
return list.get(i);
736
} catch (IndexOutOfBoundsException ex) {
737
throw new ConcurrentModificationException();
738
}
739
}
740
741
static void checkAbstractListModCount(AbstractList<?> alist, int expectedModCount) {
742
if (alist != null && alist.modCount != expectedModCount) {
743
throw new ConcurrentModificationException();
744
}
745
}
746
}
747
748
private static class SubList<E> extends AbstractList<E> {
749
private final AbstractList<E> root;
750
private final SubList<E> parent;
751
private final int offset;
752
protected int size;
753
754
/**
755
* Constructs a sublist of an arbitrary AbstractList, which is
756
* not a SubList itself.
757
*/
758
public SubList(AbstractList<E> root, int fromIndex, int toIndex) {
759
this.root = root;
760
this.parent = null;
761
this.offset = fromIndex;
762
this.size = toIndex - fromIndex;
763
this.modCount = root.modCount;
764
}
765
766
/**
767
* Constructs a sublist of another SubList.
768
*/
769
protected SubList(SubList<E> parent, int fromIndex, int toIndex) {
770
this.root = parent.root;
771
this.parent = parent;
772
this.offset = parent.offset + fromIndex;
773
this.size = toIndex - fromIndex;
774
this.modCount = root.modCount;
775
}
776
777
public E set(int index, E element) {
778
Objects.checkIndex(index, size);
779
checkForComodification();
780
return root.set(offset + index, element);
781
}
782
783
public E get(int index) {
784
Objects.checkIndex(index, size);
785
checkForComodification();
786
return root.get(offset + index);
787
}
788
789
public int size() {
790
checkForComodification();
791
return size;
792
}
793
794
public void add(int index, E element) {
795
rangeCheckForAdd(index);
796
checkForComodification();
797
root.add(offset + index, element);
798
updateSizeAndModCount(1);
799
}
800
801
public E remove(int index) {
802
Objects.checkIndex(index, size);
803
checkForComodification();
804
E result = root.remove(offset + index);
805
updateSizeAndModCount(-1);
806
return result;
807
}
808
809
protected void removeRange(int fromIndex, int toIndex) {
810
checkForComodification();
811
root.removeRange(offset + fromIndex, offset + toIndex);
812
updateSizeAndModCount(fromIndex - toIndex);
813
}
814
815
public boolean addAll(Collection<? extends E> c) {
816
return addAll(size, c);
817
}
818
819
public boolean addAll(int index, Collection<? extends E> c) {
820
rangeCheckForAdd(index);
821
int cSize = c.size();
822
if (cSize==0)
823
return false;
824
checkForComodification();
825
root.addAll(offset + index, c);
826
updateSizeAndModCount(cSize);
827
return true;
828
}
829
830
public Iterator<E> iterator() {
831
return listIterator();
832
}
833
834
public ListIterator<E> listIterator(int index) {
835
checkForComodification();
836
rangeCheckForAdd(index);
837
838
return new ListIterator<E>() {
839
private final ListIterator<E> i =
840
root.listIterator(offset + index);
841
842
public boolean hasNext() {
843
return nextIndex() < size;
844
}
845
846
public E next() {
847
if (hasNext())
848
return i.next();
849
else
850
throw new NoSuchElementException();
851
}
852
853
public boolean hasPrevious() {
854
return previousIndex() >= 0;
855
}
856
857
public E previous() {
858
if (hasPrevious())
859
return i.previous();
860
else
861
throw new NoSuchElementException();
862
}
863
864
public int nextIndex() {
865
return i.nextIndex() - offset;
866
}
867
868
public int previousIndex() {
869
return i.previousIndex() - offset;
870
}
871
872
public void remove() {
873
i.remove();
874
updateSizeAndModCount(-1);
875
}
876
877
public void set(E e) {
878
i.set(e);
879
}
880
881
public void add(E e) {
882
i.add(e);
883
updateSizeAndModCount(1);
884
}
885
};
886
}
887
888
public List<E> subList(int fromIndex, int toIndex) {
889
subListRangeCheck(fromIndex, toIndex, size);
890
return new SubList<>(this, fromIndex, toIndex);
891
}
892
893
private void rangeCheckForAdd(int index) {
894
if (index < 0 || index > size)
895
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
896
}
897
898
private String outOfBoundsMsg(int index) {
899
return "Index: "+index+", Size: "+size;
900
}
901
902
private void checkForComodification() {
903
if (root.modCount != this.modCount)
904
throw new ConcurrentModificationException();
905
}
906
907
private void updateSizeAndModCount(int sizeChange) {
908
SubList<E> slist = this;
909
do {
910
slist.size += sizeChange;
911
slist.modCount = root.modCount;
912
slist = slist.parent;
913
} while (slist != null);
914
}
915
}
916
917
private static class RandomAccessSubList<E>
918
extends SubList<E> implements RandomAccess {
919
920
/**
921
* Constructs a sublist of an arbitrary AbstractList, which is
922
* not a RandomAccessSubList itself.
923
*/
924
RandomAccessSubList(AbstractList<E> root,
925
int fromIndex, int toIndex) {
926
super(root, fromIndex, toIndex);
927
}
928
929
/**
930
* Constructs a sublist of another RandomAccessSubList.
931
*/
932
RandomAccessSubList(RandomAccessSubList<E> parent,
933
int fromIndex, int toIndex) {
934
super(parent, fromIndex, toIndex);
935
}
936
937
public List<E> subList(int fromIndex, int toIndex) {
938
subListRangeCheck(fromIndex, toIndex, size);
939
return new RandomAccessSubList<>(this, fromIndex, toIndex);
940
}
941
}
942
}
943
944