Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/classes/sun/text/BreakDictionary.java
41152 views
1
/*
2
* Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
/*
27
*
28
* (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
29
* (C) Copyright IBM Corp. 1996 - 2002 - All Rights Reserved
30
*
31
* The original version of this source code and documentation
32
* is copyrighted and owned by Taligent, Inc., a wholly-owned
33
* subsidiary of IBM. These materials are provided under terms
34
* of a License Agreement between Taligent and Sun. This technology
35
* is protected by multiple US and International patents.
36
*
37
* This notice and attribution to Taligent may not be removed.
38
* Taligent is a registered trademark of Taligent, Inc.
39
*/
40
package sun.text;
41
42
import java.nio.BufferUnderflowException;
43
import java.nio.ByteBuffer;
44
import java.util.MissingResourceException;
45
import sun.text.CompactByteArray;
46
import sun.text.SupplementaryCharacterData;
47
48
/**
49
* This is the class that represents the list of known words used by
50
* DictionaryBasedBreakIterator. The conceptual data structure used
51
* here is a trie: there is a node hanging off the root node for every
52
* letter that can start a word. Each of these nodes has a node hanging
53
* off of it for every letter that can be the second letter of a word
54
* if this node is the first letter, and so on. The trie is represented
55
* as a two-dimensional array that can be treated as a table of state
56
* transitions. Indexes are used to compress this array, taking
57
* advantage of the fact that this array will always be very sparse.
58
*/
59
class BreakDictionary {
60
61
//=========================================================================
62
// data members
63
//=========================================================================
64
65
/**
66
* The version of the dictionary that was read in.
67
*/
68
private static int supportedVersion = 1;
69
70
/**
71
* Maps from characters to column numbers. The main use of this is to
72
* avoid making room in the array for empty columns.
73
*/
74
private CompactByteArray columnMap = null;
75
private SupplementaryCharacterData supplementaryCharColumnMap = null;
76
77
/**
78
* The number of actual columns in the table
79
*/
80
private int numCols;
81
82
/**
83
* Columns are organized into groups of 32. This says how many
84
* column groups. (We could calculate this, but we store the
85
* value to avoid having to repeatedly calculate it.)
86
*/
87
private int numColGroups;
88
89
/**
90
* The actual compressed state table. Each conceptual row represents
91
* a state, and the cells in it contain the row numbers of the states
92
* to transition to for each possible letter. 0 is used to indicate
93
* an illegal combination of letters (i.e., the error state). The
94
* table is compressed by eliminating all the unpopulated (i.e., zero)
95
* cells. Multiple conceptual rows can then be doubled up in a single
96
* physical row by sliding them up and possibly shifting them to one
97
* side or the other so the populated cells don't collide. Indexes
98
* are used to identify unpopulated cells and to locate populated cells.
99
*/
100
private short[] table = null;
101
102
/**
103
* This index maps logical row numbers to physical row numbers
104
*/
105
private short[] rowIndex = null;
106
107
/**
108
* A bitmap is used to tell which cells in the comceptual table are
109
* populated. This array contains all the unique bit combinations
110
* in that bitmap. If the table is more than 32 columns wide,
111
* successive entries in this array are used for a single row.
112
*/
113
private int[] rowIndexFlags = null;
114
115
/**
116
* This index maps from a logical row number into the bitmap table above.
117
* (This keeps us from storing duplicate bitmap combinations.) Since there
118
* are a lot of rows with only one populated cell, instead of wasting space
119
* in the bitmap table, we just store a negative number in this index for
120
* rows with one populated cell. The absolute value of that number is
121
* the column number of the populated cell.
122
*/
123
private short[] rowIndexFlagsIndex = null;
124
125
/**
126
* For each logical row, this index contains a constant that is added to
127
* the logical column number to get the physical column number
128
*/
129
private byte[] rowIndexShifts = null;
130
131
//=========================================================================
132
// deserialization
133
//=========================================================================
134
135
BreakDictionary(String dictionaryName, byte[] dictionaryData) {
136
try {
137
setupDictionary(dictionaryName, dictionaryData);
138
} catch (BufferUnderflowException bue) {
139
MissingResourceException e;
140
e = new MissingResourceException("Corrupted dictionary data",
141
dictionaryName, "");
142
e.initCause(bue);
143
throw e;
144
}
145
}
146
147
private void setupDictionary(String dictionaryName, byte[] dictionaryData) {
148
ByteBuffer bb = ByteBuffer.wrap(dictionaryData);
149
150
// check version
151
int version = bb.getInt();
152
if (version != supportedVersion) {
153
throw new MissingResourceException("Dictionary version(" + version + ") is unsupported",
154
dictionaryName, "");
155
}
156
157
// Check data size
158
int len = bb.getInt();
159
if (bb.position() + len != bb.limit()) {
160
throw new MissingResourceException("Dictionary size is wrong: " + bb.limit(),
161
dictionaryName, "");
162
}
163
164
// read in the column map for BMP characteres (this is serialized in
165
// its internal form: an index array followed by a data array)
166
len = bb.getInt();
167
short[] temp = new short[len];
168
for (int i = 0; i < len; i++) {
169
temp[i] = bb.getShort();
170
}
171
len = bb.getInt();
172
byte[] temp2 = new byte[len];
173
bb.get(temp2);
174
columnMap = new CompactByteArray(temp, temp2);
175
176
// read in numCols and numColGroups
177
numCols = bb.getInt();
178
numColGroups = bb.getInt();
179
180
// read in the row-number index
181
len = bb.getInt();
182
rowIndex = new short[len];
183
for (int i = 0; i < len; i++) {
184
rowIndex[i] = bb.getShort();
185
}
186
187
// load in the populated-cells bitmap: index first, then bitmap list
188
len = bb.getInt();
189
rowIndexFlagsIndex = new short[len];
190
for (int i = 0; i < len; i++) {
191
rowIndexFlagsIndex[i] = bb.getShort();
192
}
193
len = bb.getInt();
194
rowIndexFlags = new int[len];
195
for (int i = 0; i < len; i++) {
196
rowIndexFlags[i] = bb.getInt();
197
}
198
199
// load in the row-shift index
200
len = bb.getInt();
201
rowIndexShifts = new byte[len];
202
bb.get(rowIndexShifts);
203
204
// load in the actual state table
205
len = bb.getInt();
206
table = new short[len];
207
for (int i = 0; i < len; i++) {
208
table[i] = bb.getShort();
209
}
210
211
// finally, prepare the column map for supplementary characters
212
len = bb.getInt();
213
int[] temp3 = new int[len];
214
for (int i = 0; i < len; i++) {
215
temp3[i] = bb.getInt();
216
}
217
assert bb.position() == bb.limit();
218
219
supplementaryCharColumnMap = new SupplementaryCharacterData(temp3);
220
}
221
222
//=========================================================================
223
// access to the words
224
//=========================================================================
225
226
/**
227
* Uses the column map to map the character to a column number, then
228
* passes the row and column number to getNextState()
229
* @param row The current state
230
* @param ch The character whose column we're interested in
231
* @return The new state to transition to
232
*/
233
public final short getNextStateFromCharacter(int row, int ch) {
234
int col;
235
if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
236
col = columnMap.elementAt((char)ch);
237
} else {
238
col = supplementaryCharColumnMap.getValue(ch);
239
}
240
return getNextState(row, col);
241
}
242
243
/**
244
* Returns the value in the cell with the specified (logical) row and
245
* column numbers. In DictionaryBasedBreakIterator, the row number is
246
* a state number, the column number is an input, and the return value
247
* is the row number of the new state to transition to. (0 is the
248
* "error" state, and -1 is the "end of word" state in a dictionary)
249
* @param row The row number of the current state
250
* @param col The column number of the input character (0 means "not a
251
* dictionary character")
252
* @return The row number of the new state to transition to
253
*/
254
public final short getNextState(int row, int col) {
255
if (cellIsPopulated(row, col)) {
256
// we map from logical to physical row number by looking up the
257
// mapping in rowIndex; we map from logical column number to
258
// physical column number by looking up a shift value for this
259
// logical row and offsetting the logical column number by
260
// the shift amount. Then we can use internalAt() to actually
261
// get the value out of the table.
262
return internalAt(rowIndex[row], col + rowIndexShifts[row]);
263
}
264
else {
265
return 0;
266
}
267
}
268
269
/**
270
* Given (logical) row and column numbers, returns true if the
271
* cell in that position is populated
272
*/
273
private boolean cellIsPopulated(int row, int col) {
274
// look up the entry in the bitmap index for the specified row.
275
// If it's a negative number, it's the column number of the only
276
// populated cell in the row
277
if (rowIndexFlagsIndex[row] < 0) {
278
return col == -rowIndexFlagsIndex[row];
279
}
280
281
// if it's a positive number, it's the offset of an entry in the bitmap
282
// list. If the table is more than 32 columns wide, the bitmap is stored
283
// successive entries in the bitmap list, so we have to divide the column
284
// number by 32 and offset the number we got out of the index by the result.
285
// Once we have the appropriate piece of the bitmap, test the appropriate
286
// bit and return the result.
287
else {
288
int flags = rowIndexFlags[rowIndexFlagsIndex[row] + (col >> 5)];
289
return (flags & (1 << (col & 0x1f))) != 0;
290
}
291
}
292
293
/**
294
* Implementation of getNextState() when we know the specified cell is
295
* populated.
296
* @param row The PHYSICAL row number of the cell
297
* @param col The PHYSICAL column number of the cell
298
* @return The value stored in the cell
299
*/
300
private short internalAt(int row, int col) {
301
// the table is a one-dimensional array, so this just does the math necessary
302
// to treat it as a two-dimensional array (we don't just use a two-dimensional
303
// array because two-dimensional arrays are inefficient in Java)
304
return table[row * numCols + col];
305
}
306
}
307
308