Path: blob/master/src/java.base/share/native/libfdlibm/k_tan.c
41149 views
/*1* Copyright (c) 1998, 2004, Oracle and/or its affiliates. All rights reserved.2* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.3*4* This code is free software; you can redistribute it and/or modify it5* under the terms of the GNU General Public License version 2 only, as6* published by the Free Software Foundation. Oracle designates this7* particular file as subject to the "Classpath" exception as provided8* by Oracle in the LICENSE file that accompanied this code.9*10* This code is distributed in the hope that it will be useful, but WITHOUT11* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or12* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License13* version 2 for more details (a copy is included in the LICENSE file that14* accompanied this code).15*16* You should have received a copy of the GNU General Public License version17* 2 along with this work; if not, write to the Free Software Foundation,18* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.19*20* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA21* or visit www.oracle.com if you need additional information or have any22* questions.23*/2425/* __kernel_tan( x, y, k )26* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.785427* Input x is assumed to be bounded by ~pi/4 in magnitude.28* Input y is the tail of x.29* Input k indicates whether tan (if k=1) or30* -1/tan (if k= -1) is returned.31*32* Algorithm33* 1. Since tan(-x) = -tan(x), we need only to consider positive x.34* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.35* 3. tan(x) is approximated by a odd polynomial of degree 27 on36* [0,0.67434]37* 3 2738* tan(x) ~ x + T1*x + ... + T13*x39* where40*41* |tan(x) 2 4 26 | -59.242* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 243* | x |44*45* Note: tan(x+y) = tan(x) + tan'(x)*y46* ~ tan(x) + (1+x*x)*y47* Therefore, for better accuracy in computing tan(x+y), let48* 3 2 2 2 249* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))50* then51* 3 252* tan(x+y) = x + (T1*x + (x *(r+y)+y))53*54* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then55* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))56* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))57*/5859#include "fdlibm.h"60#ifdef __STDC__61static const double62#else63static double64#endif65one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */66pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */67pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */68T[] = {693.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */701.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */715.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */722.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */738.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */743.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */751.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */765.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */772.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */787.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */797.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */80-1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */812.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */82};8384#ifdef __STDC__85double __kernel_tan(double x, double y, int iy)86#else87double __kernel_tan(x, y, iy)88double x,y; int iy;89#endif90{91double z,r,v,w,s;92int ix,hx;93hx = __HI(x); /* high word of x */94ix = hx&0x7fffffff; /* high word of |x| */95if(ix<0x3e300000) { /* x < 2**-28 */96if((int)x==0) { /* generate inexact */97if (((ix | __LO(x)) | (iy + 1)) == 0)98return one / fabs(x);99else {100if (iy == 1)101return x;102else { /* compute -1 / (x+y) carefully */103double a, t;104105z = w = x + y;106__LO(z) = 0;107v = y - (z - x);108t = a = -one / w;109__LO(t) = 0;110s = one + t * z;111return t + a * (s + t * v);112}113}114}115}116if(ix>=0x3FE59428) { /* |x|>=0.6744 */117if(hx<0) {x = -x; y = -y;}118z = pio4-x;119w = pio4lo-y;120x = z+w; y = 0.0;121}122z = x*x;123w = z*z;124/* Break x^5*(T[1]+x^2*T[2]+...) into125* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +126* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))127*/128r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));129v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));130s = z*x;131r = y + z*(s*(r+v)+y);132r += T[0]*s;133w = x+r;134if(ix>=0x3FE59428) {135v = (double)iy;136return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));137}138if(iy==1) return w;139else { /* if allow error up to 2 ulp,140simply return -1.0/(x+r) here */141/* compute -1.0/(x+r) accurately */142double a,t;143z = w;144__LO(z) = 0;145v = r-(z - x); /* z+v = r+x */146t = a = -1.0/w; /* a = -1.0/w */147__LO(t) = 0;148s = 1.0+t*z;149return t+a*(s+t*v);150}151}152153154