Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/native/libfdlibm/e_log.c
41152 views
1
/*
2
* Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
/* __ieee754_log(x)
27
* Return the logrithm of x
28
*
29
* Method :
30
* 1. Argument Reduction: find k and f such that
31
* x = 2^k * (1+f),
32
* where sqrt(2)/2 < 1+f < sqrt(2) .
33
*
34
* 2. Approximation of log(1+f).
35
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
36
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
37
* = 2s + s*R
38
* We use a special Reme algorithm on [0,0.1716] to generate
39
* a polynomial of degree 14 to approximate R The maximum error
40
* of this polynomial approximation is bounded by 2**-58.45. In
41
* other words,
42
* 2 4 6 8 10 12 14
43
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
44
* (the values of Lg1 to Lg7 are listed in the program)
45
* and
46
* | 2 14 | -58.45
47
* | Lg1*s +...+Lg7*s - R(z) | <= 2
48
* | |
49
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
50
* In order to guarantee error in log below 1ulp, we compute log
51
* by
52
* log(1+f) = f - s*(f - R) (if f is not too large)
53
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
54
*
55
* 3. Finally, log(x) = k*ln2 + log(1+f).
56
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
57
* Here ln2 is split into two floating point number:
58
* ln2_hi + ln2_lo,
59
* where n*ln2_hi is always exact for |n| < 2000.
60
*
61
* Special cases:
62
* log(x) is NaN with signal if x < 0 (including -INF) ;
63
* log(+INF) is +INF; log(0) is -INF with signal;
64
* log(NaN) is that NaN with no signal.
65
*
66
* Accuracy:
67
* according to an error analysis, the error is always less than
68
* 1 ulp (unit in the last place).
69
*
70
* Constants:
71
* The hexadecimal values are the intended ones for the following
72
* constants. The decimal values may be used, provided that the
73
* compiler will convert from decimal to binary accurately enough
74
* to produce the hexadecimal values shown.
75
*/
76
77
#include "fdlibm.h"
78
79
#ifdef __STDC__
80
static const double
81
#else
82
static double
83
#endif
84
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
85
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
86
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
87
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
88
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
89
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
90
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
91
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
92
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
93
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
94
95
static double zero = 0.0;
96
97
#ifdef __STDC__
98
double __ieee754_log(double x)
99
#else
100
double __ieee754_log(x)
101
double x;
102
#endif
103
{
104
double hfsq,f,s,z,R,w,t1,t2,dk;
105
int k,hx,i,j;
106
unsigned lx;
107
108
hx = __HI(x); /* high word of x */
109
lx = __LO(x); /* low word of x */
110
111
k=0;
112
if (hx < 0x00100000) { /* x < 2**-1022 */
113
if (((hx&0x7fffffff)|lx)==0)
114
return -two54/zero; /* log(+-0)=-inf */
115
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
116
k -= 54; x *= two54; /* subnormal number, scale up x */
117
hx = __HI(x); /* high word of x */
118
}
119
if (hx >= 0x7ff00000) return x+x;
120
k += (hx>>20)-1023;
121
hx &= 0x000fffff;
122
i = (hx+0x95f64)&0x100000;
123
__HI(x) = hx|(i^0x3ff00000); /* normalize x or x/2 */
124
k += (i>>20);
125
f = x-1.0;
126
if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
127
if(f==zero) {
128
if (k==0) return zero;
129
else {dk=(double)k; return dk*ln2_hi+dk*ln2_lo;}
130
}
131
R = f*f*(0.5-0.33333333333333333*f);
132
if(k==0) return f-R; else {dk=(double)k;
133
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
134
}
135
s = f/(2.0+f);
136
dk = (double)k;
137
z = s*s;
138
i = hx-0x6147a;
139
w = z*z;
140
j = 0x6b851-hx;
141
t1= w*(Lg2+w*(Lg4+w*Lg6));
142
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
143
i |= j;
144
R = t2+t1;
145
if(i>0) {
146
hfsq=0.5*f*f;
147
if(k==0) return f-(hfsq-s*(hfsq+R)); else
148
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
149
} else {
150
if(k==0) return f-s*(f-R); else
151
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
152
}
153
}
154
155