Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/native/libfdlibm/s_log1p.c
41152 views
1
/*
2
* Copyright (c) 1998, 2003, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
/* double log1p(double x)
27
*
28
* Method :
29
* 1. Argument Reduction: find k and f such that
30
* 1+x = 2^k * (1+f),
31
* where sqrt(2)/2 < 1+f < sqrt(2) .
32
*
33
* Note. If k=0, then f=x is exact. However, if k!=0, then f
34
* may not be representable exactly. In that case, a correction
35
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
36
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
37
* and add back the correction term c/u.
38
* (Note: when x > 2**53, one can simply return log(x))
39
*
40
* 2. Approximation of log1p(f).
41
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
42
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
43
* = 2s + s*R
44
* We use a special Reme algorithm on [0,0.1716] to generate
45
* a polynomial of degree 14 to approximate R The maximum error
46
* of this polynomial approximation is bounded by 2**-58.45. In
47
* other words,
48
* 2 4 6 8 10 12 14
49
* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
50
* (the values of Lp1 to Lp7 are listed in the program)
51
* and
52
* | 2 14 | -58.45
53
* | Lp1*s +...+Lp7*s - R(z) | <= 2
54
* | |
55
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
56
* In order to guarantee error in log below 1ulp, we compute log
57
* by
58
* log1p(f) = f - (hfsq - s*(hfsq+R)).
59
*
60
* 3. Finally, log1p(x) = k*ln2 + log1p(f).
61
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
62
* Here ln2 is split into two floating point number:
63
* ln2_hi + ln2_lo,
64
* where n*ln2_hi is always exact for |n| < 2000.
65
*
66
* Special cases:
67
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
68
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
69
* log1p(NaN) is that NaN with no signal.
70
*
71
* Accuracy:
72
* according to an error analysis, the error is always less than
73
* 1 ulp (unit in the last place).
74
*
75
* Constants:
76
* The hexadecimal values are the intended ones for the following
77
* constants. The decimal values may be used, provided that the
78
* compiler will convert from decimal to binary accurately enough
79
* to produce the hexadecimal values shown.
80
*
81
* Note: Assuming log() return accurate answer, the following
82
* algorithm can be used to compute log1p(x) to within a few ULP:
83
*
84
* u = 1+x;
85
* if(u==1.0) return x ; else
86
* return log(u)*(x/(u-1.0));
87
*
88
* See HP-15C Advanced Functions Handbook, p.193.
89
*/
90
91
#include "fdlibm.h"
92
93
#ifdef __STDC__
94
static const double
95
#else
96
static double
97
#endif
98
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
99
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
100
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
101
Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
102
Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
103
Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
104
Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
105
Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
106
Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
107
Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
108
109
static double zero = 0.0;
110
111
#ifdef __STDC__
112
double log1p(double x)
113
#else
114
double log1p(x)
115
double x;
116
#endif
117
{
118
double hfsq,f=0,c=0,s,z,R,u;
119
int k,hx,hu=0,ax;
120
121
hx = __HI(x); /* high word of x */
122
ax = hx&0x7fffffff;
123
124
k = 1;
125
if (hx < 0x3FDA827A) { /* x < 0.41422 */
126
if(ax>=0x3ff00000) { /* x <= -1.0 */
127
/*
128
* Added redundant test against hx to work around VC++
129
* code generation problem.
130
*/
131
if(x==-1.0 && (hx==0xbff00000)) /* log1p(-1)=-inf */
132
return -two54/zero;
133
else
134
return (x-x)/(x-x); /* log1p(x<-1)=NaN */
135
}
136
if(ax<0x3e200000) { /* |x| < 2**-29 */
137
if(two54+x>zero /* raise inexact */
138
&&ax<0x3c900000) /* |x| < 2**-54 */
139
return x;
140
else
141
return x - x*x*0.5;
142
}
143
if(hx>0||hx<=((int)0xbfd2bec3)) {
144
k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
145
}
146
if (hx >= 0x7ff00000) return x+x;
147
if(k!=0) {
148
if(hx<0x43400000) {
149
u = 1.0+x;
150
hu = __HI(u); /* high word of u */
151
k = (hu>>20)-1023;
152
c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
153
c /= u;
154
} else {
155
u = x;
156
hu = __HI(u); /* high word of u */
157
k = (hu>>20)-1023;
158
c = 0;
159
}
160
hu &= 0x000fffff;
161
if(hu<0x6a09e) {
162
__HI(u) = hu|0x3ff00000; /* normalize u */
163
} else {
164
k += 1;
165
__HI(u) = hu|0x3fe00000; /* normalize u/2 */
166
hu = (0x00100000-hu)>>2;
167
}
168
f = u-1.0;
169
}
170
hfsq=0.5*f*f;
171
if(hu==0) { /* |f| < 2**-20 */
172
if(f==zero) { if(k==0) return zero;
173
else {c += k*ln2_lo; return k*ln2_hi+c;}}
174
R = hfsq*(1.0-0.66666666666666666*f);
175
if(k==0) return f-R; else
176
return k*ln2_hi-((R-(k*ln2_lo+c))-f);
177
}
178
s = f/(2.0+f);
179
z = s*s;
180
R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
181
if(k==0) return f-(hfsq-s*(hfsq+R)); else
182
return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
183
}
184
185