Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/classes/sun/security/provider/SHA3.java
41159 views
1
/*
2
* Copyright (c) 2016, 2020, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package sun.security.provider;
27
28
import jdk.internal.vm.annotation.IntrinsicCandidate;
29
import static sun.security.provider.ByteArrayAccess.*;
30
import java.nio.*;
31
import java.util.*;
32
import java.security.*;
33
34
/**
35
* This class implements the Secure Hash Algorithm SHA-3 developed by
36
* the National Institute of Standards and Technology along with the
37
* National Security Agency as defined in FIPS PUB 202.
38
*
39
* <p>It implements java.security.MessageDigestSpi, and can be used
40
* through Java Cryptography Architecture (JCA), as a pluggable
41
* MessageDigest implementation.
42
*
43
* @since 9
44
* @author Valerie Peng
45
*/
46
abstract class SHA3 extends DigestBase {
47
48
private static final int WIDTH = 200; // in bytes, e.g. 1600 bits
49
private static final int DM = 5; // dimension of lanes
50
51
private static final int NR = 24; // number of rounds
52
53
// precomputed round constants needed by the step mapping Iota
54
private static final long[] RC_CONSTANTS = {
55
0x01L, 0x8082L, 0x800000000000808aL,
56
0x8000000080008000L, 0x808bL, 0x80000001L,
57
0x8000000080008081L, 0x8000000000008009L, 0x8aL,
58
0x88L, 0x80008009L, 0x8000000aL,
59
0x8000808bL, 0x800000000000008bL, 0x8000000000008089L,
60
0x8000000000008003L, 0x8000000000008002L, 0x8000000000000080L,
61
0x800aL, 0x800000008000000aL, 0x8000000080008081L,
62
0x8000000000008080L, 0x80000001L, 0x8000000080008008L,
63
};
64
65
private final byte suffix;
66
private byte[] state = new byte[WIDTH];
67
private long[] lanes = new long[DM*DM];
68
69
/**
70
* Creates a new SHA-3 object.
71
*/
72
SHA3(String name, int digestLength, byte suffix, int c) {
73
super(name, digestLength, (WIDTH - c));
74
this.suffix = suffix;
75
}
76
77
private void implCompressCheck(byte[] b, int ofs) {
78
Objects.requireNonNull(b);
79
}
80
81
/**
82
* Core compression function. Processes blockSize bytes at a time
83
* and updates the state of this object.
84
*/
85
void implCompress(byte[] b, int ofs) {
86
implCompressCheck(b, ofs);
87
implCompress0(b, ofs);
88
}
89
90
@IntrinsicCandidate
91
private void implCompress0(byte[] b, int ofs) {
92
for (int i = 0; i < buffer.length; i++) {
93
state[i] ^= b[ofs++];
94
}
95
keccak();
96
}
97
98
/**
99
* Return the digest. Subclasses do not need to reset() themselves,
100
* DigestBase calls implReset() when necessary.
101
*/
102
void implDigest(byte[] out, int ofs) {
103
int numOfPadding =
104
setPaddingBytes(suffix, buffer, (int)(bytesProcessed % buffer.length));
105
if (numOfPadding < 1) {
106
throw new ProviderException("Incorrect pad size: " + numOfPadding);
107
}
108
implCompress(buffer, 0);
109
System.arraycopy(state, 0, out, ofs, engineGetDigestLength());
110
}
111
112
/**
113
* Resets the internal state to start a new hash.
114
*/
115
void implReset() {
116
Arrays.fill(state, (byte)0);
117
Arrays.fill(lanes, 0L);
118
}
119
120
/**
121
* Utility function for padding the specified data based on the
122
* pad10*1 algorithm (section 5.1) and the 2-bit suffix "01" required
123
* for SHA-3 hash (section 6.1).
124
*/
125
private static int setPaddingBytes(byte suffix, byte[] in, int len) {
126
if (len != in.length) {
127
// erase leftover values
128
Arrays.fill(in, len, in.length, (byte)0);
129
// directly store the padding bytes into the input
130
// as the specified buffer is allocated w/ size = rateR
131
in[len] |= suffix;
132
in[in.length - 1] |= (byte) 0x80;
133
}
134
return (in.length - len);
135
}
136
137
/**
138
* Utility function for transforming the specified byte array 's'
139
* into array of lanes 'm' as defined in section 3.1.2.
140
*/
141
private static void bytes2Lanes(byte[] s, long[] m) {
142
int sOfs = 0;
143
// Conversion traverses along x-axis before y-axis
144
for (int y = 0; y < DM; y++, sOfs += 40) {
145
b2lLittle(s, sOfs, m, DM*y, 40);
146
}
147
}
148
149
/**
150
* Utility function for transforming the specified array of
151
* lanes 'm' into a byte array 's' as defined in section 3.1.3.
152
*/
153
private static void lanes2Bytes(long[] m, byte[] s) {
154
int sOfs = 0;
155
// Conversion traverses along x-axis before y-axis
156
for (int y = 0; y < DM; y++, sOfs += 40) {
157
l2bLittle(m, DM*y, s, sOfs, 40);
158
}
159
}
160
161
/**
162
* Step mapping Theta as defined in section 3.2.1 .
163
*/
164
private static long[] smTheta(long[] a) {
165
long c0 = a[0]^a[5]^a[10]^a[15]^a[20];
166
long c1 = a[1]^a[6]^a[11]^a[16]^a[21];
167
long c2 = a[2]^a[7]^a[12]^a[17]^a[22];
168
long c3 = a[3]^a[8]^a[13]^a[18]^a[23];
169
long c4 = a[4]^a[9]^a[14]^a[19]^a[24];
170
long d0 = c4 ^ Long.rotateLeft(c1, 1);
171
long d1 = c0 ^ Long.rotateLeft(c2, 1);
172
long d2 = c1 ^ Long.rotateLeft(c3, 1);
173
long d3 = c2 ^ Long.rotateLeft(c4, 1);
174
long d4 = c3 ^ Long.rotateLeft(c0, 1);
175
for (int y = 0; y < a.length; y += DM) {
176
a[y] ^= d0;
177
a[y+1] ^= d1;
178
a[y+2] ^= d2;
179
a[y+3] ^= d3;
180
a[y+4] ^= d4;
181
}
182
return a;
183
}
184
185
/**
186
* Merged Step mapping Rho (section 3.2.2) and Pi (section 3.2.3).
187
* for performance. Optimization is achieved by precalculating
188
* shift constants for the following loop
189
* int xNext, yNext;
190
* for (int t = 0, x = 1, y = 0; t <= 23; t++, x = xNext, y = yNext) {
191
* int numberOfShift = ((t + 1)*(t + 2)/2) % 64;
192
* a[y][x] = Long.rotateLeft(a[y][x], numberOfShift);
193
* xNext = y;
194
* yNext = (2 * x + 3 * y) % DM;
195
* }
196
* and with inplace permutation.
197
*/
198
private static long[] smPiRho(long[] a) {
199
long tmp = Long.rotateLeft(a[10], 3);
200
a[10] = Long.rotateLeft(a[1], 1);
201
a[1] = Long.rotateLeft(a[6], 44);
202
a[6] = Long.rotateLeft(a[9], 20);
203
a[9] = Long.rotateLeft(a[22], 61);
204
a[22] = Long.rotateLeft(a[14], 39);
205
a[14] = Long.rotateLeft(a[20], 18);
206
a[20] = Long.rotateLeft(a[2], 62);
207
a[2] = Long.rotateLeft(a[12], 43);
208
a[12] = Long.rotateLeft(a[13], 25);
209
a[13] = Long.rotateLeft(a[19], 8);
210
a[19] = Long.rotateLeft(a[23], 56);
211
a[23] = Long.rotateLeft(a[15], 41);
212
a[15] = Long.rotateLeft(a[4], 27);
213
a[4] = Long.rotateLeft(a[24], 14);
214
a[24] = Long.rotateLeft(a[21], 2);
215
a[21] = Long.rotateLeft(a[8], 55);
216
a[8] = Long.rotateLeft(a[16], 45);
217
a[16] = Long.rotateLeft(a[5], 36);
218
a[5] = Long.rotateLeft(a[3], 28);
219
a[3] = Long.rotateLeft(a[18], 21);
220
a[18] = Long.rotateLeft(a[17], 15);
221
a[17] = Long.rotateLeft(a[11], 10);
222
a[11] = Long.rotateLeft(a[7], 6);
223
a[7] = tmp;
224
return a;
225
}
226
227
/**
228
* Step mapping Chi as defined in section 3.2.4.
229
*/
230
private static long[] smChi(long[] a) {
231
for (int y = 0; y < a.length; y+=DM) {
232
long ay0 = a[y];
233
long ay1 = a[y+1];
234
long ay2 = a[y+2];
235
long ay3 = a[y+3];
236
long ay4 = a[y+4];
237
a[y] = ay0 ^ ((~ay1) & ay2);
238
a[y+1] = ay1 ^ ((~ay2) & ay3);
239
a[y+2] = ay2 ^ ((~ay3) & ay4);
240
a[y+3] = ay3 ^ ((~ay4) & ay0);
241
a[y+4] = ay4 ^ ((~ay0) & ay1);
242
}
243
return a;
244
}
245
246
/**
247
* Step mapping Iota as defined in section 3.2.5.
248
*/
249
private static long[] smIota(long[] a, int rndIndex) {
250
a[0] ^= RC_CONSTANTS[rndIndex];
251
return a;
252
}
253
254
/**
255
* The function Keccak as defined in section 5.2 with
256
* rate r = 1600 and capacity c = (digest length x 2).
257
*/
258
private void keccak() {
259
// convert the 200-byte state into 25 lanes
260
bytes2Lanes(state, lanes);
261
// process the lanes through step mappings
262
for (int ir = 0; ir < NR; ir++) {
263
smIota(smChi(smPiRho(smTheta(lanes))), ir);
264
}
265
// convert the resulting 25 lanes back into 200-byte state
266
lanes2Bytes(lanes, state);
267
}
268
269
public Object clone() throws CloneNotSupportedException {
270
SHA3 copy = (SHA3) super.clone();
271
copy.state = copy.state.clone();
272
copy.lanes = new long[DM*DM];
273
return copy;
274
}
275
276
/**
277
* SHA3-224 implementation class.
278
*/
279
public static final class SHA224 extends SHA3 {
280
public SHA224() {
281
super("SHA3-224", 28, (byte)0x06, 56);
282
}
283
}
284
285
/**
286
* SHA3-256 implementation class.
287
*/
288
public static final class SHA256 extends SHA3 {
289
public SHA256() {
290
super("SHA3-256", 32, (byte)0x06, 64);
291
}
292
}
293
294
/**
295
* SHAs-384 implementation class.
296
*/
297
public static final class SHA384 extends SHA3 {
298
public SHA384() {
299
super("SHA3-384", 48, (byte)0x06, 96);
300
}
301
}
302
303
/**
304
* SHA3-512 implementation class.
305
*/
306
public static final class SHA512 extends SHA3 {
307
public SHA512() {
308
super("SHA3-512", 64, (byte)0x06, 128);
309
}
310
}
311
}
312
313