Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/native/libfdlibm/s_expm1.c
41149 views
1
/*
2
* Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
/* expm1(x)
27
* Returns exp(x)-1, the exponential of x minus 1.
28
*
29
* Method
30
* 1. Argument reduction:
31
* Given x, find r and integer k such that
32
*
33
* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
34
*
35
* Here a correction term c will be computed to compensate
36
* the error in r when rounded to a floating-point number.
37
*
38
* 2. Approximating expm1(r) by a special rational function on
39
* the interval [0,0.34658]:
40
* Since
41
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
42
* we define R1(r*r) by
43
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
44
* That is,
45
* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
46
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
47
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
48
* We use a special Reme algorithm on [0,0.347] to generate
49
* a polynomial of degree 5 in r*r to approximate R1. The
50
* maximum error of this polynomial approximation is bounded
51
* by 2**-61. In other words,
52
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
53
* where Q1 = -1.6666666666666567384E-2,
54
* Q2 = 3.9682539681370365873E-4,
55
* Q3 = -9.9206344733435987357E-6,
56
* Q4 = 2.5051361420808517002E-7,
57
* Q5 = -6.2843505682382617102E-9;
58
* (where z=r*r, and the values of Q1 to Q5 are listed below)
59
* with error bounded by
60
* | 5 | -61
61
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
62
* | |
63
*
64
* expm1(r) = exp(r)-1 is then computed by the following
65
* specific way which minimize the accumulation rounding error:
66
* 2 3
67
* r r [ 3 - (R1 + R1*r/2) ]
68
* expm1(r) = r + --- + --- * [--------------------]
69
* 2 2 [ 6 - r*(3 - R1*r/2) ]
70
*
71
* To compensate the error in the argument reduction, we use
72
* expm1(r+c) = expm1(r) + c + expm1(r)*c
73
* ~ expm1(r) + c + r*c
74
* Thus c+r*c will be added in as the correction terms for
75
* expm1(r+c). Now rearrange the term to avoid optimization
76
* screw up:
77
* ( 2 2 )
78
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
79
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
80
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
81
* ( )
82
*
83
* = r - E
84
* 3. Scale back to obtain expm1(x):
85
* From step 1, we have
86
* expm1(x) = either 2^k*[expm1(r)+1] - 1
87
* = or 2^k*[expm1(r) + (1-2^-k)]
88
* 4. Implementation notes:
89
* (A). To save one multiplication, we scale the coefficient Qi
90
* to Qi*2^i, and replace z by (x^2)/2.
91
* (B). To achieve maximum accuracy, we compute expm1(x) by
92
* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
93
* (ii) if k=0, return r-E
94
* (iii) if k=-1, return 0.5*(r-E)-0.5
95
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
96
* else return 1.0+2.0*(r-E);
97
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
98
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
99
* (vii) return 2^k(1-((E+2^-k)-r))
100
*
101
* Special cases:
102
* expm1(INF) is INF, expm1(NaN) is NaN;
103
* expm1(-INF) is -1, and
104
* for finite argument, only expm1(0)=0 is exact.
105
*
106
* Accuracy:
107
* according to an error analysis, the error is always less than
108
* 1 ulp (unit in the last place).
109
*
110
* Misc. info.
111
* For IEEE double
112
* if x > 7.09782712893383973096e+02 then expm1(x) overflow
113
*
114
* Constants:
115
* The hexadecimal values are the intended ones for the following
116
* constants. The decimal values may be used, provided that the
117
* compiler will convert from decimal to binary accurately enough
118
* to produce the hexadecimal values shown.
119
*/
120
121
#include "fdlibm.h"
122
123
#ifdef __STDC__
124
static const double
125
#else
126
static double
127
#endif
128
one = 1.0,
129
huge = 1.0e+300,
130
tiny = 1.0e-300,
131
o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
132
ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
133
ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
134
invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
135
/* scaled coefficients related to expm1 */
136
Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
137
Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
138
Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
139
Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
140
Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
141
142
#ifdef __STDC__
143
double expm1(double x)
144
#else
145
double expm1(x)
146
double x;
147
#endif
148
{
149
double y,hi,lo,c=0,t,e,hxs,hfx,r1;
150
int k,xsb;
151
unsigned hx;
152
153
hx = __HI(x); /* high word of x */
154
xsb = hx&0x80000000; /* sign bit of x */
155
if(xsb==0) y=x; else y= -x; /* y = |x| */
156
hx &= 0x7fffffff; /* high word of |x| */
157
158
/* filter out huge and non-finite argument */
159
if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
160
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
161
if(hx>=0x7ff00000) {
162
if(((hx&0xfffff)|__LO(x))!=0)
163
return x+x; /* NaN */
164
else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
165
}
166
if(x > o_threshold) return huge*huge; /* overflow */
167
}
168
if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
169
if(x+tiny<0.0) /* raise inexact */
170
return tiny-one; /* return -1 */
171
}
172
}
173
174
/* argument reduction */
175
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
176
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
177
if(xsb==0)
178
{hi = x - ln2_hi; lo = ln2_lo; k = 1;}
179
else
180
{hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
181
} else {
182
k = invln2*x+((xsb==0)?0.5:-0.5);
183
t = k;
184
hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
185
lo = t*ln2_lo;
186
}
187
x = hi - lo;
188
c = (hi-x)-lo;
189
}
190
else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
191
t = huge+x; /* return x with inexact flags when x!=0 */
192
return x - (t-(huge+x));
193
}
194
else k = 0;
195
196
/* x is now in primary range */
197
hfx = 0.5*x;
198
hxs = x*hfx;
199
r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
200
t = 3.0-r1*hfx;
201
e = hxs*((r1-t)/(6.0 - x*t));
202
if(k==0) return x - (x*e-hxs); /* c is 0 */
203
else {
204
e = (x*(e-c)-c);
205
e -= hxs;
206
if(k== -1) return 0.5*(x-e)-0.5;
207
if(k==1) {
208
if(x < -0.25) return -2.0*(e-(x+0.5));
209
else return one+2.0*(x-e);
210
}
211
if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
212
y = one-(e-x);
213
__HI(y) += (k<<20); /* add k to y's exponent */
214
return y-one;
215
}
216
t = one;
217
if(k<20) {
218
__HI(t) = 0x3ff00000 - (0x200000>>k); /* t=1-2^-k */
219
y = t-(e-x);
220
__HI(y) += (k<<20); /* add k to y's exponent */
221
} else {
222
__HI(t) = ((0x3ff-k)<<20); /* 2^-k */
223
y = x-(e+t);
224
y += one;
225
__HI(y) += (k<<20); /* add k to y's exponent */
226
}
227
}
228
return y;
229
}
230
231