Path: blob/master/src/java.base/share/native/libfdlibm/e_asin.c
41149 views
/*1* Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.2* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.3*4* This code is free software; you can redistribute it and/or modify it5* under the terms of the GNU General Public License version 2 only, as6* published by the Free Software Foundation. Oracle designates this7* particular file as subject to the "Classpath" exception as provided8* by Oracle in the LICENSE file that accompanied this code.9*10* This code is distributed in the hope that it will be useful, but WITHOUT11* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or12* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License13* version 2 for more details (a copy is included in the LICENSE file that14* accompanied this code).15*16* You should have received a copy of the GNU General Public License version17* 2 along with this work; if not, write to the Free Software Foundation,18* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.19*20* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA21* or visit www.oracle.com if you need additional information or have any22* questions.23*/2425/* __ieee754_asin(x)26* Method :27* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...28* we approximate asin(x) on [0,0.5] by29* asin(x) = x + x*x^2*R(x^2)30* where31* R(x^2) is a rational approximation of (asin(x)-x)/x^332* and its remez error is bounded by33* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)34*35* For x in [0.5,1]36* asin(x) = pi/2-2*asin(sqrt((1-x)/2))37* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;38* then for x>0.9839* asin(x) = pi/2 - 2*(s+s*z*R(z))40* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)41* For x<=0.98, let pio4_hi = pio2_hi/2, then42* f = hi part of s;43* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)44* and45* asin(x) = pi/2 - 2*(s+s*z*R(z))46* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)47* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))48*49* Special cases:50* if x is NaN, return x itself;51* if |x|>1, return NaN with invalid signal.52*53*/545556#include "fdlibm.h"5758#ifdef __STDC__59static const double60#else61static double62#endif63one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */64huge = 1.000e+300,65pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */66pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */67pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */68/* coefficient for R(x^2) */69pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */70pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */71pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */72pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */73pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */74pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */75qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */76qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */77qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */78qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */7980#ifdef __STDC__81double __ieee754_asin(double x)82#else83double __ieee754_asin(x)84double x;85#endif86{87double t=0,w,p,q,c,r,s;88int hx,ix;89hx = __HI(x);90ix = hx&0x7fffffff;91if(ix>= 0x3ff00000) { /* |x|>= 1 */92if(((ix-0x3ff00000)|__LO(x))==0)93/* asin(1)=+-pi/2 with inexact */94return x*pio2_hi+x*pio2_lo;95return (x-x)/(x-x); /* asin(|x|>1) is NaN */96} else if (ix<0x3fe00000) { /* |x|<0.5 */97if(ix<0x3e400000) { /* if |x| < 2**-27 */98if(huge+x>one) return x;/* return x with inexact if x!=0*/99} else100t = x*x;101p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));102q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));103w = p/q;104return x+x*w;105}106/* 1> |x|>= 0.5 */107w = one-fabs(x);108t = w*0.5;109p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));110q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));111s = sqrt(t);112if(ix>=0x3FEF3333) { /* if |x| > 0.975 */113w = p/q;114t = pio2_hi-(2.0*(s+s*w)-pio2_lo);115} else {116w = s;117__LO(w) = 0;118c = (t-w*w)/(s+w);119r = p/q;120p = 2.0*s*r-(pio2_lo-2.0*c);121q = pio4_hi-2.0*w;122t = pio4_hi-(p-q);123}124if(hx>0) return t; else return -t;125}126127128