Path: blob/master/src/java.base/share/native/libfdlibm/s_expm1.c
41149 views
/*1* Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.2* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.3*4* This code is free software; you can redistribute it and/or modify it5* under the terms of the GNU General Public License version 2 only, as6* published by the Free Software Foundation. Oracle designates this7* particular file as subject to the "Classpath" exception as provided8* by Oracle in the LICENSE file that accompanied this code.9*10* This code is distributed in the hope that it will be useful, but WITHOUT11* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or12* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License13* version 2 for more details (a copy is included in the LICENSE file that14* accompanied this code).15*16* You should have received a copy of the GNU General Public License version17* 2 along with this work; if not, write to the Free Software Foundation,18* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.19*20* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA21* or visit www.oracle.com if you need additional information or have any22* questions.23*/2425/* expm1(x)26* Returns exp(x)-1, the exponential of x minus 1.27*28* Method29* 1. Argument reduction:30* Given x, find r and integer k such that31*32* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.3465833*34* Here a correction term c will be computed to compensate35* the error in r when rounded to a floating-point number.36*37* 2. Approximating expm1(r) by a special rational function on38* the interval [0,0.34658]:39* Since40* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...41* we define R1(r*r) by42* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)43* That is,44* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)45* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))46* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...47* We use a special Reme algorithm on [0,0.347] to generate48* a polynomial of degree 5 in r*r to approximate R1. The49* maximum error of this polynomial approximation is bounded50* by 2**-61. In other words,51* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**552* where Q1 = -1.6666666666666567384E-2,53* Q2 = 3.9682539681370365873E-4,54* Q3 = -9.9206344733435987357E-6,55* Q4 = 2.5051361420808517002E-7,56* Q5 = -6.2843505682382617102E-9;57* (where z=r*r, and the values of Q1 to Q5 are listed below)58* with error bounded by59* | 5 | -6160* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 261* | |62*63* expm1(r) = exp(r)-1 is then computed by the following64* specific way which minimize the accumulation rounding error:65* 2 366* r r [ 3 - (R1 + R1*r/2) ]67* expm1(r) = r + --- + --- * [--------------------]68* 2 2 [ 6 - r*(3 - R1*r/2) ]69*70* To compensate the error in the argument reduction, we use71* expm1(r+c) = expm1(r) + c + expm1(r)*c72* ~ expm1(r) + c + r*c73* Thus c+r*c will be added in as the correction terms for74* expm1(r+c). Now rearrange the term to avoid optimization75* screw up:76* ( 2 2 )77* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )78* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )79* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )80* ( )81*82* = r - E83* 3. Scale back to obtain expm1(x):84* From step 1, we have85* expm1(x) = either 2^k*[expm1(r)+1] - 186* = or 2^k*[expm1(r) + (1-2^-k)]87* 4. Implementation notes:88* (A). To save one multiplication, we scale the coefficient Qi89* to Qi*2^i, and replace z by (x^2)/2.90* (B). To achieve maximum accuracy, we compute expm1(x) by91* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)92* (ii) if k=0, return r-E93* (iii) if k=-1, return 0.5*(r-E)-0.594* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)95* else return 1.0+2.0*(r-E);96* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)97* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else98* (vii) return 2^k(1-((E+2^-k)-r))99*100* Special cases:101* expm1(INF) is INF, expm1(NaN) is NaN;102* expm1(-INF) is -1, and103* for finite argument, only expm1(0)=0 is exact.104*105* Accuracy:106* according to an error analysis, the error is always less than107* 1 ulp (unit in the last place).108*109* Misc. info.110* For IEEE double111* if x > 7.09782712893383973096e+02 then expm1(x) overflow112*113* Constants:114* The hexadecimal values are the intended ones for the following115* constants. The decimal values may be used, provided that the116* compiler will convert from decimal to binary accurately enough117* to produce the hexadecimal values shown.118*/119120#include "fdlibm.h"121122#ifdef __STDC__123static const double124#else125static double126#endif127one = 1.0,128huge = 1.0e+300,129tiny = 1.0e-300,130o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */131ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */132ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */133invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */134/* scaled coefficients related to expm1 */135Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */136Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */137Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */138Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */139Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */140141#ifdef __STDC__142double expm1(double x)143#else144double expm1(x)145double x;146#endif147{148double y,hi,lo,c=0,t,e,hxs,hfx,r1;149int k,xsb;150unsigned hx;151152hx = __HI(x); /* high word of x */153xsb = hx&0x80000000; /* sign bit of x */154if(xsb==0) y=x; else y= -x; /* y = |x| */155hx &= 0x7fffffff; /* high word of |x| */156157/* filter out huge and non-finite argument */158if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */159if(hx >= 0x40862E42) { /* if |x|>=709.78... */160if(hx>=0x7ff00000) {161if(((hx&0xfffff)|__LO(x))!=0)162return x+x; /* NaN */163else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */164}165if(x > o_threshold) return huge*huge; /* overflow */166}167if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */168if(x+tiny<0.0) /* raise inexact */169return tiny-one; /* return -1 */170}171}172173/* argument reduction */174if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */175if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */176if(xsb==0)177{hi = x - ln2_hi; lo = ln2_lo; k = 1;}178else179{hi = x + ln2_hi; lo = -ln2_lo; k = -1;}180} else {181k = invln2*x+((xsb==0)?0.5:-0.5);182t = k;183hi = x - t*ln2_hi; /* t*ln2_hi is exact here */184lo = t*ln2_lo;185}186x = hi - lo;187c = (hi-x)-lo;188}189else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */190t = huge+x; /* return x with inexact flags when x!=0 */191return x - (t-(huge+x));192}193else k = 0;194195/* x is now in primary range */196hfx = 0.5*x;197hxs = x*hfx;198r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));199t = 3.0-r1*hfx;200e = hxs*((r1-t)/(6.0 - x*t));201if(k==0) return x - (x*e-hxs); /* c is 0 */202else {203e = (x*(e-c)-c);204e -= hxs;205if(k== -1) return 0.5*(x-e)-0.5;206if(k==1) {207if(x < -0.25) return -2.0*(e-(x+0.5));208else return one+2.0*(x-e);209}210if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */211y = one-(e-x);212__HI(y) += (k<<20); /* add k to y's exponent */213return y-one;214}215t = one;216if(k<20) {217__HI(t) = 0x3ff00000 - (0x200000>>k); /* t=1-2^-k */218y = t-(e-x);219__HI(y) += (k<<20); /* add k to y's exponent */220} else {221__HI(t) = ((0x3ff-k)<<20); /* 2^-k */222y = x-(e+t);223y += one;224__HI(y) += (k<<20); /* add k to y's exponent */225}226}227return y;228}229230231