Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/classes/java/util/ArrayDeque.java
41152 views
1
/*
2
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3
*
4
* This code is free software; you can redistribute it and/or modify it
5
* under the terms of the GNU General Public License version 2 only, as
6
* published by the Free Software Foundation. Oracle designates this
7
* particular file as subject to the "Classpath" exception as provided
8
* by Oracle in the LICENSE file that accompanied this code.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*/
24
25
/*
26
* This file is available under and governed by the GNU General Public
27
* License version 2 only, as published by the Free Software Foundation.
28
* However, the following notice accompanied the original version of this
29
* file:
30
*
31
* Written by Josh Bloch of Google Inc. and released to the public domain,
32
* as explained at http://creativecommons.org/publicdomain/zero/1.0/.
33
*/
34
35
package java.util;
36
37
import java.io.Serializable;
38
import java.util.function.Consumer;
39
import java.util.function.Predicate;
40
import jdk.internal.access.SharedSecrets;
41
42
/**
43
* Resizable-array implementation of the {@link Deque} interface. Array
44
* deques have no capacity restrictions; they grow as necessary to support
45
* usage. They are not thread-safe; in the absence of external
46
* synchronization, they do not support concurrent access by multiple threads.
47
* Null elements are prohibited. This class is likely to be faster than
48
* {@link Stack} when used as a stack, and faster than {@link LinkedList}
49
* when used as a queue.
50
*
51
* <p>Most {@code ArrayDeque} operations run in amortized constant time.
52
* Exceptions include
53
* {@link #remove(Object) remove},
54
* {@link #removeFirstOccurrence removeFirstOccurrence},
55
* {@link #removeLastOccurrence removeLastOccurrence},
56
* {@link #contains contains},
57
* {@link #iterator iterator.remove()},
58
* and the bulk operations, all of which run in linear time.
59
*
60
* <p>The iterators returned by this class's {@link #iterator() iterator}
61
* method are <em>fail-fast</em>: If the deque is modified at any time after
62
* the iterator is created, in any way except through the iterator's own
63
* {@code remove} method, the iterator will generally throw a {@link
64
* ConcurrentModificationException}. Thus, in the face of concurrent
65
* modification, the iterator fails quickly and cleanly, rather than risking
66
* arbitrary, non-deterministic behavior at an undetermined time in the
67
* future.
68
*
69
* <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
70
* as it is, generally speaking, impossible to make any hard guarantees in the
71
* presence of unsynchronized concurrent modification. Fail-fast iterators
72
* throw {@code ConcurrentModificationException} on a best-effort basis.
73
* Therefore, it would be wrong to write a program that depended on this
74
* exception for its correctness: <i>the fail-fast behavior of iterators
75
* should be used only to detect bugs.</i>
76
*
77
* <p>This class and its iterator implement all of the
78
* <em>optional</em> methods of the {@link Collection} and {@link
79
* Iterator} interfaces.
80
*
81
* <p>This class is a member of the
82
* <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
83
* Java Collections Framework</a>.
84
*
85
* @author Josh Bloch and Doug Lea
86
* @param <E> the type of elements held in this deque
87
* @since 1.6
88
*/
89
public class ArrayDeque<E> extends AbstractCollection<E>
90
implements Deque<E>, Cloneable, Serializable
91
{
92
/*
93
* VMs excel at optimizing simple array loops where indices are
94
* incrementing or decrementing over a valid slice, e.g.
95
*
96
* for (int i = start; i < end; i++) ... elements[i]
97
*
98
* Because in a circular array, elements are in general stored in
99
* two disjoint such slices, we help the VM by writing unusual
100
* nested loops for all traversals over the elements. Having only
101
* one hot inner loop body instead of two or three eases human
102
* maintenance and encourages VM loop inlining into the caller.
103
*/
104
105
/**
106
* The array in which the elements of the deque are stored.
107
* All array cells not holding deque elements are always null.
108
* The array always has at least one null slot (at tail).
109
*/
110
transient Object[] elements;
111
112
/**
113
* The index of the element at the head of the deque (which is the
114
* element that would be removed by remove() or pop()); or an
115
* arbitrary number 0 <= head < elements.length equal to tail if
116
* the deque is empty.
117
*/
118
transient int head;
119
120
/**
121
* The index at which the next element would be added to the tail
122
* of the deque (via addLast(E), add(E), or push(E));
123
* elements[tail] is always null.
124
*/
125
transient int tail;
126
127
/**
128
* The maximum size of array to allocate.
129
* Some VMs reserve some header words in an array.
130
* Attempts to allocate larger arrays may result in
131
* OutOfMemoryError: Requested array size exceeds VM limit
132
*/
133
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
134
135
/**
136
* Increases the capacity of this deque by at least the given amount.
137
*
138
* @param needed the required minimum extra capacity; must be positive
139
*/
140
private void grow(int needed) {
141
// overflow-conscious code
142
final int oldCapacity = elements.length;
143
int newCapacity;
144
// Double capacity if small; else grow by 50%
145
int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
146
if (jump < needed
147
|| (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
148
newCapacity = newCapacity(needed, jump);
149
final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
150
// Exceptionally, here tail == head needs to be disambiguated
151
if (tail < head || (tail == head && es[head] != null)) {
152
// wrap around; slide first leg forward to end of array
153
int newSpace = newCapacity - oldCapacity;
154
System.arraycopy(es, head,
155
es, head + newSpace,
156
oldCapacity - head);
157
for (int i = head, to = (head += newSpace); i < to; i++)
158
es[i] = null;
159
}
160
}
161
162
/** Capacity calculation for edge conditions, especially overflow. */
163
private int newCapacity(int needed, int jump) {
164
final int oldCapacity = elements.length, minCapacity;
165
if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
166
if (minCapacity < 0)
167
throw new IllegalStateException("Sorry, deque too big");
168
return Integer.MAX_VALUE;
169
}
170
if (needed > jump)
171
return minCapacity;
172
return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
173
? oldCapacity + jump
174
: MAX_ARRAY_SIZE;
175
}
176
177
/**
178
* Constructs an empty array deque with an initial capacity
179
* sufficient to hold 16 elements.
180
*/
181
public ArrayDeque() {
182
elements = new Object[16 + 1];
183
}
184
185
/**
186
* Constructs an empty array deque with an initial capacity
187
* sufficient to hold the specified number of elements.
188
*
189
* @param numElements lower bound on initial capacity of the deque
190
*/
191
public ArrayDeque(int numElements) {
192
elements =
193
new Object[(numElements < 1) ? 1 :
194
(numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
195
numElements + 1];
196
}
197
198
/**
199
* Constructs a deque containing the elements of the specified
200
* collection, in the order they are returned by the collection's
201
* iterator. (The first element returned by the collection's
202
* iterator becomes the first element, or <i>front</i> of the
203
* deque.)
204
*
205
* @param c the collection whose elements are to be placed into the deque
206
* @throws NullPointerException if the specified collection is null
207
*/
208
public ArrayDeque(Collection<? extends E> c) {
209
this(c.size());
210
copyElements(c);
211
}
212
213
/**
214
* Circularly increments i, mod modulus.
215
* Precondition and postcondition: 0 <= i < modulus.
216
*/
217
static final int inc(int i, int modulus) {
218
if (++i >= modulus) i = 0;
219
return i;
220
}
221
222
/**
223
* Circularly decrements i, mod modulus.
224
* Precondition and postcondition: 0 <= i < modulus.
225
*/
226
static final int dec(int i, int modulus) {
227
if (--i < 0) i = modulus - 1;
228
return i;
229
}
230
231
/**
232
* Circularly adds the given distance to index i, mod modulus.
233
* Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
234
* @return index 0 <= i < modulus
235
*/
236
static final int inc(int i, int distance, int modulus) {
237
if ((i += distance) - modulus >= 0) i -= modulus;
238
return i;
239
}
240
241
/**
242
* Subtracts j from i, mod modulus.
243
* Index i must be logically ahead of index j.
244
* Precondition: 0 <= i < modulus, 0 <= j < modulus.
245
* @return the "circular distance" from j to i; corner case i == j
246
* is disambiguated to "empty", returning 0.
247
*/
248
static final int sub(int i, int j, int modulus) {
249
if ((i -= j) < 0) i += modulus;
250
return i;
251
}
252
253
/**
254
* Returns element at array index i.
255
* This is a slight abuse of generics, accepted by javac.
256
*/
257
@SuppressWarnings("unchecked")
258
static final <E> E elementAt(Object[] es, int i) {
259
return (E) es[i];
260
}
261
262
/**
263
* A version of elementAt that checks for null elements.
264
* This check doesn't catch all possible comodifications,
265
* but does catch ones that corrupt traversal.
266
*/
267
static final <E> E nonNullElementAt(Object[] es, int i) {
268
@SuppressWarnings("unchecked") E e = (E) es[i];
269
if (e == null)
270
throw new ConcurrentModificationException();
271
return e;
272
}
273
274
// The main insertion and extraction methods are addFirst,
275
// addLast, pollFirst, pollLast. The other methods are defined in
276
// terms of these.
277
278
/**
279
* Inserts the specified element at the front of this deque.
280
*
281
* @param e the element to add
282
* @throws NullPointerException if the specified element is null
283
*/
284
public void addFirst(E e) {
285
if (e == null)
286
throw new NullPointerException();
287
final Object[] es = elements;
288
es[head = dec(head, es.length)] = e;
289
if (head == tail)
290
grow(1);
291
}
292
293
/**
294
* Inserts the specified element at the end of this deque.
295
*
296
* <p>This method is equivalent to {@link #add}.
297
*
298
* @param e the element to add
299
* @throws NullPointerException if the specified element is null
300
*/
301
public void addLast(E e) {
302
if (e == null)
303
throw new NullPointerException();
304
final Object[] es = elements;
305
es[tail] = e;
306
if (head == (tail = inc(tail, es.length)))
307
grow(1);
308
}
309
310
/**
311
* Adds all of the elements in the specified collection at the end
312
* of this deque, as if by calling {@link #addLast} on each one,
313
* in the order that they are returned by the collection's iterator.
314
*
315
* @param c the elements to be inserted into this deque
316
* @return {@code true} if this deque changed as a result of the call
317
* @throws NullPointerException if the specified collection or any
318
* of its elements are null
319
*/
320
public boolean addAll(Collection<? extends E> c) {
321
final int s, needed;
322
if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
323
grow(needed);
324
copyElements(c);
325
return size() > s;
326
}
327
328
private void copyElements(Collection<? extends E> c) {
329
c.forEach(this::addLast);
330
}
331
332
/**
333
* Inserts the specified element at the front of this deque.
334
*
335
* @param e the element to add
336
* @return {@code true} (as specified by {@link Deque#offerFirst})
337
* @throws NullPointerException if the specified element is null
338
*/
339
public boolean offerFirst(E e) {
340
addFirst(e);
341
return true;
342
}
343
344
/**
345
* Inserts the specified element at the end of this deque.
346
*
347
* @param e the element to add
348
* @return {@code true} (as specified by {@link Deque#offerLast})
349
* @throws NullPointerException if the specified element is null
350
*/
351
public boolean offerLast(E e) {
352
addLast(e);
353
return true;
354
}
355
356
/**
357
* @throws NoSuchElementException {@inheritDoc}
358
*/
359
public E removeFirst() {
360
E e = pollFirst();
361
if (e == null)
362
throw new NoSuchElementException();
363
return e;
364
}
365
366
/**
367
* @throws NoSuchElementException {@inheritDoc}
368
*/
369
public E removeLast() {
370
E e = pollLast();
371
if (e == null)
372
throw new NoSuchElementException();
373
return e;
374
}
375
376
public E pollFirst() {
377
final Object[] es;
378
final int h;
379
E e = elementAt(es = elements, h = head);
380
if (e != null) {
381
es[h] = null;
382
head = inc(h, es.length);
383
}
384
return e;
385
}
386
387
public E pollLast() {
388
final Object[] es;
389
final int t;
390
E e = elementAt(es = elements, t = dec(tail, es.length));
391
if (e != null)
392
es[tail = t] = null;
393
return e;
394
}
395
396
/**
397
* @throws NoSuchElementException {@inheritDoc}
398
*/
399
public E getFirst() {
400
E e = elementAt(elements, head);
401
if (e == null)
402
throw new NoSuchElementException();
403
return e;
404
}
405
406
/**
407
* @throws NoSuchElementException {@inheritDoc}
408
*/
409
public E getLast() {
410
final Object[] es = elements;
411
E e = elementAt(es, dec(tail, es.length));
412
if (e == null)
413
throw new NoSuchElementException();
414
return e;
415
}
416
417
public E peekFirst() {
418
return elementAt(elements, head);
419
}
420
421
public E peekLast() {
422
final Object[] es;
423
return elementAt(es = elements, dec(tail, es.length));
424
}
425
426
/**
427
* Removes the first occurrence of the specified element in this
428
* deque (when traversing the deque from head to tail).
429
* If the deque does not contain the element, it is unchanged.
430
* More formally, removes the first element {@code e} such that
431
* {@code o.equals(e)} (if such an element exists).
432
* Returns {@code true} if this deque contained the specified element
433
* (or equivalently, if this deque changed as a result of the call).
434
*
435
* @param o element to be removed from this deque, if present
436
* @return {@code true} if the deque contained the specified element
437
*/
438
public boolean removeFirstOccurrence(Object o) {
439
if (o != null) {
440
final Object[] es = elements;
441
for (int i = head, end = tail, to = (i <= end) ? end : es.length;
442
; i = 0, to = end) {
443
for (; i < to; i++)
444
if (o.equals(es[i])) {
445
delete(i);
446
return true;
447
}
448
if (to == end) break;
449
}
450
}
451
return false;
452
}
453
454
/**
455
* Removes the last occurrence of the specified element in this
456
* deque (when traversing the deque from head to tail).
457
* If the deque does not contain the element, it is unchanged.
458
* More formally, removes the last element {@code e} such that
459
* {@code o.equals(e)} (if such an element exists).
460
* Returns {@code true} if this deque contained the specified element
461
* (or equivalently, if this deque changed as a result of the call).
462
*
463
* @param o element to be removed from this deque, if present
464
* @return {@code true} if the deque contained the specified element
465
*/
466
public boolean removeLastOccurrence(Object o) {
467
if (o != null) {
468
final Object[] es = elements;
469
for (int i = tail, end = head, to = (i >= end) ? end : 0;
470
; i = es.length, to = end) {
471
for (i--; i > to - 1; i--)
472
if (o.equals(es[i])) {
473
delete(i);
474
return true;
475
}
476
if (to == end) break;
477
}
478
}
479
return false;
480
}
481
482
// *** Queue methods ***
483
484
/**
485
* Inserts the specified element at the end of this deque.
486
*
487
* <p>This method is equivalent to {@link #addLast}.
488
*
489
* @param e the element to add
490
* @return {@code true} (as specified by {@link Collection#add})
491
* @throws NullPointerException if the specified element is null
492
*/
493
public boolean add(E e) {
494
addLast(e);
495
return true;
496
}
497
498
/**
499
* Inserts the specified element at the end of this deque.
500
*
501
* <p>This method is equivalent to {@link #offerLast}.
502
*
503
* @param e the element to add
504
* @return {@code true} (as specified by {@link Queue#offer})
505
* @throws NullPointerException if the specified element is null
506
*/
507
public boolean offer(E e) {
508
return offerLast(e);
509
}
510
511
/**
512
* Retrieves and removes the head of the queue represented by this deque.
513
*
514
* This method differs from {@link #poll() poll()} only in that it
515
* throws an exception if this deque is empty.
516
*
517
* <p>This method is equivalent to {@link #removeFirst}.
518
*
519
* @return the head of the queue represented by this deque
520
* @throws NoSuchElementException {@inheritDoc}
521
*/
522
public E remove() {
523
return removeFirst();
524
}
525
526
/**
527
* Retrieves and removes the head of the queue represented by this deque
528
* (in other words, the first element of this deque), or returns
529
* {@code null} if this deque is empty.
530
*
531
* <p>This method is equivalent to {@link #pollFirst}.
532
*
533
* @return the head of the queue represented by this deque, or
534
* {@code null} if this deque is empty
535
*/
536
public E poll() {
537
return pollFirst();
538
}
539
540
/**
541
* Retrieves, but does not remove, the head of the queue represented by
542
* this deque. This method differs from {@link #peek peek} only in
543
* that it throws an exception if this deque is empty.
544
*
545
* <p>This method is equivalent to {@link #getFirst}.
546
*
547
* @return the head of the queue represented by this deque
548
* @throws NoSuchElementException {@inheritDoc}
549
*/
550
public E element() {
551
return getFirst();
552
}
553
554
/**
555
* Retrieves, but does not remove, the head of the queue represented by
556
* this deque, or returns {@code null} if this deque is empty.
557
*
558
* <p>This method is equivalent to {@link #peekFirst}.
559
*
560
* @return the head of the queue represented by this deque, or
561
* {@code null} if this deque is empty
562
*/
563
public E peek() {
564
return peekFirst();
565
}
566
567
// *** Stack methods ***
568
569
/**
570
* Pushes an element onto the stack represented by this deque. In other
571
* words, inserts the element at the front of this deque.
572
*
573
* <p>This method is equivalent to {@link #addFirst}.
574
*
575
* @param e the element to push
576
* @throws NullPointerException if the specified element is null
577
*/
578
public void push(E e) {
579
addFirst(e);
580
}
581
582
/**
583
* Pops an element from the stack represented by this deque. In other
584
* words, removes and returns the first element of this deque.
585
*
586
* <p>This method is equivalent to {@link #removeFirst()}.
587
*
588
* @return the element at the front of this deque (which is the top
589
* of the stack represented by this deque)
590
* @throws NoSuchElementException {@inheritDoc}
591
*/
592
public E pop() {
593
return removeFirst();
594
}
595
596
/**
597
* Removes the element at the specified position in the elements array.
598
* This can result in forward or backwards motion of array elements.
599
* We optimize for least element motion.
600
*
601
* <p>This method is called delete rather than remove to emphasize
602
* that its semantics differ from those of {@link List#remove(int)}.
603
*
604
* @return true if elements near tail moved backwards
605
*/
606
boolean delete(int i) {
607
final Object[] es = elements;
608
final int capacity = es.length;
609
final int h, t;
610
// number of elements before to-be-deleted elt
611
final int front = sub(i, h = head, capacity);
612
// number of elements after to-be-deleted elt
613
final int back = sub(t = tail, i, capacity) - 1;
614
if (front < back) {
615
// move front elements forwards
616
if (h <= i) {
617
System.arraycopy(es, h, es, h + 1, front);
618
} else { // Wrap around
619
System.arraycopy(es, 0, es, 1, i);
620
es[0] = es[capacity - 1];
621
System.arraycopy(es, h, es, h + 1, front - (i + 1));
622
}
623
es[h] = null;
624
head = inc(h, capacity);
625
return false;
626
} else {
627
// move back elements backwards
628
tail = dec(t, capacity);
629
if (i <= tail) {
630
System.arraycopy(es, i + 1, es, i, back);
631
} else { // Wrap around
632
System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
633
es[capacity - 1] = es[0];
634
System.arraycopy(es, 1, es, 0, t - 1);
635
}
636
es[tail] = null;
637
return true;
638
}
639
}
640
641
// *** Collection Methods ***
642
643
/**
644
* Returns the number of elements in this deque.
645
*
646
* @return the number of elements in this deque
647
*/
648
public int size() {
649
return sub(tail, head, elements.length);
650
}
651
652
/**
653
* Returns {@code true} if this deque contains no elements.
654
*
655
* @return {@code true} if this deque contains no elements
656
*/
657
public boolean isEmpty() {
658
return head == tail;
659
}
660
661
/**
662
* Returns an iterator over the elements in this deque. The elements
663
* will be ordered from first (head) to last (tail). This is the same
664
* order that elements would be dequeued (via successive calls to
665
* {@link #remove} or popped (via successive calls to {@link #pop}).
666
*
667
* @return an iterator over the elements in this deque
668
*/
669
public Iterator<E> iterator() {
670
return new DeqIterator();
671
}
672
673
public Iterator<E> descendingIterator() {
674
return new DescendingIterator();
675
}
676
677
private class DeqIterator implements Iterator<E> {
678
/** Index of element to be returned by subsequent call to next. */
679
int cursor;
680
681
/** Number of elements yet to be returned. */
682
int remaining = size();
683
684
/**
685
* Index of element returned by most recent call to next.
686
* Reset to -1 if element is deleted by a call to remove.
687
*/
688
int lastRet = -1;
689
690
DeqIterator() { cursor = head; }
691
692
public final boolean hasNext() {
693
return remaining > 0;
694
}
695
696
public E next() {
697
if (remaining <= 0)
698
throw new NoSuchElementException();
699
final Object[] es = elements;
700
E e = nonNullElementAt(es, cursor);
701
cursor = inc(lastRet = cursor, es.length);
702
remaining--;
703
return e;
704
}
705
706
void postDelete(boolean leftShifted) {
707
if (leftShifted)
708
cursor = dec(cursor, elements.length);
709
}
710
711
public final void remove() {
712
if (lastRet < 0)
713
throw new IllegalStateException();
714
postDelete(delete(lastRet));
715
lastRet = -1;
716
}
717
718
public void forEachRemaining(Consumer<? super E> action) {
719
Objects.requireNonNull(action);
720
int r;
721
if ((r = remaining) <= 0)
722
return;
723
remaining = 0;
724
final Object[] es = elements;
725
if (es[cursor] == null || sub(tail, cursor, es.length) != r)
726
throw new ConcurrentModificationException();
727
for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
728
; i = 0, to = end) {
729
for (; i < to; i++)
730
action.accept(elementAt(es, i));
731
if (to == end) {
732
if (end != tail)
733
throw new ConcurrentModificationException();
734
lastRet = dec(end, es.length);
735
break;
736
}
737
}
738
}
739
}
740
741
private class DescendingIterator extends DeqIterator {
742
DescendingIterator() { cursor = dec(tail, elements.length); }
743
744
public final E next() {
745
if (remaining <= 0)
746
throw new NoSuchElementException();
747
final Object[] es = elements;
748
E e = nonNullElementAt(es, cursor);
749
cursor = dec(lastRet = cursor, es.length);
750
remaining--;
751
return e;
752
}
753
754
void postDelete(boolean leftShifted) {
755
if (!leftShifted)
756
cursor = inc(cursor, elements.length);
757
}
758
759
public final void forEachRemaining(Consumer<? super E> action) {
760
Objects.requireNonNull(action);
761
int r;
762
if ((r = remaining) <= 0)
763
return;
764
remaining = 0;
765
final Object[] es = elements;
766
if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
767
throw new ConcurrentModificationException();
768
for (int i = cursor, end = head, to = (i >= end) ? end : 0;
769
; i = es.length - 1, to = end) {
770
// hotspot generates faster code than for: i >= to !
771
for (; i > to - 1; i--)
772
action.accept(elementAt(es, i));
773
if (to == end) {
774
if (end != head)
775
throw new ConcurrentModificationException();
776
lastRet = end;
777
break;
778
}
779
}
780
}
781
}
782
783
/**
784
* Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
785
* and <em>fail-fast</em> {@link Spliterator} over the elements in this
786
* deque.
787
*
788
* <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
789
* {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
790
* {@link Spliterator#NONNULL}. Overriding implementations should document
791
* the reporting of additional characteristic values.
792
*
793
* @return a {@code Spliterator} over the elements in this deque
794
* @since 1.8
795
*/
796
public Spliterator<E> spliterator() {
797
return new DeqSpliterator();
798
}
799
800
final class DeqSpliterator implements Spliterator<E> {
801
private int fence; // -1 until first use
802
private int cursor; // current index, modified on traverse/split
803
804
/** Constructs late-binding spliterator over all elements. */
805
DeqSpliterator() {
806
this.fence = -1;
807
}
808
809
/** Constructs spliterator over the given range. */
810
DeqSpliterator(int origin, int fence) {
811
// assert 0 <= origin && origin < elements.length;
812
// assert 0 <= fence && fence < elements.length;
813
this.cursor = origin;
814
this.fence = fence;
815
}
816
817
/** Ensures late-binding initialization; then returns fence. */
818
private int getFence() { // force initialization
819
int t;
820
if ((t = fence) < 0) {
821
t = fence = tail;
822
cursor = head;
823
}
824
return t;
825
}
826
827
public DeqSpliterator trySplit() {
828
final Object[] es = elements;
829
final int i, n;
830
return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
831
? null
832
: new DeqSpliterator(i, cursor = inc(i, n, es.length));
833
}
834
835
public void forEachRemaining(Consumer<? super E> action) {
836
if (action == null)
837
throw new NullPointerException();
838
final int end = getFence(), cursor = this.cursor;
839
final Object[] es = elements;
840
if (cursor != end) {
841
this.cursor = end;
842
// null check at both ends of range is sufficient
843
if (es[cursor] == null || es[dec(end, es.length)] == null)
844
throw new ConcurrentModificationException();
845
for (int i = cursor, to = (i <= end) ? end : es.length;
846
; i = 0, to = end) {
847
for (; i < to; i++)
848
action.accept(elementAt(es, i));
849
if (to == end) break;
850
}
851
}
852
}
853
854
public boolean tryAdvance(Consumer<? super E> action) {
855
Objects.requireNonNull(action);
856
final Object[] es = elements;
857
if (fence < 0) { fence = tail; cursor = head; } // late-binding
858
final int i;
859
if ((i = cursor) == fence)
860
return false;
861
E e = nonNullElementAt(es, i);
862
cursor = inc(i, es.length);
863
action.accept(e);
864
return true;
865
}
866
867
public long estimateSize() {
868
return sub(getFence(), cursor, elements.length);
869
}
870
871
public int characteristics() {
872
return Spliterator.NONNULL
873
| Spliterator.ORDERED
874
| Spliterator.SIZED
875
| Spliterator.SUBSIZED;
876
}
877
}
878
879
/**
880
* @throws NullPointerException {@inheritDoc}
881
*/
882
public void forEach(Consumer<? super E> action) {
883
Objects.requireNonNull(action);
884
final Object[] es = elements;
885
for (int i = head, end = tail, to = (i <= end) ? end : es.length;
886
; i = 0, to = end) {
887
for (; i < to; i++)
888
action.accept(elementAt(es, i));
889
if (to == end) {
890
if (end != tail) throw new ConcurrentModificationException();
891
break;
892
}
893
}
894
}
895
896
/**
897
* @throws NullPointerException {@inheritDoc}
898
*/
899
public boolean removeIf(Predicate<? super E> filter) {
900
Objects.requireNonNull(filter);
901
return bulkRemove(filter);
902
}
903
904
/**
905
* @throws NullPointerException {@inheritDoc}
906
*/
907
public boolean removeAll(Collection<?> c) {
908
Objects.requireNonNull(c);
909
return bulkRemove(e -> c.contains(e));
910
}
911
912
/**
913
* @throws NullPointerException {@inheritDoc}
914
*/
915
public boolean retainAll(Collection<?> c) {
916
Objects.requireNonNull(c);
917
return bulkRemove(e -> !c.contains(e));
918
}
919
920
/** Implementation of bulk remove methods. */
921
private boolean bulkRemove(Predicate<? super E> filter) {
922
final Object[] es = elements;
923
// Optimize for initial run of survivors
924
for (int i = head, end = tail, to = (i <= end) ? end : es.length;
925
; i = 0, to = end) {
926
for (; i < to; i++)
927
if (filter.test(elementAt(es, i)))
928
return bulkRemoveModified(filter, i);
929
if (to == end) {
930
if (end != tail) throw new ConcurrentModificationException();
931
break;
932
}
933
}
934
return false;
935
}
936
937
// A tiny bit set implementation
938
939
private static long[] nBits(int n) {
940
return new long[((n - 1) >> 6) + 1];
941
}
942
private static void setBit(long[] bits, int i) {
943
bits[i >> 6] |= 1L << i;
944
}
945
private static boolean isClear(long[] bits, int i) {
946
return (bits[i >> 6] & (1L << i)) == 0;
947
}
948
949
/**
950
* Helper for bulkRemove, in case of at least one deletion.
951
* Tolerate predicates that reentrantly access the collection for
952
* read (but writers still get CME), so traverse once to find
953
* elements to delete, a second pass to physically expunge.
954
*
955
* @param beg valid index of first element to be deleted
956
*/
957
private boolean bulkRemoveModified(
958
Predicate<? super E> filter, final int beg) {
959
final Object[] es = elements;
960
final int capacity = es.length;
961
final int end = tail;
962
final long[] deathRow = nBits(sub(end, beg, capacity));
963
deathRow[0] = 1L; // set bit 0
964
for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
965
; i = 0, to = end, k -= capacity) {
966
for (; i < to; i++)
967
if (filter.test(elementAt(es, i)))
968
setBit(deathRow, i - k);
969
if (to == end) break;
970
}
971
// a two-finger traversal, with hare i reading, tortoise w writing
972
int w = beg;
973
for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
974
; w = 0) { // w rejoins i on second leg
975
// In this loop, i and w are on the same leg, with i > w
976
for (; i < to; i++)
977
if (isClear(deathRow, i - k))
978
es[w++] = es[i];
979
if (to == end) break;
980
// In this loop, w is on the first leg, i on the second
981
for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
982
if (isClear(deathRow, i - k))
983
es[w++] = es[i];
984
if (i >= to) {
985
if (w == capacity) w = 0; // "corner" case
986
break;
987
}
988
}
989
if (end != tail) throw new ConcurrentModificationException();
990
circularClear(es, tail = w, end);
991
return true;
992
}
993
994
/**
995
* Returns {@code true} if this deque contains the specified element.
996
* More formally, returns {@code true} if and only if this deque contains
997
* at least one element {@code e} such that {@code o.equals(e)}.
998
*
999
* @param o object to be checked for containment in this deque
1000
* @return {@code true} if this deque contains the specified element
1001
*/
1002
public boolean contains(Object o) {
1003
if (o != null) {
1004
final Object[] es = elements;
1005
for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1006
; i = 0, to = end) {
1007
for (; i < to; i++)
1008
if (o.equals(es[i]))
1009
return true;
1010
if (to == end) break;
1011
}
1012
}
1013
return false;
1014
}
1015
1016
/**
1017
* Removes a single instance of the specified element from this deque.
1018
* If the deque does not contain the element, it is unchanged.
1019
* More formally, removes the first element {@code e} such that
1020
* {@code o.equals(e)} (if such an element exists).
1021
* Returns {@code true} if this deque contained the specified element
1022
* (or equivalently, if this deque changed as a result of the call).
1023
*
1024
* <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1025
*
1026
* @param o element to be removed from this deque, if present
1027
* @return {@code true} if this deque contained the specified element
1028
*/
1029
public boolean remove(Object o) {
1030
return removeFirstOccurrence(o);
1031
}
1032
1033
/**
1034
* Removes all of the elements from this deque.
1035
* The deque will be empty after this call returns.
1036
*/
1037
public void clear() {
1038
circularClear(elements, head, tail);
1039
head = tail = 0;
1040
}
1041
1042
/**
1043
* Nulls out slots starting at array index i, upto index end.
1044
* Condition i == end means "empty" - nothing to do.
1045
*/
1046
private static void circularClear(Object[] es, int i, int end) {
1047
// assert 0 <= i && i < es.length;
1048
// assert 0 <= end && end < es.length;
1049
for (int to = (i <= end) ? end : es.length;
1050
; i = 0, to = end) {
1051
for (; i < to; i++) es[i] = null;
1052
if (to == end) break;
1053
}
1054
}
1055
1056
/**
1057
* Returns an array containing all of the elements in this deque
1058
* in proper sequence (from first to last element).
1059
*
1060
* <p>The returned array will be "safe" in that no references to it are
1061
* maintained by this deque. (In other words, this method must allocate
1062
* a new array). The caller is thus free to modify the returned array.
1063
*
1064
* <p>This method acts as bridge between array-based and collection-based
1065
* APIs.
1066
*
1067
* @return an array containing all of the elements in this deque
1068
*/
1069
public Object[] toArray() {
1070
return toArray(Object[].class);
1071
}
1072
1073
private <T> T[] toArray(Class<T[]> klazz) {
1074
final Object[] es = elements;
1075
final T[] a;
1076
final int head = this.head, tail = this.tail, end;
1077
if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1078
// Uses null extension feature of copyOfRange
1079
a = Arrays.copyOfRange(es, head, end, klazz);
1080
} else {
1081
// integer overflow!
1082
a = Arrays.copyOfRange(es, 0, end - head, klazz);
1083
System.arraycopy(es, head, a, 0, es.length - head);
1084
}
1085
if (end != tail)
1086
System.arraycopy(es, 0, a, es.length - head, tail);
1087
return a;
1088
}
1089
1090
/**
1091
* Returns an array containing all of the elements in this deque in
1092
* proper sequence (from first to last element); the runtime type of the
1093
* returned array is that of the specified array. If the deque fits in
1094
* the specified array, it is returned therein. Otherwise, a new array
1095
* is allocated with the runtime type of the specified array and the
1096
* size of this deque.
1097
*
1098
* <p>If this deque fits in the specified array with room to spare
1099
* (i.e., the array has more elements than this deque), the element in
1100
* the array immediately following the end of the deque is set to
1101
* {@code null}.
1102
*
1103
* <p>Like the {@link #toArray()} method, this method acts as bridge between
1104
* array-based and collection-based APIs. Further, this method allows
1105
* precise control over the runtime type of the output array, and may,
1106
* under certain circumstances, be used to save allocation costs.
1107
*
1108
* <p>Suppose {@code x} is a deque known to contain only strings.
1109
* The following code can be used to dump the deque into a newly
1110
* allocated array of {@code String}:
1111
*
1112
* <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1113
*
1114
* Note that {@code toArray(new Object[0])} is identical in function to
1115
* {@code toArray()}.
1116
*
1117
* @param a the array into which the elements of the deque are to
1118
* be stored, if it is big enough; otherwise, a new array of the
1119
* same runtime type is allocated for this purpose
1120
* @return an array containing all of the elements in this deque
1121
* @throws ArrayStoreException if the runtime type of the specified array
1122
* is not a supertype of the runtime type of every element in
1123
* this deque
1124
* @throws NullPointerException if the specified array is null
1125
*/
1126
@SuppressWarnings("unchecked")
1127
public <T> T[] toArray(T[] a) {
1128
final int size;
1129
if ((size = size()) > a.length)
1130
return toArray((Class<T[]>) a.getClass());
1131
final Object[] es = elements;
1132
for (int i = head, j = 0, len = Math.min(size, es.length - i);
1133
; i = 0, len = tail) {
1134
System.arraycopy(es, i, a, j, len);
1135
if ((j += len) == size) break;
1136
}
1137
if (size < a.length)
1138
a[size] = null;
1139
return a;
1140
}
1141
1142
// *** Object methods ***
1143
1144
/**
1145
* Returns a copy of this deque.
1146
*
1147
* @return a copy of this deque
1148
*/
1149
public ArrayDeque<E> clone() {
1150
try {
1151
@SuppressWarnings("unchecked")
1152
ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1153
result.elements = Arrays.copyOf(elements, elements.length);
1154
return result;
1155
} catch (CloneNotSupportedException e) {
1156
throw new AssertionError();
1157
}
1158
}
1159
1160
@java.io.Serial
1161
private static final long serialVersionUID = 2340985798034038923L;
1162
1163
/**
1164
* Saves this deque to a stream (that is, serializes it).
1165
*
1166
* @param s the stream
1167
* @throws java.io.IOException if an I/O error occurs
1168
* @serialData The current size ({@code int}) of the deque,
1169
* followed by all of its elements (each an object reference) in
1170
* first-to-last order.
1171
*/
1172
@java.io.Serial
1173
private void writeObject(java.io.ObjectOutputStream s)
1174
throws java.io.IOException {
1175
s.defaultWriteObject();
1176
1177
// Write out size
1178
s.writeInt(size());
1179
1180
// Write out elements in order.
1181
final Object[] es = elements;
1182
for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1183
; i = 0, to = end) {
1184
for (; i < to; i++)
1185
s.writeObject(es[i]);
1186
if (to == end) break;
1187
}
1188
}
1189
1190
/**
1191
* Reconstitutes this deque from a stream (that is, deserializes it).
1192
* @param s the stream
1193
* @throws ClassNotFoundException if the class of a serialized object
1194
* could not be found
1195
* @throws java.io.IOException if an I/O error occurs
1196
*/
1197
@java.io.Serial
1198
private void readObject(java.io.ObjectInputStream s)
1199
throws java.io.IOException, ClassNotFoundException {
1200
s.defaultReadObject();
1201
1202
// Read in size and allocate array
1203
int size = s.readInt();
1204
SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size + 1);
1205
elements = new Object[size + 1];
1206
this.tail = size;
1207
1208
// Read in all elements in the proper order.
1209
for (int i = 0; i < size; i++)
1210
elements[i] = s.readObject();
1211
}
1212
1213
/** debugging */
1214
void checkInvariants() {
1215
// Use head and tail fields with empty slot at tail strategy.
1216
// head == tail disambiguates to "empty".
1217
try {
1218
int capacity = elements.length;
1219
// assert 0 <= head && head < capacity;
1220
// assert 0 <= tail && tail < capacity;
1221
// assert capacity > 0;
1222
// assert size() < capacity;
1223
// assert head == tail || elements[head] != null;
1224
// assert elements[tail] == null;
1225
// assert head == tail || elements[dec(tail, capacity)] != null;
1226
} catch (Throwable t) {
1227
System.err.printf("head=%d tail=%d capacity=%d%n",
1228
head, tail, elements.length);
1229
System.err.printf("elements=%s%n",
1230
Arrays.toString(elements));
1231
throw t;
1232
}
1233
}
1234
1235
}
1236
1237