Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/native/libfdlibm/e_sqrt.c
41152 views
1
/*
2
* Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
/* __ieee754_sqrt(x)
27
* Return correctly rounded sqrt.
28
* ------------------------------------------
29
* | Use the hardware sqrt if you have one |
30
* ------------------------------------------
31
* Method:
32
* Bit by bit method using integer arithmetic. (Slow, but portable)
33
* 1. Normalization
34
* Scale x to y in [1,4) with even powers of 2:
35
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
36
* sqrt(x) = 2^k * sqrt(y)
37
* 2. Bit by bit computation
38
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
39
* i 0
40
* i+1 2
41
* s = 2*q , and y = 2 * ( y - q ). (1)
42
* i i i i
43
*
44
* To compute q from q , one checks whether
45
* i+1 i
46
*
47
* -(i+1) 2
48
* (q + 2 ) <= y. (2)
49
* i
50
* -(i+1)
51
* If (2) is false, then q = q ; otherwise q = q + 2 .
52
* i+1 i i+1 i
53
*
54
* With some algebric manipulation, it is not difficult to see
55
* that (2) is equivalent to
56
* -(i+1)
57
* s + 2 <= y (3)
58
* i i
59
*
60
* The advantage of (3) is that s and y can be computed by
61
* i i
62
* the following recurrence formula:
63
* if (3) is false
64
*
65
* s = s , y = y ; (4)
66
* i+1 i i+1 i
67
*
68
* otherwise,
69
* -i -(i+1)
70
* s = s + 2 , y = y - s - 2 (5)
71
* i+1 i i+1 i i
72
*
73
* One may easily use induction to prove (4) and (5).
74
* Note. Since the left hand side of (3) contain only i+2 bits,
75
* it does not necessary to do a full (53-bit) comparison
76
* in (3).
77
* 3. Final rounding
78
* After generating the 53 bits result, we compute one more bit.
79
* Together with the remainder, we can decide whether the
80
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
81
* (it will never equal to 1/2ulp).
82
* The rounding mode can be detected by checking whether
83
* huge + tiny is equal to huge, and whether huge - tiny is
84
* equal to huge for some floating point number "huge" and "tiny".
85
*
86
* Special cases:
87
* sqrt(+-0) = +-0 ... exact
88
* sqrt(inf) = inf
89
* sqrt(-ve) = NaN ... with invalid signal
90
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
91
*
92
* Other methods : see the appended file at the end of the program below.
93
*---------------
94
*/
95
96
#include "fdlibm.h"
97
98
#ifdef __STDC__
99
static const double one = 1.0, tiny=1.0e-300;
100
#else
101
static double one = 1.0, tiny=1.0e-300;
102
#endif
103
104
#ifdef __STDC__
105
double __ieee754_sqrt(double x)
106
#else
107
double __ieee754_sqrt(x)
108
double x;
109
#endif
110
{
111
double z;
112
int sign = (int)0x80000000;
113
unsigned r,t1,s1,ix1,q1;
114
int ix0,s0,q,m,t,i;
115
116
ix0 = __HI(x); /* high word of x */
117
ix1 = __LO(x); /* low word of x */
118
119
/* take care of Inf and NaN */
120
if((ix0&0x7ff00000)==0x7ff00000) {
121
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
122
sqrt(-inf)=sNaN */
123
}
124
/* take care of zero */
125
if(ix0<=0) {
126
if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
127
else if(ix0<0)
128
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
129
}
130
/* normalize x */
131
m = (ix0>>20);
132
if(m==0) { /* subnormal x */
133
while(ix0==0) {
134
m -= 21;
135
ix0 |= (ix1>>11); ix1 <<= 21;
136
}
137
for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
138
m -= i-1;
139
ix0 |= (ix1>>(32-i));
140
ix1 <<= i;
141
}
142
m -= 1023; /* unbias exponent */
143
ix0 = (ix0&0x000fffff)|0x00100000;
144
if(m&1){ /* odd m, double x to make it even */
145
ix0 += ix0 + ((ix1&sign)>>31);
146
ix1 += ix1;
147
}
148
m >>= 1; /* m = [m/2] */
149
150
/* generate sqrt(x) bit by bit */
151
ix0 += ix0 + ((ix1&sign)>>31);
152
ix1 += ix1;
153
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
154
r = 0x00200000; /* r = moving bit from right to left */
155
156
while(r!=0) {
157
t = s0+r;
158
if(t<=ix0) {
159
s0 = t+r;
160
ix0 -= t;
161
q += r;
162
}
163
ix0 += ix0 + ((ix1&sign)>>31);
164
ix1 += ix1;
165
r>>=1;
166
}
167
168
r = sign;
169
while(r!=0) {
170
t1 = s1+r;
171
t = s0;
172
if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
173
s1 = t1+r;
174
if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
175
ix0 -= t;
176
if (ix1 < t1) ix0 -= 1;
177
ix1 -= t1;
178
q1 += r;
179
}
180
ix0 += ix0 + ((ix1&sign)>>31);
181
ix1 += ix1;
182
r>>=1;
183
}
184
185
/* use floating add to find out rounding direction */
186
if((ix0|ix1)!=0) {
187
z = one-tiny; /* trigger inexact flag */
188
if (z>=one) {
189
z = one+tiny;
190
if (q1==(unsigned)0xffffffff) { q1=0; q += 1;}
191
else if (z>one) {
192
if (q1==(unsigned)0xfffffffe) q+=1;
193
q1+=2;
194
} else
195
q1 += (q1&1);
196
}
197
}
198
ix0 = (q>>1)+0x3fe00000;
199
ix1 = q1>>1;
200
if ((q&1)==1) ix1 |= sign;
201
ix0 += (m <<20);
202
__HI(z) = ix0;
203
__LO(z) = ix1;
204
return z;
205
}
206
207
/*
208
Other methods (use floating-point arithmetic)
209
-------------
210
(This is a copy of a drafted paper by Prof W. Kahan
211
and K.C. Ng, written in May, 1986)
212
213
Two algorithms are given here to implement sqrt(x)
214
(IEEE double precision arithmetic) in software.
215
Both supply sqrt(x) correctly rounded. The first algorithm (in
216
Section A) uses newton iterations and involves four divisions.
217
The second one uses reciproot iterations to avoid division, but
218
requires more multiplications. Both algorithms need the ability
219
to chop results of arithmetic operations instead of round them,
220
and the INEXACT flag to indicate when an arithmetic operation
221
is executed exactly with no roundoff error, all part of the
222
standard (IEEE 754-1985). The ability to perform shift, add,
223
subtract and logical AND operations upon 32-bit words is needed
224
too, though not part of the standard.
225
226
A. sqrt(x) by Newton Iteration
227
228
(1) Initial approximation
229
230
Let x0 and x1 be the leading and the trailing 32-bit words of
231
a floating point number x (in IEEE double format) respectively
232
233
1 11 52 ...widths
234
------------------------------------------------------
235
x: |s| e | f |
236
------------------------------------------------------
237
msb lsb msb lsb ...order
238
239
240
------------------------ ------------------------
241
x0: |s| e | f1 | x1: | f2 |
242
------------------------ ------------------------
243
244
By performing shifts and subtracts on x0 and x1 (both regarded
245
as integers), we obtain an 8-bit approximation of sqrt(x) as
246
follows.
247
248
k := (x0>>1) + 0x1ff80000;
249
y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
250
Here k is a 32-bit integer and T1[] is an integer array containing
251
correction terms. Now magically the floating value of y (y's
252
leading 32-bit word is y0, the value of its trailing word is 0)
253
approximates sqrt(x) to almost 8-bit.
254
255
Value of T1:
256
static int T1[32]= {
257
0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
258
29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
259
83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
260
16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
261
262
(2) Iterative refinement
263
264
Apply Heron's rule three times to y, we have y approximates
265
sqrt(x) to within 1 ulp (Unit in the Last Place):
266
267
y := (y+x/y)/2 ... almost 17 sig. bits
268
y := (y+x/y)/2 ... almost 35 sig. bits
269
y := y-(y-x/y)/2 ... within 1 ulp
270
271
272
Remark 1.
273
Another way to improve y to within 1 ulp is:
274
275
y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
276
y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
277
278
2
279
(x-y )*y
280
y := y + 2* ---------- ...within 1 ulp
281
2
282
3y + x
283
284
285
This formula has one division fewer than the one above; however,
286
it requires more multiplications and additions. Also x must be
287
scaled in advance to avoid spurious overflow in evaluating the
288
expression 3y*y+x. Hence it is not recommended uless division
289
is slow. If division is very slow, then one should use the
290
reciproot algorithm given in section B.
291
292
(3) Final adjustment
293
294
By twiddling y's last bit it is possible to force y to be
295
correctly rounded according to the prevailing rounding mode
296
as follows. Let r and i be copies of the rounding mode and
297
inexact flag before entering the square root program. Also we
298
use the expression y+-ulp for the next representable floating
299
numbers (up and down) of y. Note that y+-ulp = either fixed
300
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
301
mode.
302
303
I := FALSE; ... reset INEXACT flag I
304
R := RZ; ... set rounding mode to round-toward-zero
305
z := x/y; ... chopped quotient, possibly inexact
306
If(not I) then { ... if the quotient is exact
307
if(z=y) {
308
I := i; ... restore inexact flag
309
R := r; ... restore rounded mode
310
return sqrt(x):=y.
311
} else {
312
z := z - ulp; ... special rounding
313
}
314
}
315
i := TRUE; ... sqrt(x) is inexact
316
If (r=RN) then z=z+ulp ... rounded-to-nearest
317
If (r=RP) then { ... round-toward-+inf
318
y = y+ulp; z=z+ulp;
319
}
320
y := y+z; ... chopped sum
321
y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
322
I := i; ... restore inexact flag
323
R := r; ... restore rounded mode
324
return sqrt(x):=y.
325
326
(4) Special cases
327
328
Square root of +inf, +-0, or NaN is itself;
329
Square root of a negative number is NaN with invalid signal.
330
331
332
B. sqrt(x) by Reciproot Iteration
333
334
(1) Initial approximation
335
336
Let x0 and x1 be the leading and the trailing 32-bit words of
337
a floating point number x (in IEEE double format) respectively
338
(see section A). By performing shifs and subtracts on x0 and y0,
339
we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
340
341
k := 0x5fe80000 - (x0>>1);
342
y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
343
344
Here k is a 32-bit integer and T2[] is an integer array
345
containing correction terms. Now magically the floating
346
value of y (y's leading 32-bit word is y0, the value of
347
its trailing word y1 is set to zero) approximates 1/sqrt(x)
348
to almost 7.8-bit.
349
350
Value of T2:
351
static int T2[64]= {
352
0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
353
0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
354
0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
355
0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
356
0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
357
0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
358
0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
359
0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
360
361
(2) Iterative refinement
362
363
Apply Reciproot iteration three times to y and multiply the
364
result by x to get an approximation z that matches sqrt(x)
365
to about 1 ulp. To be exact, we will have
366
-1ulp < sqrt(x)-z<1.0625ulp.
367
368
... set rounding mode to Round-to-nearest
369
y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
370
y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
371
... special arrangement for better accuracy
372
z := x*y ... 29 bits to sqrt(x), with z*y<1
373
z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
374
375
Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
376
(a) the term z*y in the final iteration is always less than 1;
377
(b) the error in the final result is biased upward so that
378
-1 ulp < sqrt(x) - z < 1.0625 ulp
379
instead of |sqrt(x)-z|<1.03125ulp.
380
381
(3) Final adjustment
382
383
By twiddling y's last bit it is possible to force y to be
384
correctly rounded according to the prevailing rounding mode
385
as follows. Let r and i be copies of the rounding mode and
386
inexact flag before entering the square root program. Also we
387
use the expression y+-ulp for the next representable floating
388
numbers (up and down) of y. Note that y+-ulp = either fixed
389
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
390
mode.
391
392
R := RZ; ... set rounding mode to round-toward-zero
393
switch(r) {
394
case RN: ... round-to-nearest
395
if(x<= z*(z-ulp)...chopped) z = z - ulp; else
396
if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
397
break;
398
case RZ:case RM: ... round-to-zero or round-to--inf
399
R:=RP; ... reset rounding mod to round-to-+inf
400
if(x<z*z ... rounded up) z = z - ulp; else
401
if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
402
break;
403
case RP: ... round-to-+inf
404
if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
405
if(x>z*z ...chopped) z = z+ulp;
406
break;
407
}
408
409
Remark 3. The above comparisons can be done in fixed point. For
410
example, to compare x and w=z*z chopped, it suffices to compare
411
x1 and w1 (the trailing parts of x and w), regarding them as
412
two's complement integers.
413
414
...Is z an exact square root?
415
To determine whether z is an exact square root of x, let z1 be the
416
trailing part of z, and also let x0 and x1 be the leading and
417
trailing parts of x.
418
419
If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
420
I := 1; ... Raise Inexact flag: z is not exact
421
else {
422
j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
423
k := z1 >> 26; ... get z's 25-th and 26-th
424
fraction bits
425
I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
426
}
427
R:= r ... restore rounded mode
428
return sqrt(x):=z.
429
430
If multiplication is cheaper then the foregoing red tape, the
431
Inexact flag can be evaluated by
432
433
I := i;
434
I := (z*z!=x) or I.
435
436
Note that z*z can overwrite I; this value must be sensed if it is
437
True.
438
439
Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
440
zero.
441
442
--------------------
443
z1: | f2 |
444
--------------------
445
bit 31 bit 0
446
447
Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
448
or even of logb(x) have the following relations:
449
450
-------------------------------------------------
451
bit 27,26 of z1 bit 1,0 of x1 logb(x)
452
-------------------------------------------------
453
00 00 odd and even
454
01 01 even
455
10 10 odd
456
10 00 even
457
11 01 even
458
-------------------------------------------------
459
460
(4) Special cases (see (4) of Section A).
461
462
*/
463
464