Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/native/libfdlibm/k_rem_pio2.c
41149 views
1
/*
2
* Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
/*
27
* __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
28
* double x[],y[]; int e0,nx,prec; int ipio2[];
29
*
30
* __kernel_rem_pio2 return the last three digits of N with
31
* y = x - N*pi/2
32
* so that |y| < pi/2.
33
*
34
* The method is to compute the integer (mod 8) and fraction parts of
35
* (2/pi)*x without doing the full multiplication. In general we
36
* skip the part of the product that are known to be a huge integer (
37
* more accurately, = 0 mod 8 ). Thus the number of operations are
38
* independent of the exponent of the input.
39
*
40
* (2/pi) is represented by an array of 24-bit integers in ipio2[].
41
*
42
* Input parameters:
43
* x[] The input value (must be positive) is broken into nx
44
* pieces of 24-bit integers in double precision format.
45
* x[i] will be the i-th 24 bit of x. The scaled exponent
46
* of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
47
* match x's up to 24 bits.
48
*
49
* Example of breaking a double positive z into x[0]+x[1]+x[2]:
50
* e0 = ilogb(z)-23
51
* z = scalbn(z,-e0)
52
* for i = 0,1,2
53
* x[i] = floor(z)
54
* z = (z-x[i])*2**24
55
*
56
*
57
* y[] output result in an array of double precision numbers.
58
* The dimension of y[] is:
59
* 24-bit precision 1
60
* 53-bit precision 2
61
* 64-bit precision 2
62
* 113-bit precision 3
63
* The actual value is the sum of them. Thus for 113-bit
64
* precison, one may have to do something like:
65
*
66
* long double t,w,r_head, r_tail;
67
* t = (long double)y[2] + (long double)y[1];
68
* w = (long double)y[0];
69
* r_head = t+w;
70
* r_tail = w - (r_head - t);
71
*
72
* e0 The exponent of x[0]
73
*
74
* nx dimension of x[]
75
*
76
* prec an integer indicating the precision:
77
* 0 24 bits (single)
78
* 1 53 bits (double)
79
* 2 64 bits (extended)
80
* 3 113 bits (quad)
81
*
82
* ipio2[]
83
* integer array, contains the (24*i)-th to (24*i+23)-th
84
* bit of 2/pi after binary point. The corresponding
85
* floating value is
86
*
87
* ipio2[i] * 2^(-24(i+1)).
88
*
89
* External function:
90
* double scalbn(), floor();
91
*
92
*
93
* Here is the description of some local variables:
94
*
95
* jk jk+1 is the initial number of terms of ipio2[] needed
96
* in the computation. The recommended value is 2,3,4,
97
* 6 for single, double, extended,and quad.
98
*
99
* jz local integer variable indicating the number of
100
* terms of ipio2[] used.
101
*
102
* jx nx - 1
103
*
104
* jv index for pointing to the suitable ipio2[] for the
105
* computation. In general, we want
106
* ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
107
* is an integer. Thus
108
* e0-3-24*jv >= 0 or (e0-3)/24 >= jv
109
* Hence jv = max(0,(e0-3)/24).
110
*
111
* jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
112
*
113
* q[] double array with integral value, representing the
114
* 24-bits chunk of the product of x and 2/pi.
115
*
116
* q0 the corresponding exponent of q[0]. Note that the
117
* exponent for q[i] would be q0-24*i.
118
*
119
* PIo2[] double precision array, obtained by cutting pi/2
120
* into 24 bits chunks.
121
*
122
* f[] ipio2[] in floating point
123
*
124
* iq[] integer array by breaking up q[] in 24-bits chunk.
125
*
126
* fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
127
*
128
* ih integer. If >0 it indicates q[] is >= 0.5, hence
129
* it also indicates the *sign* of the result.
130
*
131
*/
132
133
134
/*
135
* Constants:
136
* The hexadecimal values are the intended ones for the following
137
* constants. The decimal values may be used, provided that the
138
* compiler will convert from decimal to binary accurately enough
139
* to produce the hexadecimal values shown.
140
*/
141
142
#include "fdlibm.h"
143
144
#ifdef __STDC__
145
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
146
#else
147
static int init_jk[] = {2,3,4,6};
148
#endif
149
150
#ifdef __STDC__
151
static const double PIo2[] = {
152
#else
153
static double PIo2[] = {
154
#endif
155
1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
156
7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
157
5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
158
3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
159
1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
160
1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
161
2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
162
2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
163
};
164
165
#ifdef __STDC__
166
static const double
167
#else
168
static double
169
#endif
170
zero = 0.0,
171
one = 1.0,
172
two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
173
twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
174
175
#ifdef __STDC__
176
int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
177
#else
178
int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
179
double x[], y[]; int e0,nx,prec; int ipio2[];
180
#endif
181
{
182
int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
183
double z,fw,f[20],fq[20],q[20];
184
185
/* initialize jk*/
186
jk = init_jk[prec];
187
jp = jk;
188
189
/* determine jx,jv,q0, note that 3>q0 */
190
jx = nx-1;
191
jv = (e0-3)/24; if(jv<0) jv=0;
192
q0 = e0-24*(jv+1);
193
194
/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
195
j = jv-jx; m = jx+jk;
196
for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
197
198
/* compute q[0],q[1],...q[jk] */
199
for (i=0;i<=jk;i++) {
200
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
201
}
202
203
jz = jk;
204
recompute:
205
/* distill q[] into iq[] reversingly */
206
for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
207
fw = (double)((int)(twon24* z));
208
iq[i] = (int)(z-two24*fw);
209
z = q[j-1]+fw;
210
}
211
212
/* compute n */
213
z = scalbn(z,q0); /* actual value of z */
214
z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
215
n = (int) z;
216
z -= (double)n;
217
ih = 0;
218
if(q0>0) { /* need iq[jz-1] to determine n */
219
i = (iq[jz-1]>>(24-q0)); n += i;
220
iq[jz-1] -= i<<(24-q0);
221
ih = iq[jz-1]>>(23-q0);
222
}
223
else if(q0==0) ih = iq[jz-1]>>23;
224
else if(z>=0.5) ih=2;
225
226
if(ih>0) { /* q > 0.5 */
227
n += 1; carry = 0;
228
for(i=0;i<jz ;i++) { /* compute 1-q */
229
j = iq[i];
230
if(carry==0) {
231
if(j!=0) {
232
carry = 1; iq[i] = 0x1000000- j;
233
}
234
} else iq[i] = 0xffffff - j;
235
}
236
if(q0>0) { /* rare case: chance is 1 in 12 */
237
switch(q0) {
238
case 1:
239
iq[jz-1] &= 0x7fffff; break;
240
case 2:
241
iq[jz-1] &= 0x3fffff; break;
242
}
243
}
244
if(ih==2) {
245
z = one - z;
246
if(carry!=0) z -= scalbn(one,q0);
247
}
248
}
249
250
/* check if recomputation is needed */
251
if(z==zero) {
252
j = 0;
253
for (i=jz-1;i>=jk;i--) j |= iq[i];
254
if(j==0) { /* need recomputation */
255
for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
256
257
for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
258
f[jx+i] = (double) ipio2[jv+i];
259
for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
260
q[i] = fw;
261
}
262
jz += k;
263
goto recompute;
264
}
265
}
266
267
/* chop off zero terms */
268
if(z==0.0) {
269
jz -= 1; q0 -= 24;
270
while(iq[jz]==0) { jz--; q0-=24;}
271
} else { /* break z into 24-bit if necessary */
272
z = scalbn(z,-q0);
273
if(z>=two24) {
274
fw = (double)((int)(twon24*z));
275
iq[jz] = (int)(z-two24*fw);
276
jz += 1; q0 += 24;
277
iq[jz] = (int) fw;
278
} else iq[jz] = (int) z ;
279
}
280
281
/* convert integer "bit" chunk to floating-point value */
282
fw = scalbn(one,q0);
283
for(i=jz;i>=0;i--) {
284
q[i] = fw*(double)iq[i]; fw*=twon24;
285
}
286
287
/* compute PIo2[0,...,jp]*q[jz,...,0] */
288
for(i=jz;i>=0;i--) {
289
for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
290
fq[jz-i] = fw;
291
}
292
293
/* compress fq[] into y[] */
294
switch(prec) {
295
case 0:
296
fw = 0.0;
297
for (i=jz;i>=0;i--) fw += fq[i];
298
y[0] = (ih==0)? fw: -fw;
299
break;
300
case 1:
301
case 2:
302
fw = 0.0;
303
for (i=jz;i>=0;i--) fw += fq[i];
304
y[0] = (ih==0)? fw: -fw;
305
fw = fq[0]-fw;
306
for (i=1;i<=jz;i++) fw += fq[i];
307
y[1] = (ih==0)? fw: -fw;
308
break;
309
case 3: /* painful */
310
for (i=jz;i>0;i--) {
311
fw = fq[i-1]+fq[i];
312
fq[i] += fq[i-1]-fw;
313
fq[i-1] = fw;
314
}
315
for (i=jz;i>1;i--) {
316
fw = fq[i-1]+fq[i];
317
fq[i] += fq[i-1]-fw;
318
fq[i-1] = fw;
319
}
320
for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
321
if(ih==0) {
322
y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
323
} else {
324
y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
325
}
326
}
327
return n&7;
328
}
329
330