Path: blob/master/src/java.base/share/native/libfdlibm/e_acos.c
41149 views
/*1* Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.2* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.3*4* This code is free software; you can redistribute it and/or modify it5* under the terms of the GNU General Public License version 2 only, as6* published by the Free Software Foundation. Oracle designates this7* particular file as subject to the "Classpath" exception as provided8* by Oracle in the LICENSE file that accompanied this code.9*10* This code is distributed in the hope that it will be useful, but WITHOUT11* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or12* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License13* version 2 for more details (a copy is included in the LICENSE file that14* accompanied this code).15*16* You should have received a copy of the GNU General Public License version17* 2 along with this work; if not, write to the Free Software Foundation,18* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.19*20* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA21* or visit www.oracle.com if you need additional information or have any22* questions.23*/2425/* __ieee754_acos(x)26* Method :27* acos(x) = pi/2 - asin(x)28* acos(-x) = pi/2 + asin(x)29* For |x|<=0.530* acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)31* For x>0.532* acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))33* = 2asin(sqrt((1-x)/2))34* = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)35* = 2f + (2c + 2s*z*R(z))36* where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term37* for f so that f+c ~ sqrt(z).38* For x<-0.539* acos(x) = pi - 2asin(sqrt((1-|x|)/2))40* = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)41*42* Special cases:43* if x is NaN, return x itself;44* if |x|>1, return NaN with invalid signal.45*46* Function needed: sqrt47*/4849#include "fdlibm.h"5051#ifdef __STDC__52static const double53#else54static double55#endif56one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */57pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */58pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */59pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */60pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */61pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */62pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */63pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */64pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */65pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */66qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */67qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */68qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */69qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */7071#ifdef __STDC__72double __ieee754_acos(double x)73#else74double __ieee754_acos(x)75double x;76#endif77{78double z,p,q,r,w,s,c,df;79int hx,ix;80hx = __HI(x);81ix = hx&0x7fffffff;82if(ix>=0x3ff00000) { /* |x| >= 1 */83if(((ix-0x3ff00000)|__LO(x))==0) { /* |x|==1 */84if(hx>0) return 0.0; /* acos(1) = 0 */85else return pi+2.0*pio2_lo; /* acos(-1)= pi */86}87return (x-x)/(x-x); /* acos(|x|>1) is NaN */88}89if(ix<0x3fe00000) { /* |x| < 0.5 */90if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/91z = x*x;92p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));93q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));94r = p/q;95return pio2_hi - (x - (pio2_lo-x*r));96} else if (hx<0) { /* x < -0.5 */97z = (one+x)*0.5;98p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));99q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));100s = sqrt(z);101r = p/q;102w = r*s-pio2_lo;103return pi - 2.0*(s+w);104} else { /* x > 0.5 */105z = (one-x)*0.5;106s = sqrt(z);107df = s;108__LO(df) = 0;109c = (z-df*df)/(s+df);110p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));111q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));112r = p/q;113w = r*s+c;114return 2.0*(df+w);115}116}117118119