Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/native/libfdlibm/e_asin.c
41149 views
1
/*
2
* Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
/* __ieee754_asin(x)
27
* Method :
28
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
29
* we approximate asin(x) on [0,0.5] by
30
* asin(x) = x + x*x^2*R(x^2)
31
* where
32
* R(x^2) is a rational approximation of (asin(x)-x)/x^3
33
* and its remez error is bounded by
34
* |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
35
*
36
* For x in [0.5,1]
37
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
38
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
39
* then for x>0.98
40
* asin(x) = pi/2 - 2*(s+s*z*R(z))
41
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
42
* For x<=0.98, let pio4_hi = pio2_hi/2, then
43
* f = hi part of s;
44
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
45
* and
46
* asin(x) = pi/2 - 2*(s+s*z*R(z))
47
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
48
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
49
*
50
* Special cases:
51
* if x is NaN, return x itself;
52
* if |x|>1, return NaN with invalid signal.
53
*
54
*/
55
56
57
#include "fdlibm.h"
58
59
#ifdef __STDC__
60
static const double
61
#else
62
static double
63
#endif
64
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
65
huge = 1.000e+300,
66
pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
67
pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
68
pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
69
/* coefficient for R(x^2) */
70
pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
71
pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
72
pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
73
pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
74
pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
75
pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
76
qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
77
qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
78
qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
79
qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
80
81
#ifdef __STDC__
82
double __ieee754_asin(double x)
83
#else
84
double __ieee754_asin(x)
85
double x;
86
#endif
87
{
88
double t=0,w,p,q,c,r,s;
89
int hx,ix;
90
hx = __HI(x);
91
ix = hx&0x7fffffff;
92
if(ix>= 0x3ff00000) { /* |x|>= 1 */
93
if(((ix-0x3ff00000)|__LO(x))==0)
94
/* asin(1)=+-pi/2 with inexact */
95
return x*pio2_hi+x*pio2_lo;
96
return (x-x)/(x-x); /* asin(|x|>1) is NaN */
97
} else if (ix<0x3fe00000) { /* |x|<0.5 */
98
if(ix<0x3e400000) { /* if |x| < 2**-27 */
99
if(huge+x>one) return x;/* return x with inexact if x!=0*/
100
} else
101
t = x*x;
102
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
103
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
104
w = p/q;
105
return x+x*w;
106
}
107
/* 1> |x|>= 0.5 */
108
w = one-fabs(x);
109
t = w*0.5;
110
p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
111
q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
112
s = sqrt(t);
113
if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
114
w = p/q;
115
t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
116
} else {
117
w = s;
118
__LO(w) = 0;
119
c = (t-w*w)/(s+w);
120
r = p/q;
121
p = 2.0*s*r-(pio2_lo-2.0*c);
122
q = pio4_hi-2.0*w;
123
t = pio4_hi-(p-q);
124
}
125
if(hx>0) return t; else return -t;
126
}
127
128