Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/native/libfdlibm/e_exp.c
41149 views
1
/*
2
* Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
/* __ieee754_exp(x)
27
* Returns the exponential of x.
28
*
29
* Method
30
* 1. Argument reduction:
31
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
32
* Given x, find r and integer k such that
33
*
34
* x = k*ln2 + r, |r| <= 0.5*ln2.
35
*
36
* Here r will be represented as r = hi-lo for better
37
* accuracy.
38
*
39
* 2. Approximation of exp(r) by a special rational function on
40
* the interval [0,0.34658]:
41
* Write
42
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
43
* We use a special Reme algorithm on [0,0.34658] to generate
44
* a polynomial of degree 5 to approximate R. The maximum error
45
* of this polynomial approximation is bounded by 2**-59. In
46
* other words,
47
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
48
* (where z=r*r, and the values of P1 to P5 are listed below)
49
* and
50
* | 5 | -59
51
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
52
* | |
53
* The computation of exp(r) thus becomes
54
* 2*r
55
* exp(r) = 1 + -------
56
* R - r
57
* r*R1(r)
58
* = 1 + r + ----------- (for better accuracy)
59
* 2 - R1(r)
60
* where
61
* 2 4 10
62
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
63
*
64
* 3. Scale back to obtain exp(x):
65
* From step 1, we have
66
* exp(x) = 2^k * exp(r)
67
*
68
* Special cases:
69
* exp(INF) is INF, exp(NaN) is NaN;
70
* exp(-INF) is 0, and
71
* for finite argument, only exp(0)=1 is exact.
72
*
73
* Accuracy:
74
* according to an error analysis, the error is always less than
75
* 1 ulp (unit in the last place).
76
*
77
* Misc. info.
78
* For IEEE double
79
* if x > 7.09782712893383973096e+02 then exp(x) overflow
80
* if x < -7.45133219101941108420e+02 then exp(x) underflow
81
*
82
* Constants:
83
* The hexadecimal values are the intended ones for the following
84
* constants. The decimal values may be used, provided that the
85
* compiler will convert from decimal to binary accurately enough
86
* to produce the hexadecimal values shown.
87
*/
88
89
#include "fdlibm.h"
90
91
#ifdef __STDC__
92
static const double
93
#else
94
static double
95
#endif
96
one = 1.0,
97
halF[2] = {0.5,-0.5,},
98
huge = 1.0e+300,
99
twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
100
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
101
u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
102
ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
103
-6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
104
ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
105
-1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
106
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
107
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
108
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
109
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
110
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
111
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
112
113
114
#ifdef __STDC__
115
double __ieee754_exp(double x) /* default IEEE double exp */
116
#else
117
double __ieee754_exp(x) /* default IEEE double exp */
118
double x;
119
#endif
120
{
121
double y,hi=0,lo=0,c,t;
122
int k=0,xsb;
123
unsigned hx;
124
125
hx = __HI(x); /* high word of x */
126
xsb = (hx>>31)&1; /* sign bit of x */
127
hx &= 0x7fffffff; /* high word of |x| */
128
129
/* filter out non-finite argument */
130
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
131
if(hx>=0x7ff00000) {
132
if(((hx&0xfffff)|__LO(x))!=0)
133
return x+x; /* NaN */
134
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
135
}
136
if(x > o_threshold) return huge*huge; /* overflow */
137
if(x < u_threshold) return twom1000*twom1000; /* underflow */
138
}
139
140
/* argument reduction */
141
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
142
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
143
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
144
} else {
145
k = invln2*x+halF[xsb];
146
t = k;
147
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
148
lo = t*ln2LO[0];
149
}
150
x = hi - lo;
151
}
152
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
153
if(huge+x>one) return one+x;/* trigger inexact */
154
}
155
else k = 0;
156
157
/* x is now in primary range */
158
t = x*x;
159
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
160
if(k==0) return one-((x*c)/(c-2.0)-x);
161
else y = one-((lo-(x*c)/(2.0-c))-hi);
162
if(k >= -1021) {
163
__HI(y) += (k<<20); /* add k to y's exponent */
164
return y;
165
} else {
166
__HI(y) += ((k+1000)<<20);/* add k to y's exponent */
167
return y*twom1000;
168
}
169
}
170
171