Path: blob/master/src/java.base/share/native/libfdlibm/s_log1p.c
41152 views
/*1* Copyright (c) 1998, 2003, Oracle and/or its affiliates. All rights reserved.2* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.3*4* This code is free software; you can redistribute it and/or modify it5* under the terms of the GNU General Public License version 2 only, as6* published by the Free Software Foundation. Oracle designates this7* particular file as subject to the "Classpath" exception as provided8* by Oracle in the LICENSE file that accompanied this code.9*10* This code is distributed in the hope that it will be useful, but WITHOUT11* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or12* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License13* version 2 for more details (a copy is included in the LICENSE file that14* accompanied this code).15*16* You should have received a copy of the GNU General Public License version17* 2 along with this work; if not, write to the Free Software Foundation,18* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.19*20* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA21* or visit www.oracle.com if you need additional information or have any22* questions.23*/2425/* double log1p(double x)26*27* Method :28* 1. Argument Reduction: find k and f such that29* 1+x = 2^k * (1+f),30* where sqrt(2)/2 < 1+f < sqrt(2) .31*32* Note. If k=0, then f=x is exact. However, if k!=0, then f33* may not be representable exactly. In that case, a correction34* term is need. Let u=1+x rounded. Let c = (1+x)-u, then35* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),36* and add back the correction term c/u.37* (Note: when x > 2**53, one can simply return log(x))38*39* 2. Approximation of log1p(f).40* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)41* = 2s + 2/3 s**3 + 2/5 s**5 + .....,42* = 2s + s*R43* We use a special Reme algorithm on [0,0.1716] to generate44* a polynomial of degree 14 to approximate R The maximum error45* of this polynomial approximation is bounded by 2**-58.45. In46* other words,47* 2 4 6 8 10 12 1448* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s49* (the values of Lp1 to Lp7 are listed in the program)50* and51* | 2 14 | -58.4552* | Lp1*s +...+Lp7*s - R(z) | <= 253* | |54* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.55* In order to guarantee error in log below 1ulp, we compute log56* by57* log1p(f) = f - (hfsq - s*(hfsq+R)).58*59* 3. Finally, log1p(x) = k*ln2 + log1p(f).60* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))61* Here ln2 is split into two floating point number:62* ln2_hi + ln2_lo,63* where n*ln2_hi is always exact for |n| < 2000.64*65* Special cases:66* log1p(x) is NaN with signal if x < -1 (including -INF) ;67* log1p(+INF) is +INF; log1p(-1) is -INF with signal;68* log1p(NaN) is that NaN with no signal.69*70* Accuracy:71* according to an error analysis, the error is always less than72* 1 ulp (unit in the last place).73*74* Constants:75* The hexadecimal values are the intended ones for the following76* constants. The decimal values may be used, provided that the77* compiler will convert from decimal to binary accurately enough78* to produce the hexadecimal values shown.79*80* Note: Assuming log() return accurate answer, the following81* algorithm can be used to compute log1p(x) to within a few ULP:82*83* u = 1+x;84* if(u==1.0) return x ; else85* return log(u)*(x/(u-1.0));86*87* See HP-15C Advanced Functions Handbook, p.193.88*/8990#include "fdlibm.h"9192#ifdef __STDC__93static const double94#else95static double96#endif97ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */98ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */99two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */100Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */101Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */102Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */103Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */104Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */105Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */106Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */107108static double zero = 0.0;109110#ifdef __STDC__111double log1p(double x)112#else113double log1p(x)114double x;115#endif116{117double hfsq,f=0,c=0,s,z,R,u;118int k,hx,hu=0,ax;119120hx = __HI(x); /* high word of x */121ax = hx&0x7fffffff;122123k = 1;124if (hx < 0x3FDA827A) { /* x < 0.41422 */125if(ax>=0x3ff00000) { /* x <= -1.0 */126/*127* Added redundant test against hx to work around VC++128* code generation problem.129*/130if(x==-1.0 && (hx==0xbff00000)) /* log1p(-1)=-inf */131return -two54/zero;132else133return (x-x)/(x-x); /* log1p(x<-1)=NaN */134}135if(ax<0x3e200000) { /* |x| < 2**-29 */136if(two54+x>zero /* raise inexact */137&&ax<0x3c900000) /* |x| < 2**-54 */138return x;139else140return x - x*x*0.5;141}142if(hx>0||hx<=((int)0xbfd2bec3)) {143k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */144}145if (hx >= 0x7ff00000) return x+x;146if(k!=0) {147if(hx<0x43400000) {148u = 1.0+x;149hu = __HI(u); /* high word of u */150k = (hu>>20)-1023;151c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */152c /= u;153} else {154u = x;155hu = __HI(u); /* high word of u */156k = (hu>>20)-1023;157c = 0;158}159hu &= 0x000fffff;160if(hu<0x6a09e) {161__HI(u) = hu|0x3ff00000; /* normalize u */162} else {163k += 1;164__HI(u) = hu|0x3fe00000; /* normalize u/2 */165hu = (0x00100000-hu)>>2;166}167f = u-1.0;168}169hfsq=0.5*f*f;170if(hu==0) { /* |f| < 2**-20 */171if(f==zero) { if(k==0) return zero;172else {c += k*ln2_lo; return k*ln2_hi+c;}}173R = hfsq*(1.0-0.66666666666666666*f);174if(k==0) return f-R; else175return k*ln2_hi-((R-(k*ln2_lo+c))-f);176}177s = f/(2.0+f);178z = s*s;179R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));180if(k==0) return f-(hfsq-s*(hfsq+R)); else181return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);182}183184185