Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/native/libfdlibm/k_tan.c
41149 views
1
/*
2
* Copyright (c) 1998, 2004, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
/* __kernel_tan( x, y, k )
27
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
28
* Input x is assumed to be bounded by ~pi/4 in magnitude.
29
* Input y is the tail of x.
30
* Input k indicates whether tan (if k=1) or
31
* -1/tan (if k= -1) is returned.
32
*
33
* Algorithm
34
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
35
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
36
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
37
* [0,0.67434]
38
* 3 27
39
* tan(x) ~ x + T1*x + ... + T13*x
40
* where
41
*
42
* |tan(x) 2 4 26 | -59.2
43
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
44
* | x |
45
*
46
* Note: tan(x+y) = tan(x) + tan'(x)*y
47
* ~ tan(x) + (1+x*x)*y
48
* Therefore, for better accuracy in computing tan(x+y), let
49
* 3 2 2 2 2
50
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
51
* then
52
* 3 2
53
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
54
*
55
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
56
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
57
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
58
*/
59
60
#include "fdlibm.h"
61
#ifdef __STDC__
62
static const double
63
#else
64
static double
65
#endif
66
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
67
pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
68
pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
69
T[] = {
70
3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
71
1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
72
5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
73
2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
74
8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
75
3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
76
1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
77
5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
78
2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
79
7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
80
7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
81
-1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
82
2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
83
};
84
85
#ifdef __STDC__
86
double __kernel_tan(double x, double y, int iy)
87
#else
88
double __kernel_tan(x, y, iy)
89
double x,y; int iy;
90
#endif
91
{
92
double z,r,v,w,s;
93
int ix,hx;
94
hx = __HI(x); /* high word of x */
95
ix = hx&0x7fffffff; /* high word of |x| */
96
if(ix<0x3e300000) { /* x < 2**-28 */
97
if((int)x==0) { /* generate inexact */
98
if (((ix | __LO(x)) | (iy + 1)) == 0)
99
return one / fabs(x);
100
else {
101
if (iy == 1)
102
return x;
103
else { /* compute -1 / (x+y) carefully */
104
double a, t;
105
106
z = w = x + y;
107
__LO(z) = 0;
108
v = y - (z - x);
109
t = a = -one / w;
110
__LO(t) = 0;
111
s = one + t * z;
112
return t + a * (s + t * v);
113
}
114
}
115
}
116
}
117
if(ix>=0x3FE59428) { /* |x|>=0.6744 */
118
if(hx<0) {x = -x; y = -y;}
119
z = pio4-x;
120
w = pio4lo-y;
121
x = z+w; y = 0.0;
122
}
123
z = x*x;
124
w = z*z;
125
/* Break x^5*(T[1]+x^2*T[2]+...) into
126
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
127
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
128
*/
129
r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
130
v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
131
s = z*x;
132
r = y + z*(s*(r+v)+y);
133
r += T[0]*s;
134
w = x+r;
135
if(ix>=0x3FE59428) {
136
v = (double)iy;
137
return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
138
}
139
if(iy==1) return w;
140
else { /* if allow error up to 2 ulp,
141
simply return -1.0/(x+r) here */
142
/* compute -1.0/(x+r) accurately */
143
double a,t;
144
z = w;
145
__LO(z) = 0;
146
v = r-(z - x); /* z+v = r+x */
147
t = a = -1.0/w; /* a = -1.0/w */
148
__LO(t) = 0;
149
s = 1.0+t*z;
150
return t+a*(s+t*v);
151
}
152
}
153
154