Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/native/libzip/zlib/deflate.c
41153 views
1
/*
2
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3
*
4
* This code is free software; you can redistribute it and/or modify it
5
* under the terms of the GNU General Public License version 2 only, as
6
* published by the Free Software Foundation. Oracle designates this
7
* particular file as subject to the "Classpath" exception as provided
8
* by Oracle in the LICENSE file that accompanied this code.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*/
24
25
/* deflate.c -- compress data using the deflation algorithm
26
* Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
27
* For conditions of distribution and use, see copyright notice in zlib.h
28
*/
29
30
/*
31
* ALGORITHM
32
*
33
* The "deflation" process depends on being able to identify portions
34
* of the input text which are identical to earlier input (within a
35
* sliding window trailing behind the input currently being processed).
36
*
37
* The most straightforward technique turns out to be the fastest for
38
* most input files: try all possible matches and select the longest.
39
* The key feature of this algorithm is that insertions into the string
40
* dictionary are very simple and thus fast, and deletions are avoided
41
* completely. Insertions are performed at each input character, whereas
42
* string matches are performed only when the previous match ends. So it
43
* is preferable to spend more time in matches to allow very fast string
44
* insertions and avoid deletions. The matching algorithm for small
45
* strings is inspired from that of Rabin & Karp. A brute force approach
46
* is used to find longer strings when a small match has been found.
47
* A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
48
* (by Leonid Broukhis).
49
* A previous version of this file used a more sophisticated algorithm
50
* (by Fiala and Greene) which is guaranteed to run in linear amortized
51
* time, but has a larger average cost, uses more memory and is patented.
52
* However the F&G algorithm may be faster for some highly redundant
53
* files if the parameter max_chain_length (described below) is too large.
54
*
55
* ACKNOWLEDGEMENTS
56
*
57
* The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
58
* I found it in 'freeze' written by Leonid Broukhis.
59
* Thanks to many people for bug reports and testing.
60
*
61
* REFERENCES
62
*
63
* Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
64
* Available in http://tools.ietf.org/html/rfc1951
65
*
66
* A description of the Rabin and Karp algorithm is given in the book
67
* "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
68
*
69
* Fiala,E.R., and Greene,D.H.
70
* Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
71
*
72
*/
73
74
/* @(#) $Id$ */
75
76
#include "deflate.h"
77
78
const char deflate_copyright[] =
79
" deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
80
/*
81
If you use the zlib library in a product, an acknowledgment is welcome
82
in the documentation of your product. If for some reason you cannot
83
include such an acknowledgment, I would appreciate that you keep this
84
copyright string in the executable of your product.
85
*/
86
87
/* ===========================================================================
88
* Function prototypes.
89
*/
90
typedef enum {
91
need_more, /* block not completed, need more input or more output */
92
block_done, /* block flush performed */
93
finish_started, /* finish started, need only more output at next deflate */
94
finish_done /* finish done, accept no more input or output */
95
} block_state;
96
97
typedef block_state (*compress_func) OF((deflate_state *s, int flush));
98
/* Compression function. Returns the block state after the call. */
99
100
local int deflateStateCheck OF((z_streamp strm));
101
local void slide_hash OF((deflate_state *s));
102
local void fill_window OF((deflate_state *s));
103
local block_state deflate_stored OF((deflate_state *s, int flush));
104
local block_state deflate_fast OF((deflate_state *s, int flush));
105
#ifndef FASTEST
106
local block_state deflate_slow OF((deflate_state *s, int flush));
107
#endif
108
local block_state deflate_rle OF((deflate_state *s, int flush));
109
local block_state deflate_huff OF((deflate_state *s, int flush));
110
local void lm_init OF((deflate_state *s));
111
local void putShortMSB OF((deflate_state *s, uInt b));
112
local void flush_pending OF((z_streamp strm));
113
local unsigned read_buf OF((z_streamp strm, Bytef *buf, unsigned size));
114
#ifdef ASMV
115
# pragma message("Assembler code may have bugs -- use at your own risk")
116
void match_init OF((void)); /* asm code initialization */
117
uInt longest_match OF((deflate_state *s, IPos cur_match));
118
#else
119
local uInt longest_match OF((deflate_state *s, IPos cur_match));
120
#endif
121
122
#ifdef ZLIB_DEBUG
123
local void check_match OF((deflate_state *s, IPos start, IPos match,
124
int length));
125
#endif
126
127
/* ===========================================================================
128
* Local data
129
*/
130
131
#define NIL 0
132
/* Tail of hash chains */
133
134
#ifndef TOO_FAR
135
# define TOO_FAR 4096
136
#endif
137
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
138
139
/* Values for max_lazy_match, good_match and max_chain_length, depending on
140
* the desired pack level (0..9). The values given below have been tuned to
141
* exclude worst case performance for pathological files. Better values may be
142
* found for specific files.
143
*/
144
typedef struct config_s {
145
ush good_length; /* reduce lazy search above this match length */
146
ush max_lazy; /* do not perform lazy search above this match length */
147
ush nice_length; /* quit search above this match length */
148
ush max_chain;
149
compress_func func;
150
} config;
151
152
#ifdef FASTEST
153
local const config configuration_table[2] = {
154
/* good lazy nice chain */
155
/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
156
/* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
157
#else
158
local const config configuration_table[10] = {
159
/* good lazy nice chain */
160
/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
161
/* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
162
/* 2 */ {4, 5, 16, 8, deflate_fast},
163
/* 3 */ {4, 6, 32, 32, deflate_fast},
164
165
/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
166
/* 5 */ {8, 16, 32, 32, deflate_slow},
167
/* 6 */ {8, 16, 128, 128, deflate_slow},
168
/* 7 */ {8, 32, 128, 256, deflate_slow},
169
/* 8 */ {32, 128, 258, 1024, deflate_slow},
170
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
171
#endif
172
173
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
174
* For deflate_fast() (levels <= 3) good is ignored and lazy has a different
175
* meaning.
176
*/
177
178
/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
179
#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
180
181
/* ===========================================================================
182
* Update a hash value with the given input byte
183
* IN assertion: all calls to UPDATE_HASH are made with consecutive input
184
* characters, so that a running hash key can be computed from the previous
185
* key instead of complete recalculation each time.
186
*/
187
#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
188
189
190
/* ===========================================================================
191
* Insert string str in the dictionary and set match_head to the previous head
192
* of the hash chain (the most recent string with same hash key). Return
193
* the previous length of the hash chain.
194
* If this file is compiled with -DFASTEST, the compression level is forced
195
* to 1, and no hash chains are maintained.
196
* IN assertion: all calls to INSERT_STRING are made with consecutive input
197
* characters and the first MIN_MATCH bytes of str are valid (except for
198
* the last MIN_MATCH-1 bytes of the input file).
199
*/
200
#ifdef FASTEST
201
#define INSERT_STRING(s, str, match_head) \
202
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
203
match_head = s->head[s->ins_h], \
204
s->head[s->ins_h] = (Pos)(str))
205
#else
206
#define INSERT_STRING(s, str, match_head) \
207
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
208
match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
209
s->head[s->ins_h] = (Pos)(str))
210
#endif
211
212
/* ===========================================================================
213
* Initialize the hash table (avoiding 64K overflow for 16 bit systems).
214
* prev[] will be initialized on the fly.
215
*/
216
#define CLEAR_HASH(s) \
217
s->head[s->hash_size-1] = NIL; \
218
zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
219
220
/* ===========================================================================
221
* Slide the hash table when sliding the window down (could be avoided with 32
222
* bit values at the expense of memory usage). We slide even when level == 0 to
223
* keep the hash table consistent if we switch back to level > 0 later.
224
*/
225
local void slide_hash(s)
226
deflate_state *s;
227
{
228
unsigned n, m;
229
Posf *p;
230
uInt wsize = s->w_size;
231
232
n = s->hash_size;
233
p = &s->head[n];
234
do {
235
m = *--p;
236
*p = (Pos)(m >= wsize ? m - wsize : NIL);
237
} while (--n);
238
n = wsize;
239
#ifndef FASTEST
240
p = &s->prev[n];
241
do {
242
m = *--p;
243
*p = (Pos)(m >= wsize ? m - wsize : NIL);
244
/* If n is not on any hash chain, prev[n] is garbage but
245
* its value will never be used.
246
*/
247
} while (--n);
248
#endif
249
}
250
251
/* ========================================================================= */
252
int ZEXPORT deflateInit_(strm, level, version, stream_size)
253
z_streamp strm;
254
int level;
255
const char *version;
256
int stream_size;
257
{
258
return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
259
Z_DEFAULT_STRATEGY, version, stream_size);
260
/* To do: ignore strm->next_in if we use it as window */
261
}
262
263
/* ========================================================================= */
264
int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
265
version, stream_size)
266
z_streamp strm;
267
int level;
268
int method;
269
int windowBits;
270
int memLevel;
271
int strategy;
272
const char *version;
273
int stream_size;
274
{
275
deflate_state *s;
276
int wrap = 1;
277
static const char my_version[] = ZLIB_VERSION;
278
279
ushf *overlay;
280
/* We overlay pending_buf and d_buf+l_buf. This works since the average
281
* output size for (length,distance) codes is <= 24 bits.
282
*/
283
284
if (version == Z_NULL || version[0] != my_version[0] ||
285
stream_size != sizeof(z_stream)) {
286
return Z_VERSION_ERROR;
287
}
288
if (strm == Z_NULL) return Z_STREAM_ERROR;
289
290
strm->msg = Z_NULL;
291
if (strm->zalloc == (alloc_func)0) {
292
#ifdef Z_SOLO
293
return Z_STREAM_ERROR;
294
#else
295
strm->zalloc = zcalloc;
296
strm->opaque = (voidpf)0;
297
#endif
298
}
299
if (strm->zfree == (free_func)0)
300
#ifdef Z_SOLO
301
return Z_STREAM_ERROR;
302
#else
303
strm->zfree = zcfree;
304
#endif
305
306
#ifdef FASTEST
307
if (level != 0) level = 1;
308
#else
309
if (level == Z_DEFAULT_COMPRESSION) level = 6;
310
#endif
311
312
if (windowBits < 0) { /* suppress zlib wrapper */
313
wrap = 0;
314
windowBits = -windowBits;
315
}
316
#ifdef GZIP
317
else if (windowBits > 15) {
318
wrap = 2; /* write gzip wrapper instead */
319
windowBits -= 16;
320
}
321
#endif
322
if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
323
windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
324
strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
325
return Z_STREAM_ERROR;
326
}
327
if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
328
s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
329
if (s == Z_NULL) return Z_MEM_ERROR;
330
strm->state = (struct internal_state FAR *)s;
331
s->strm = strm;
332
s->status = INIT_STATE; /* to pass state test in deflateReset() */
333
334
s->wrap = wrap;
335
s->gzhead = Z_NULL;
336
s->w_bits = (uInt)windowBits;
337
s->w_size = 1 << s->w_bits;
338
s->w_mask = s->w_size - 1;
339
340
s->hash_bits = (uInt)memLevel + 7;
341
s->hash_size = 1 << s->hash_bits;
342
s->hash_mask = s->hash_size - 1;
343
s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
344
345
s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
346
s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
347
s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
348
349
s->high_water = 0; /* nothing written to s->window yet */
350
351
s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
352
353
overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
354
s->pending_buf = (uchf *) overlay;
355
s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
356
357
if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
358
s->pending_buf == Z_NULL) {
359
s->status = FINISH_STATE;
360
strm->msg = ERR_MSG(Z_MEM_ERROR);
361
deflateEnd (strm);
362
return Z_MEM_ERROR;
363
}
364
s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
365
s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
366
367
s->level = level;
368
s->strategy = strategy;
369
s->method = (Byte)method;
370
371
return deflateReset(strm);
372
}
373
374
/* =========================================================================
375
* Check for a valid deflate stream state. Return 0 if ok, 1 if not.
376
*/
377
local int deflateStateCheck (strm)
378
z_streamp strm;
379
{
380
deflate_state *s;
381
if (strm == Z_NULL ||
382
strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
383
return 1;
384
s = strm->state;
385
if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
386
#ifdef GZIP
387
s->status != GZIP_STATE &&
388
#endif
389
s->status != EXTRA_STATE &&
390
s->status != NAME_STATE &&
391
s->status != COMMENT_STATE &&
392
s->status != HCRC_STATE &&
393
s->status != BUSY_STATE &&
394
s->status != FINISH_STATE))
395
return 1;
396
return 0;
397
}
398
399
/* ========================================================================= */
400
int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
401
z_streamp strm;
402
const Bytef *dictionary;
403
uInt dictLength;
404
{
405
deflate_state *s;
406
uInt str, n;
407
int wrap;
408
unsigned avail;
409
z_const unsigned char *next;
410
411
if (deflateStateCheck(strm) || dictionary == Z_NULL)
412
return Z_STREAM_ERROR;
413
s = strm->state;
414
wrap = s->wrap;
415
if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
416
return Z_STREAM_ERROR;
417
418
/* when using zlib wrappers, compute Adler-32 for provided dictionary */
419
if (wrap == 1)
420
strm->adler = adler32(strm->adler, dictionary, dictLength);
421
s->wrap = 0; /* avoid computing Adler-32 in read_buf */
422
423
/* if dictionary would fill window, just replace the history */
424
if (dictLength >= s->w_size) {
425
if (wrap == 0) { /* already empty otherwise */
426
CLEAR_HASH(s);
427
s->strstart = 0;
428
s->block_start = 0L;
429
s->insert = 0;
430
}
431
dictionary += dictLength - s->w_size; /* use the tail */
432
dictLength = s->w_size;
433
}
434
435
/* insert dictionary into window and hash */
436
avail = strm->avail_in;
437
next = strm->next_in;
438
strm->avail_in = dictLength;
439
strm->next_in = (z_const Bytef *)dictionary;
440
fill_window(s);
441
while (s->lookahead >= MIN_MATCH) {
442
str = s->strstart;
443
n = s->lookahead - (MIN_MATCH-1);
444
do {
445
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
446
#ifndef FASTEST
447
s->prev[str & s->w_mask] = s->head[s->ins_h];
448
#endif
449
s->head[s->ins_h] = (Pos)str;
450
str++;
451
} while (--n);
452
s->strstart = str;
453
s->lookahead = MIN_MATCH-1;
454
fill_window(s);
455
}
456
s->strstart += s->lookahead;
457
s->block_start = (long)s->strstart;
458
s->insert = s->lookahead;
459
s->lookahead = 0;
460
s->match_length = s->prev_length = MIN_MATCH-1;
461
s->match_available = 0;
462
strm->next_in = next;
463
strm->avail_in = avail;
464
s->wrap = wrap;
465
return Z_OK;
466
}
467
468
/* ========================================================================= */
469
int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
470
z_streamp strm;
471
Bytef *dictionary;
472
uInt *dictLength;
473
{
474
deflate_state *s;
475
uInt len;
476
477
if (deflateStateCheck(strm))
478
return Z_STREAM_ERROR;
479
s = strm->state;
480
len = s->strstart + s->lookahead;
481
if (len > s->w_size)
482
len = s->w_size;
483
if (dictionary != Z_NULL && len)
484
zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
485
if (dictLength != Z_NULL)
486
*dictLength = len;
487
return Z_OK;
488
}
489
490
/* ========================================================================= */
491
int ZEXPORT deflateResetKeep (strm)
492
z_streamp strm;
493
{
494
deflate_state *s;
495
496
if (deflateStateCheck(strm)) {
497
return Z_STREAM_ERROR;
498
}
499
500
strm->total_in = strm->total_out = 0;
501
strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
502
strm->data_type = Z_UNKNOWN;
503
504
s = (deflate_state *)strm->state;
505
s->pending = 0;
506
s->pending_out = s->pending_buf;
507
508
if (s->wrap < 0) {
509
s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
510
}
511
s->status =
512
#ifdef GZIP
513
s->wrap == 2 ? GZIP_STATE :
514
#endif
515
s->wrap ? INIT_STATE : BUSY_STATE;
516
strm->adler =
517
#ifdef GZIP
518
s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
519
#endif
520
adler32(0L, Z_NULL, 0);
521
s->last_flush = -2;
522
523
_tr_init(s);
524
525
return Z_OK;
526
}
527
528
/* ========================================================================= */
529
int ZEXPORT deflateReset (strm)
530
z_streamp strm;
531
{
532
int ret;
533
534
ret = deflateResetKeep(strm);
535
if (ret == Z_OK)
536
lm_init(strm->state);
537
return ret;
538
}
539
540
/* ========================================================================= */
541
int ZEXPORT deflateSetHeader (strm, head)
542
z_streamp strm;
543
gz_headerp head;
544
{
545
if (deflateStateCheck(strm) || strm->state->wrap != 2)
546
return Z_STREAM_ERROR;
547
strm->state->gzhead = head;
548
return Z_OK;
549
}
550
551
/* ========================================================================= */
552
int ZEXPORT deflatePending (strm, pending, bits)
553
unsigned *pending;
554
int *bits;
555
z_streamp strm;
556
{
557
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
558
if (pending != Z_NULL)
559
*pending = strm->state->pending;
560
if (bits != Z_NULL)
561
*bits = strm->state->bi_valid;
562
return Z_OK;
563
}
564
565
/* ========================================================================= */
566
int ZEXPORT deflatePrime (strm, bits, value)
567
z_streamp strm;
568
int bits;
569
int value;
570
{
571
deflate_state *s;
572
int put;
573
574
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
575
s = strm->state;
576
if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
577
return Z_BUF_ERROR;
578
do {
579
put = Buf_size - s->bi_valid;
580
if (put > bits)
581
put = bits;
582
s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
583
s->bi_valid += put;
584
_tr_flush_bits(s);
585
value >>= put;
586
bits -= put;
587
} while (bits);
588
return Z_OK;
589
}
590
591
/* ========================================================================= */
592
int ZEXPORT deflateParams(strm, level, strategy)
593
z_streamp strm;
594
int level;
595
int strategy;
596
{
597
deflate_state *s;
598
compress_func func;
599
600
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
601
s = strm->state;
602
603
#ifdef FASTEST
604
if (level != 0) level = 1;
605
#else
606
if (level == Z_DEFAULT_COMPRESSION) level = 6;
607
#endif
608
if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
609
return Z_STREAM_ERROR;
610
}
611
func = configuration_table[s->level].func;
612
613
if ((strategy != s->strategy || func != configuration_table[level].func) &&
614
s->last_flush != -2) {
615
/* Flush the last buffer: */
616
int err = deflate(strm, Z_BLOCK);
617
if (err == Z_STREAM_ERROR)
618
return err;
619
if (strm->avail_out == 0)
620
return Z_BUF_ERROR;
621
}
622
if (s->level != level) {
623
if (s->level == 0 && s->matches != 0) {
624
if (s->matches == 1)
625
slide_hash(s);
626
else
627
CLEAR_HASH(s);
628
s->matches = 0;
629
}
630
s->level = level;
631
s->max_lazy_match = configuration_table[level].max_lazy;
632
s->good_match = configuration_table[level].good_length;
633
s->nice_match = configuration_table[level].nice_length;
634
s->max_chain_length = configuration_table[level].max_chain;
635
}
636
s->strategy = strategy;
637
return Z_OK;
638
}
639
640
/* ========================================================================= */
641
int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
642
z_streamp strm;
643
int good_length;
644
int max_lazy;
645
int nice_length;
646
int max_chain;
647
{
648
deflate_state *s;
649
650
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
651
s = strm->state;
652
s->good_match = (uInt)good_length;
653
s->max_lazy_match = (uInt)max_lazy;
654
s->nice_match = nice_length;
655
s->max_chain_length = (uInt)max_chain;
656
return Z_OK;
657
}
658
659
/* =========================================================================
660
* For the default windowBits of 15 and memLevel of 8, this function returns
661
* a close to exact, as well as small, upper bound on the compressed size.
662
* They are coded as constants here for a reason--if the #define's are
663
* changed, then this function needs to be changed as well. The return
664
* value for 15 and 8 only works for those exact settings.
665
*
666
* For any setting other than those defaults for windowBits and memLevel,
667
* the value returned is a conservative worst case for the maximum expansion
668
* resulting from using fixed blocks instead of stored blocks, which deflate
669
* can emit on compressed data for some combinations of the parameters.
670
*
671
* This function could be more sophisticated to provide closer upper bounds for
672
* every combination of windowBits and memLevel. But even the conservative
673
* upper bound of about 14% expansion does not seem onerous for output buffer
674
* allocation.
675
*/
676
uLong ZEXPORT deflateBound(strm, sourceLen)
677
z_streamp strm;
678
uLong sourceLen;
679
{
680
deflate_state *s;
681
uLong complen, wraplen;
682
683
/* conservative upper bound for compressed data */
684
complen = sourceLen +
685
((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
686
687
/* if can't get parameters, return conservative bound plus zlib wrapper */
688
if (deflateStateCheck(strm))
689
return complen + 6;
690
691
/* compute wrapper length */
692
s = strm->state;
693
switch (s->wrap) {
694
case 0: /* raw deflate */
695
wraplen = 0;
696
break;
697
case 1: /* zlib wrapper */
698
wraplen = 6 + (s->strstart ? 4 : 0);
699
break;
700
#ifdef GZIP
701
case 2: /* gzip wrapper */
702
wraplen = 18;
703
if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
704
Bytef *str;
705
if (s->gzhead->extra != Z_NULL)
706
wraplen += 2 + s->gzhead->extra_len;
707
str = s->gzhead->name;
708
if (str != Z_NULL)
709
do {
710
wraplen++;
711
} while (*str++);
712
str = s->gzhead->comment;
713
if (str != Z_NULL)
714
do {
715
wraplen++;
716
} while (*str++);
717
if (s->gzhead->hcrc)
718
wraplen += 2;
719
}
720
break;
721
#endif
722
default: /* for compiler happiness */
723
wraplen = 6;
724
}
725
726
/* if not default parameters, return conservative bound */
727
if (s->w_bits != 15 || s->hash_bits != 8 + 7)
728
return complen + wraplen;
729
730
/* default settings: return tight bound for that case */
731
return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
732
(sourceLen >> 25) + 13 - 6 + wraplen;
733
}
734
735
/* =========================================================================
736
* Put a short in the pending buffer. The 16-bit value is put in MSB order.
737
* IN assertion: the stream state is correct and there is enough room in
738
* pending_buf.
739
*/
740
local void putShortMSB (s, b)
741
deflate_state *s;
742
uInt b;
743
{
744
put_byte(s, (Byte)(b >> 8));
745
put_byte(s, (Byte)(b & 0xff));
746
}
747
748
/* =========================================================================
749
* Flush as much pending output as possible. All deflate() output, except for
750
* some deflate_stored() output, goes through this function so some
751
* applications may wish to modify it to avoid allocating a large
752
* strm->next_out buffer and copying into it. (See also read_buf()).
753
*/
754
local void flush_pending(strm)
755
z_streamp strm;
756
{
757
unsigned len;
758
deflate_state *s = strm->state;
759
760
_tr_flush_bits(s);
761
len = s->pending;
762
if (len > strm->avail_out) len = strm->avail_out;
763
if (len == 0) return;
764
765
zmemcpy(strm->next_out, s->pending_out, len);
766
strm->next_out += len;
767
s->pending_out += len;
768
strm->total_out += len;
769
strm->avail_out -= len;
770
s->pending -= len;
771
if (s->pending == 0) {
772
s->pending_out = s->pending_buf;
773
}
774
}
775
776
/* ===========================================================================
777
* Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
778
*/
779
#define HCRC_UPDATE(beg) \
780
do { \
781
if (s->gzhead->hcrc && s->pending > (beg)) \
782
strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
783
s->pending - (beg)); \
784
} while (0)
785
786
/* ========================================================================= */
787
int ZEXPORT deflate (strm, flush)
788
z_streamp strm;
789
int flush;
790
{
791
int old_flush; /* value of flush param for previous deflate call */
792
deflate_state *s;
793
794
if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
795
return Z_STREAM_ERROR;
796
}
797
s = strm->state;
798
799
if (strm->next_out == Z_NULL ||
800
(strm->avail_in != 0 && strm->next_in == Z_NULL) ||
801
(s->status == FINISH_STATE && flush != Z_FINISH)) {
802
ERR_RETURN(strm, Z_STREAM_ERROR);
803
}
804
if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
805
806
old_flush = s->last_flush;
807
s->last_flush = flush;
808
809
/* Flush as much pending output as possible */
810
if (s->pending != 0) {
811
flush_pending(strm);
812
if (strm->avail_out == 0) {
813
/* Since avail_out is 0, deflate will be called again with
814
* more output space, but possibly with both pending and
815
* avail_in equal to zero. There won't be anything to do,
816
* but this is not an error situation so make sure we
817
* return OK instead of BUF_ERROR at next call of deflate:
818
*/
819
s->last_flush = -1;
820
return Z_OK;
821
}
822
823
/* Make sure there is something to do and avoid duplicate consecutive
824
* flushes. For repeated and useless calls with Z_FINISH, we keep
825
* returning Z_STREAM_END instead of Z_BUF_ERROR.
826
*/
827
} else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
828
flush != Z_FINISH) {
829
ERR_RETURN(strm, Z_BUF_ERROR);
830
}
831
832
/* User must not provide more input after the first FINISH: */
833
if (s->status == FINISH_STATE && strm->avail_in != 0) {
834
ERR_RETURN(strm, Z_BUF_ERROR);
835
}
836
837
/* Write the header */
838
if (s->status == INIT_STATE) {
839
/* zlib header */
840
uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
841
uInt level_flags;
842
843
if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
844
level_flags = 0;
845
else if (s->level < 6)
846
level_flags = 1;
847
else if (s->level == 6)
848
level_flags = 2;
849
else
850
level_flags = 3;
851
header |= (level_flags << 6);
852
if (s->strstart != 0) header |= PRESET_DICT;
853
header += 31 - (header % 31);
854
855
putShortMSB(s, header);
856
857
/* Save the adler32 of the preset dictionary: */
858
if (s->strstart != 0) {
859
putShortMSB(s, (uInt)(strm->adler >> 16));
860
putShortMSB(s, (uInt)(strm->adler & 0xffff));
861
}
862
strm->adler = adler32(0L, Z_NULL, 0);
863
s->status = BUSY_STATE;
864
865
/* Compression must start with an empty pending buffer */
866
flush_pending(strm);
867
if (s->pending != 0) {
868
s->last_flush = -1;
869
return Z_OK;
870
}
871
}
872
#ifdef GZIP
873
if (s->status == GZIP_STATE) {
874
/* gzip header */
875
strm->adler = crc32(0L, Z_NULL, 0);
876
put_byte(s, 31);
877
put_byte(s, 139);
878
put_byte(s, 8);
879
if (s->gzhead == Z_NULL) {
880
put_byte(s, 0);
881
put_byte(s, 0);
882
put_byte(s, 0);
883
put_byte(s, 0);
884
put_byte(s, 0);
885
put_byte(s, s->level == 9 ? 2 :
886
(s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
887
4 : 0));
888
put_byte(s, OS_CODE);
889
s->status = BUSY_STATE;
890
891
/* Compression must start with an empty pending buffer */
892
flush_pending(strm);
893
if (s->pending != 0) {
894
s->last_flush = -1;
895
return Z_OK;
896
}
897
}
898
else {
899
put_byte(s, (s->gzhead->text ? 1 : 0) +
900
(s->gzhead->hcrc ? 2 : 0) +
901
(s->gzhead->extra == Z_NULL ? 0 : 4) +
902
(s->gzhead->name == Z_NULL ? 0 : 8) +
903
(s->gzhead->comment == Z_NULL ? 0 : 16)
904
);
905
put_byte(s, (Byte)(s->gzhead->time & 0xff));
906
put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
907
put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
908
put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
909
put_byte(s, s->level == 9 ? 2 :
910
(s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
911
4 : 0));
912
put_byte(s, s->gzhead->os & 0xff);
913
if (s->gzhead->extra != Z_NULL) {
914
put_byte(s, s->gzhead->extra_len & 0xff);
915
put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
916
}
917
if (s->gzhead->hcrc)
918
strm->adler = crc32(strm->adler, s->pending_buf,
919
s->pending);
920
s->gzindex = 0;
921
s->status = EXTRA_STATE;
922
}
923
}
924
if (s->status == EXTRA_STATE) {
925
if (s->gzhead->extra != Z_NULL) {
926
ulg beg = s->pending; /* start of bytes to update crc */
927
uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
928
while (s->pending + left > s->pending_buf_size) {
929
uInt copy = s->pending_buf_size - s->pending;
930
zmemcpy(s->pending_buf + s->pending,
931
s->gzhead->extra + s->gzindex, copy);
932
s->pending = s->pending_buf_size;
933
HCRC_UPDATE(beg);
934
s->gzindex += copy;
935
flush_pending(strm);
936
if (s->pending != 0) {
937
s->last_flush = -1;
938
return Z_OK;
939
}
940
beg = 0;
941
left -= copy;
942
}
943
zmemcpy(s->pending_buf + s->pending,
944
s->gzhead->extra + s->gzindex, left);
945
s->pending += left;
946
HCRC_UPDATE(beg);
947
s->gzindex = 0;
948
}
949
s->status = NAME_STATE;
950
}
951
if (s->status == NAME_STATE) {
952
if (s->gzhead->name != Z_NULL) {
953
ulg beg = s->pending; /* start of bytes to update crc */
954
int val;
955
do {
956
if (s->pending == s->pending_buf_size) {
957
HCRC_UPDATE(beg);
958
flush_pending(strm);
959
if (s->pending != 0) {
960
s->last_flush = -1;
961
return Z_OK;
962
}
963
beg = 0;
964
}
965
val = s->gzhead->name[s->gzindex++];
966
put_byte(s, val);
967
} while (val != 0);
968
HCRC_UPDATE(beg);
969
s->gzindex = 0;
970
}
971
s->status = COMMENT_STATE;
972
}
973
if (s->status == COMMENT_STATE) {
974
if (s->gzhead->comment != Z_NULL) {
975
ulg beg = s->pending; /* start of bytes to update crc */
976
int val;
977
do {
978
if (s->pending == s->pending_buf_size) {
979
HCRC_UPDATE(beg);
980
flush_pending(strm);
981
if (s->pending != 0) {
982
s->last_flush = -1;
983
return Z_OK;
984
}
985
beg = 0;
986
}
987
val = s->gzhead->comment[s->gzindex++];
988
put_byte(s, val);
989
} while (val != 0);
990
HCRC_UPDATE(beg);
991
}
992
s->status = HCRC_STATE;
993
}
994
if (s->status == HCRC_STATE) {
995
if (s->gzhead->hcrc) {
996
if (s->pending + 2 > s->pending_buf_size) {
997
flush_pending(strm);
998
if (s->pending != 0) {
999
s->last_flush = -1;
1000
return Z_OK;
1001
}
1002
}
1003
put_byte(s, (Byte)(strm->adler & 0xff));
1004
put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1005
strm->adler = crc32(0L, Z_NULL, 0);
1006
}
1007
s->status = BUSY_STATE;
1008
1009
/* Compression must start with an empty pending buffer */
1010
flush_pending(strm);
1011
if (s->pending != 0) {
1012
s->last_flush = -1;
1013
return Z_OK;
1014
}
1015
}
1016
#endif
1017
1018
/* Start a new block or continue the current one.
1019
*/
1020
if (strm->avail_in != 0 || s->lookahead != 0 ||
1021
(flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1022
block_state bstate;
1023
1024
bstate = s->level == 0 ? deflate_stored(s, flush) :
1025
s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1026
s->strategy == Z_RLE ? deflate_rle(s, flush) :
1027
(*(configuration_table[s->level].func))(s, flush);
1028
1029
if (bstate == finish_started || bstate == finish_done) {
1030
s->status = FINISH_STATE;
1031
}
1032
if (bstate == need_more || bstate == finish_started) {
1033
if (strm->avail_out == 0) {
1034
s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1035
}
1036
return Z_OK;
1037
/* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1038
* of deflate should use the same flush parameter to make sure
1039
* that the flush is complete. So we don't have to output an
1040
* empty block here, this will be done at next call. This also
1041
* ensures that for a very small output buffer, we emit at most
1042
* one empty block.
1043
*/
1044
}
1045
if (bstate == block_done) {
1046
if (flush == Z_PARTIAL_FLUSH) {
1047
_tr_align(s);
1048
} else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1049
_tr_stored_block(s, (char*)0, 0L, 0);
1050
/* For a full flush, this empty block will be recognized
1051
* as a special marker by inflate_sync().
1052
*/
1053
if (flush == Z_FULL_FLUSH) {
1054
CLEAR_HASH(s); /* forget history */
1055
if (s->lookahead == 0) {
1056
s->strstart = 0;
1057
s->block_start = 0L;
1058
s->insert = 0;
1059
}
1060
}
1061
}
1062
flush_pending(strm);
1063
if (strm->avail_out == 0) {
1064
s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1065
return Z_OK;
1066
}
1067
}
1068
}
1069
1070
if (flush != Z_FINISH) return Z_OK;
1071
if (s->wrap <= 0) return Z_STREAM_END;
1072
1073
/* Write the trailer */
1074
#ifdef GZIP
1075
if (s->wrap == 2) {
1076
put_byte(s, (Byte)(strm->adler & 0xff));
1077
put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1078
put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1079
put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1080
put_byte(s, (Byte)(strm->total_in & 0xff));
1081
put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1082
put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1083
put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1084
}
1085
else
1086
#endif
1087
{
1088
putShortMSB(s, (uInt)(strm->adler >> 16));
1089
putShortMSB(s, (uInt)(strm->adler & 0xffff));
1090
}
1091
flush_pending(strm);
1092
/* If avail_out is zero, the application will call deflate again
1093
* to flush the rest.
1094
*/
1095
if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1096
return s->pending != 0 ? Z_OK : Z_STREAM_END;
1097
}
1098
1099
/* ========================================================================= */
1100
int ZEXPORT deflateEnd (strm)
1101
z_streamp strm;
1102
{
1103
int status;
1104
1105
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1106
1107
status = strm->state->status;
1108
1109
/* Deallocate in reverse order of allocations: */
1110
TRY_FREE(strm, strm->state->pending_buf);
1111
TRY_FREE(strm, strm->state->head);
1112
TRY_FREE(strm, strm->state->prev);
1113
TRY_FREE(strm, strm->state->window);
1114
1115
ZFREE(strm, strm->state);
1116
strm->state = Z_NULL;
1117
1118
return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1119
}
1120
1121
/* =========================================================================
1122
* Copy the source state to the destination state.
1123
* To simplify the source, this is not supported for 16-bit MSDOS (which
1124
* doesn't have enough memory anyway to duplicate compression states).
1125
*/
1126
int ZEXPORT deflateCopy (dest, source)
1127
z_streamp dest;
1128
z_streamp source;
1129
{
1130
#ifdef MAXSEG_64K
1131
return Z_STREAM_ERROR;
1132
#else
1133
deflate_state *ds;
1134
deflate_state *ss;
1135
ushf *overlay;
1136
1137
1138
if (deflateStateCheck(source) || dest == Z_NULL) {
1139
return Z_STREAM_ERROR;
1140
}
1141
1142
ss = source->state;
1143
1144
zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1145
1146
ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1147
if (ds == Z_NULL) return Z_MEM_ERROR;
1148
dest->state = (struct internal_state FAR *) ds;
1149
zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1150
ds->strm = dest;
1151
1152
ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1153
ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1154
ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1155
overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1156
ds->pending_buf = (uchf *) overlay;
1157
1158
if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1159
ds->pending_buf == Z_NULL) {
1160
deflateEnd (dest);
1161
return Z_MEM_ERROR;
1162
}
1163
/* following zmemcpy do not work for 16-bit MSDOS */
1164
zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1165
zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1166
zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1167
zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1168
1169
ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1170
ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1171
ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1172
1173
ds->l_desc.dyn_tree = ds->dyn_ltree;
1174
ds->d_desc.dyn_tree = ds->dyn_dtree;
1175
ds->bl_desc.dyn_tree = ds->bl_tree;
1176
1177
return Z_OK;
1178
#endif /* MAXSEG_64K */
1179
}
1180
1181
/* ===========================================================================
1182
* Read a new buffer from the current input stream, update the adler32
1183
* and total number of bytes read. All deflate() input goes through
1184
* this function so some applications may wish to modify it to avoid
1185
* allocating a large strm->next_in buffer and copying from it.
1186
* (See also flush_pending()).
1187
*/
1188
local unsigned read_buf(strm, buf, size)
1189
z_streamp strm;
1190
Bytef *buf;
1191
unsigned size;
1192
{
1193
unsigned len = strm->avail_in;
1194
1195
if (len > size) len = size;
1196
if (len == 0) return 0;
1197
1198
strm->avail_in -= len;
1199
1200
zmemcpy(buf, strm->next_in, len);
1201
if (strm->state->wrap == 1) {
1202
strm->adler = adler32(strm->adler, buf, len);
1203
}
1204
#ifdef GZIP
1205
else if (strm->state->wrap == 2) {
1206
strm->adler = crc32(strm->adler, buf, len);
1207
}
1208
#endif
1209
strm->next_in += len;
1210
strm->total_in += len;
1211
1212
return len;
1213
}
1214
1215
/* ===========================================================================
1216
* Initialize the "longest match" routines for a new zlib stream
1217
*/
1218
local void lm_init (s)
1219
deflate_state *s;
1220
{
1221
s->window_size = (ulg)2L*s->w_size;
1222
1223
CLEAR_HASH(s);
1224
1225
/* Set the default configuration parameters:
1226
*/
1227
s->max_lazy_match = configuration_table[s->level].max_lazy;
1228
s->good_match = configuration_table[s->level].good_length;
1229
s->nice_match = configuration_table[s->level].nice_length;
1230
s->max_chain_length = configuration_table[s->level].max_chain;
1231
1232
s->strstart = 0;
1233
s->block_start = 0L;
1234
s->lookahead = 0;
1235
s->insert = 0;
1236
s->match_length = s->prev_length = MIN_MATCH-1;
1237
s->match_available = 0;
1238
s->ins_h = 0;
1239
#ifndef FASTEST
1240
#ifdef ASMV
1241
match_init(); /* initialize the asm code */
1242
#endif
1243
#endif
1244
}
1245
1246
#ifndef FASTEST
1247
/* ===========================================================================
1248
* Set match_start to the longest match starting at the given string and
1249
* return its length. Matches shorter or equal to prev_length are discarded,
1250
* in which case the result is equal to prev_length and match_start is
1251
* garbage.
1252
* IN assertions: cur_match is the head of the hash chain for the current
1253
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1254
* OUT assertion: the match length is not greater than s->lookahead.
1255
*/
1256
#ifndef ASMV
1257
/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1258
* match.S. The code will be functionally equivalent.
1259
*/
1260
local uInt longest_match(s, cur_match)
1261
deflate_state *s;
1262
IPos cur_match; /* current match */
1263
{
1264
unsigned chain_length = s->max_chain_length;/* max hash chain length */
1265
register Bytef *scan = s->window + s->strstart; /* current string */
1266
register Bytef *match; /* matched string */
1267
register int len; /* length of current match */
1268
int best_len = (int)s->prev_length; /* best match length so far */
1269
int nice_match = s->nice_match; /* stop if match long enough */
1270
IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1271
s->strstart - (IPos)MAX_DIST(s) : NIL;
1272
/* Stop when cur_match becomes <= limit. To simplify the code,
1273
* we prevent matches with the string of window index 0.
1274
*/
1275
Posf *prev = s->prev;
1276
uInt wmask = s->w_mask;
1277
1278
#ifdef UNALIGNED_OK
1279
/* Compare two bytes at a time. Note: this is not always beneficial.
1280
* Try with and without -DUNALIGNED_OK to check.
1281
*/
1282
register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1283
register ush scan_start = *(ushf*)scan;
1284
register ush scan_end = *(ushf*)(scan+best_len-1);
1285
#else
1286
register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1287
register Byte scan_end1 = scan[best_len-1];
1288
register Byte scan_end = scan[best_len];
1289
#endif
1290
1291
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1292
* It is easy to get rid of this optimization if necessary.
1293
*/
1294
Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1295
1296
/* Do not waste too much time if we already have a good match: */
1297
if (s->prev_length >= s->good_match) {
1298
chain_length >>= 2;
1299
}
1300
/* Do not look for matches beyond the end of the input. This is necessary
1301
* to make deflate deterministic.
1302
*/
1303
if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1304
1305
Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1306
1307
do {
1308
Assert(cur_match < s->strstart, "no future");
1309
match = s->window + cur_match;
1310
1311
/* Skip to next match if the match length cannot increase
1312
* or if the match length is less than 2. Note that the checks below
1313
* for insufficient lookahead only occur occasionally for performance
1314
* reasons. Therefore uninitialized memory will be accessed, and
1315
* conditional jumps will be made that depend on those values.
1316
* However the length of the match is limited to the lookahead, so
1317
* the output of deflate is not affected by the uninitialized values.
1318
*/
1319
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1320
/* This code assumes sizeof(unsigned short) == 2. Do not use
1321
* UNALIGNED_OK if your compiler uses a different size.
1322
*/
1323
if (*(ushf*)(match+best_len-1) != scan_end ||
1324
*(ushf*)match != scan_start) continue;
1325
1326
/* It is not necessary to compare scan[2] and match[2] since they are
1327
* always equal when the other bytes match, given that the hash keys
1328
* are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1329
* strstart+3, +5, ... up to strstart+257. We check for insufficient
1330
* lookahead only every 4th comparison; the 128th check will be made
1331
* at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1332
* necessary to put more guard bytes at the end of the window, or
1333
* to check more often for insufficient lookahead.
1334
*/
1335
Assert(scan[2] == match[2], "scan[2]?");
1336
scan++, match++;
1337
do {
1338
} while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1339
*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1340
*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1341
*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1342
scan < strend);
1343
/* The funny "do {}" generates better code on most compilers */
1344
1345
/* Here, scan <= window+strstart+257 */
1346
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1347
if (*scan == *match) scan++;
1348
1349
len = (MAX_MATCH - 1) - (int)(strend-scan);
1350
scan = strend - (MAX_MATCH-1);
1351
1352
#else /* UNALIGNED_OK */
1353
1354
if (match[best_len] != scan_end ||
1355
match[best_len-1] != scan_end1 ||
1356
*match != *scan ||
1357
*++match != scan[1]) continue;
1358
1359
/* The check at best_len-1 can be removed because it will be made
1360
* again later. (This heuristic is not always a win.)
1361
* It is not necessary to compare scan[2] and match[2] since they
1362
* are always equal when the other bytes match, given that
1363
* the hash keys are equal and that HASH_BITS >= 8.
1364
*/
1365
scan += 2, match++;
1366
Assert(*scan == *match, "match[2]?");
1367
1368
/* We check for insufficient lookahead only every 8th comparison;
1369
* the 256th check will be made at strstart+258.
1370
*/
1371
do {
1372
} while (*++scan == *++match && *++scan == *++match &&
1373
*++scan == *++match && *++scan == *++match &&
1374
*++scan == *++match && *++scan == *++match &&
1375
*++scan == *++match && *++scan == *++match &&
1376
scan < strend);
1377
1378
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1379
1380
len = MAX_MATCH - (int)(strend - scan);
1381
scan = strend - MAX_MATCH;
1382
1383
#endif /* UNALIGNED_OK */
1384
1385
if (len > best_len) {
1386
s->match_start = cur_match;
1387
best_len = len;
1388
if (len >= nice_match) break;
1389
#ifdef UNALIGNED_OK
1390
scan_end = *(ushf*)(scan+best_len-1);
1391
#else
1392
scan_end1 = scan[best_len-1];
1393
scan_end = scan[best_len];
1394
#endif
1395
}
1396
} while ((cur_match = prev[cur_match & wmask]) > limit
1397
&& --chain_length != 0);
1398
1399
if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1400
return s->lookahead;
1401
}
1402
#endif /* ASMV */
1403
1404
#else /* FASTEST */
1405
1406
/* ---------------------------------------------------------------------------
1407
* Optimized version for FASTEST only
1408
*/
1409
local uInt longest_match(s, cur_match)
1410
deflate_state *s;
1411
IPos cur_match; /* current match */
1412
{
1413
register Bytef *scan = s->window + s->strstart; /* current string */
1414
register Bytef *match; /* matched string */
1415
register int len; /* length of current match */
1416
register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1417
1418
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1419
* It is easy to get rid of this optimization if necessary.
1420
*/
1421
Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1422
1423
Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1424
1425
Assert(cur_match < s->strstart, "no future");
1426
1427
match = s->window + cur_match;
1428
1429
/* Return failure if the match length is less than 2:
1430
*/
1431
if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1432
1433
/* The check at best_len-1 can be removed because it will be made
1434
* again later. (This heuristic is not always a win.)
1435
* It is not necessary to compare scan[2] and match[2] since they
1436
* are always equal when the other bytes match, given that
1437
* the hash keys are equal and that HASH_BITS >= 8.
1438
*/
1439
scan += 2, match += 2;
1440
Assert(*scan == *match, "match[2]?");
1441
1442
/* We check for insufficient lookahead only every 8th comparison;
1443
* the 256th check will be made at strstart+258.
1444
*/
1445
do {
1446
} while (*++scan == *++match && *++scan == *++match &&
1447
*++scan == *++match && *++scan == *++match &&
1448
*++scan == *++match && *++scan == *++match &&
1449
*++scan == *++match && *++scan == *++match &&
1450
scan < strend);
1451
1452
Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1453
1454
len = MAX_MATCH - (int)(strend - scan);
1455
1456
if (len < MIN_MATCH) return MIN_MATCH - 1;
1457
1458
s->match_start = cur_match;
1459
return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1460
}
1461
1462
#endif /* FASTEST */
1463
1464
#ifdef ZLIB_DEBUG
1465
1466
#define EQUAL 0
1467
/* result of memcmp for equal strings */
1468
1469
/* ===========================================================================
1470
* Check that the match at match_start is indeed a match.
1471
*/
1472
local void check_match(s, start, match, length)
1473
deflate_state *s;
1474
IPos start, match;
1475
int length;
1476
{
1477
/* check that the match is indeed a match */
1478
if (zmemcmp(s->window + match,
1479
s->window + start, length) != EQUAL) {
1480
fprintf(stderr, " start %u, match %u, length %d\n",
1481
start, match, length);
1482
do {
1483
fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1484
} while (--length != 0);
1485
z_error("invalid match");
1486
}
1487
if (z_verbose > 1) {
1488
fprintf(stderr,"\\[%d,%d]", start-match, length);
1489
do { putc(s->window[start++], stderr); } while (--length != 0);
1490
}
1491
}
1492
#else
1493
# define check_match(s, start, match, length)
1494
#endif /* ZLIB_DEBUG */
1495
1496
/* ===========================================================================
1497
* Fill the window when the lookahead becomes insufficient.
1498
* Updates strstart and lookahead.
1499
*
1500
* IN assertion: lookahead < MIN_LOOKAHEAD
1501
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1502
* At least one byte has been read, or avail_in == 0; reads are
1503
* performed for at least two bytes (required for the zip translate_eol
1504
* option -- not supported here).
1505
*/
1506
local void fill_window(s)
1507
deflate_state *s;
1508
{
1509
unsigned n;
1510
unsigned more; /* Amount of free space at the end of the window. */
1511
uInt wsize = s->w_size;
1512
1513
Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
1514
1515
do {
1516
more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1517
1518
/* Deal with !@#$% 64K limit: */
1519
if (sizeof(int) <= 2) {
1520
if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1521
more = wsize;
1522
1523
} else if (more == (unsigned)(-1)) {
1524
/* Very unlikely, but possible on 16 bit machine if
1525
* strstart == 0 && lookahead == 1 (input done a byte at time)
1526
*/
1527
more--;
1528
}
1529
}
1530
1531
/* If the window is almost full and there is insufficient lookahead,
1532
* move the upper half to the lower one to make room in the upper half.
1533
*/
1534
if (s->strstart >= wsize+MAX_DIST(s)) {
1535
1536
zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
1537
s->match_start -= wsize;
1538
s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
1539
s->block_start -= (long) wsize;
1540
slide_hash(s);
1541
more += wsize;
1542
}
1543
if (s->strm->avail_in == 0) break;
1544
1545
/* If there was no sliding:
1546
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1547
* more == window_size - lookahead - strstart
1548
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1549
* => more >= window_size - 2*WSIZE + 2
1550
* In the BIG_MEM or MMAP case (not yet supported),
1551
* window_size == input_size + MIN_LOOKAHEAD &&
1552
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1553
* Otherwise, window_size == 2*WSIZE so more >= 2.
1554
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1555
*/
1556
Assert(more >= 2, "more < 2");
1557
1558
n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1559
s->lookahead += n;
1560
1561
/* Initialize the hash value now that we have some input: */
1562
if (s->lookahead + s->insert >= MIN_MATCH) {
1563
uInt str = s->strstart - s->insert;
1564
s->ins_h = s->window[str];
1565
UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
1566
#if MIN_MATCH != 3
1567
Call UPDATE_HASH() MIN_MATCH-3 more times
1568
#endif
1569
while (s->insert) {
1570
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
1571
#ifndef FASTEST
1572
s->prev[str & s->w_mask] = s->head[s->ins_h];
1573
#endif
1574
s->head[s->ins_h] = (Pos)str;
1575
str++;
1576
s->insert--;
1577
if (s->lookahead + s->insert < MIN_MATCH)
1578
break;
1579
}
1580
}
1581
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1582
* but this is not important since only literal bytes will be emitted.
1583
*/
1584
1585
} while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1586
1587
/* If the WIN_INIT bytes after the end of the current data have never been
1588
* written, then zero those bytes in order to avoid memory check reports of
1589
* the use of uninitialized (or uninitialised as Julian writes) bytes by
1590
* the longest match routines. Update the high water mark for the next
1591
* time through here. WIN_INIT is set to MAX_MATCH since the longest match
1592
* routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1593
*/
1594
if (s->high_water < s->window_size) {
1595
ulg curr = s->strstart + (ulg)(s->lookahead);
1596
ulg init;
1597
1598
if (s->high_water < curr) {
1599
/* Previous high water mark below current data -- zero WIN_INIT
1600
* bytes or up to end of window, whichever is less.
1601
*/
1602
init = s->window_size - curr;
1603
if (init > WIN_INIT)
1604
init = WIN_INIT;
1605
zmemzero(s->window + curr, (unsigned)init);
1606
s->high_water = curr + init;
1607
}
1608
else if (s->high_water < (ulg)curr + WIN_INIT) {
1609
/* High water mark at or above current data, but below current data
1610
* plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1611
* to end of window, whichever is less.
1612
*/
1613
init = (ulg)curr + WIN_INIT - s->high_water;
1614
if (init > s->window_size - s->high_water)
1615
init = s->window_size - s->high_water;
1616
zmemzero(s->window + s->high_water, (unsigned)init);
1617
s->high_water += init;
1618
}
1619
}
1620
1621
Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1622
"not enough room for search");
1623
}
1624
1625
/* ===========================================================================
1626
* Flush the current block, with given end-of-file flag.
1627
* IN assertion: strstart is set to the end of the current match.
1628
*/
1629
#define FLUSH_BLOCK_ONLY(s, last) { \
1630
_tr_flush_block(s, (s->block_start >= 0L ? \
1631
(charf *)&s->window[(unsigned)s->block_start] : \
1632
(charf *)Z_NULL), \
1633
(ulg)((long)s->strstart - s->block_start), \
1634
(last)); \
1635
s->block_start = s->strstart; \
1636
flush_pending(s->strm); \
1637
Tracev((stderr,"[FLUSH]")); \
1638
}
1639
1640
/* Same but force premature exit if necessary. */
1641
#define FLUSH_BLOCK(s, last) { \
1642
FLUSH_BLOCK_ONLY(s, last); \
1643
if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1644
}
1645
1646
/* Maximum stored block length in deflate format (not including header). */
1647
#define MAX_STORED 65535
1648
1649
/* Minimum of a and b. */
1650
#define MIN(a, b) ((a) > (b) ? (b) : (a))
1651
1652
/* ===========================================================================
1653
* Copy without compression as much as possible from the input stream, return
1654
* the current block state.
1655
*
1656
* In case deflateParams() is used to later switch to a non-zero compression
1657
* level, s->matches (otherwise unused when storing) keeps track of the number
1658
* of hash table slides to perform. If s->matches is 1, then one hash table
1659
* slide will be done when switching. If s->matches is 2, the maximum value
1660
* allowed here, then the hash table will be cleared, since two or more slides
1661
* is the same as a clear.
1662
*
1663
* deflate_stored() is written to minimize the number of times an input byte is
1664
* copied. It is most efficient with large input and output buffers, which
1665
* maximizes the opportunites to have a single copy from next_in to next_out.
1666
*/
1667
local block_state deflate_stored(s, flush)
1668
deflate_state *s;
1669
int flush;
1670
{
1671
/* Smallest worthy block size when not flushing or finishing. By default
1672
* this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1673
* large input and output buffers, the stored block size will be larger.
1674
*/
1675
unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1676
1677
/* Copy as many min_block or larger stored blocks directly to next_out as
1678
* possible. If flushing, copy the remaining available input to next_out as
1679
* stored blocks, if there is enough space.
1680
*/
1681
unsigned len, left, have, last = 0;
1682
unsigned used = s->strm->avail_in;
1683
do {
1684
/* Set len to the maximum size block that we can copy directly with the
1685
* available input data and output space. Set left to how much of that
1686
* would be copied from what's left in the window.
1687
*/
1688
len = MAX_STORED; /* maximum deflate stored block length */
1689
have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1690
if (s->strm->avail_out < have) /* need room for header */
1691
break;
1692
/* maximum stored block length that will fit in avail_out: */
1693
have = s->strm->avail_out - have;
1694
left = s->strstart - s->block_start; /* bytes left in window */
1695
if (len > (ulg)left + s->strm->avail_in)
1696
len = left + s->strm->avail_in; /* limit len to the input */
1697
if (len > have)
1698
len = have; /* limit len to the output */
1699
1700
/* If the stored block would be less than min_block in length, or if
1701
* unable to copy all of the available input when flushing, then try
1702
* copying to the window and the pending buffer instead. Also don't
1703
* write an empty block when flushing -- deflate() does that.
1704
*/
1705
if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1706
flush == Z_NO_FLUSH ||
1707
len != left + s->strm->avail_in))
1708
break;
1709
1710
/* Make a dummy stored block in pending to get the header bytes,
1711
* including any pending bits. This also updates the debugging counts.
1712
*/
1713
last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1714
_tr_stored_block(s, (char *)0, 0L, last);
1715
1716
/* Replace the lengths in the dummy stored block with len. */
1717
s->pending_buf[s->pending - 4] = len;
1718
s->pending_buf[s->pending - 3] = len >> 8;
1719
s->pending_buf[s->pending - 2] = ~len;
1720
s->pending_buf[s->pending - 1] = ~len >> 8;
1721
1722
/* Write the stored block header bytes. */
1723
flush_pending(s->strm);
1724
1725
#ifdef ZLIB_DEBUG
1726
/* Update debugging counts for the data about to be copied. */
1727
s->compressed_len += len << 3;
1728
s->bits_sent += len << 3;
1729
#endif
1730
1731
/* Copy uncompressed bytes from the window to next_out. */
1732
if (left) {
1733
if (left > len)
1734
left = len;
1735
zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1736
s->strm->next_out += left;
1737
s->strm->avail_out -= left;
1738
s->strm->total_out += left;
1739
s->block_start += left;
1740
len -= left;
1741
}
1742
1743
/* Copy uncompressed bytes directly from next_in to next_out, updating
1744
* the check value.
1745
*/
1746
if (len) {
1747
read_buf(s->strm, s->strm->next_out, len);
1748
s->strm->next_out += len;
1749
s->strm->avail_out -= len;
1750
s->strm->total_out += len;
1751
}
1752
} while (last == 0);
1753
1754
/* Update the sliding window with the last s->w_size bytes of the copied
1755
* data, or append all of the copied data to the existing window if less
1756
* than s->w_size bytes were copied. Also update the number of bytes to
1757
* insert in the hash tables, in the event that deflateParams() switches to
1758
* a non-zero compression level.
1759
*/
1760
used -= s->strm->avail_in; /* number of input bytes directly copied */
1761
if (used) {
1762
/* If any input was used, then no unused input remains in the window,
1763
* therefore s->block_start == s->strstart.
1764
*/
1765
if (used >= s->w_size) { /* supplant the previous history */
1766
s->matches = 2; /* clear hash */
1767
zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1768
s->strstart = s->w_size;
1769
}
1770
else {
1771
if (s->window_size - s->strstart <= used) {
1772
/* Slide the window down. */
1773
s->strstart -= s->w_size;
1774
zmemcpy(s->window, s->window + s->w_size, s->strstart);
1775
if (s->matches < 2)
1776
s->matches++; /* add a pending slide_hash() */
1777
}
1778
zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1779
s->strstart += used;
1780
}
1781
s->block_start = s->strstart;
1782
s->insert += MIN(used, s->w_size - s->insert);
1783
}
1784
if (s->high_water < s->strstart)
1785
s->high_water = s->strstart;
1786
1787
/* If the last block was written to next_out, then done. */
1788
if (last)
1789
return finish_done;
1790
1791
/* If flushing and all input has been consumed, then done. */
1792
if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1793
s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1794
return block_done;
1795
1796
/* Fill the window with any remaining input. */
1797
have = s->window_size - s->strstart - 1;
1798
if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1799
/* Slide the window down. */
1800
s->block_start -= s->w_size;
1801
s->strstart -= s->w_size;
1802
zmemcpy(s->window, s->window + s->w_size, s->strstart);
1803
if (s->matches < 2)
1804
s->matches++; /* add a pending slide_hash() */
1805
have += s->w_size; /* more space now */
1806
}
1807
if (have > s->strm->avail_in)
1808
have = s->strm->avail_in;
1809
if (have) {
1810
read_buf(s->strm, s->window + s->strstart, have);
1811
s->strstart += have;
1812
}
1813
if (s->high_water < s->strstart)
1814
s->high_water = s->strstart;
1815
1816
/* There was not enough avail_out to write a complete worthy or flushed
1817
* stored block to next_out. Write a stored block to pending instead, if we
1818
* have enough input for a worthy block, or if flushing and there is enough
1819
* room for the remaining input as a stored block in the pending buffer.
1820
*/
1821
have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1822
/* maximum stored block length that will fit in pending: */
1823
have = MIN(s->pending_buf_size - have, MAX_STORED);
1824
min_block = MIN(have, s->w_size);
1825
left = s->strstart - s->block_start;
1826
if (left >= min_block ||
1827
((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1828
s->strm->avail_in == 0 && left <= have)) {
1829
len = MIN(left, have);
1830
last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1831
len == left ? 1 : 0;
1832
_tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1833
s->block_start += len;
1834
flush_pending(s->strm);
1835
}
1836
1837
/* We've done all we can with the available input and output. */
1838
return last ? finish_started : need_more;
1839
}
1840
1841
/* ===========================================================================
1842
* Compress as much as possible from the input stream, return the current
1843
* block state.
1844
* This function does not perform lazy evaluation of matches and inserts
1845
* new strings in the dictionary only for unmatched strings or for short
1846
* matches. It is used only for the fast compression options.
1847
*/
1848
local block_state deflate_fast(s, flush)
1849
deflate_state *s;
1850
int flush;
1851
{
1852
IPos hash_head; /* head of the hash chain */
1853
int bflush; /* set if current block must be flushed */
1854
1855
for (;;) {
1856
/* Make sure that we always have enough lookahead, except
1857
* at the end of the input file. We need MAX_MATCH bytes
1858
* for the next match, plus MIN_MATCH bytes to insert the
1859
* string following the next match.
1860
*/
1861
if (s->lookahead < MIN_LOOKAHEAD) {
1862
fill_window(s);
1863
if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1864
return need_more;
1865
}
1866
if (s->lookahead == 0) break; /* flush the current block */
1867
}
1868
1869
/* Insert the string window[strstart .. strstart+2] in the
1870
* dictionary, and set hash_head to the head of the hash chain:
1871
*/
1872
hash_head = NIL;
1873
if (s->lookahead >= MIN_MATCH) {
1874
INSERT_STRING(s, s->strstart, hash_head);
1875
}
1876
1877
/* Find the longest match, discarding those <= prev_length.
1878
* At this point we have always match_length < MIN_MATCH
1879
*/
1880
if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1881
/* To simplify the code, we prevent matches with the string
1882
* of window index 0 (in particular we have to avoid a match
1883
* of the string with itself at the start of the input file).
1884
*/
1885
s->match_length = longest_match (s, hash_head);
1886
/* longest_match() sets match_start */
1887
}
1888
if (s->match_length >= MIN_MATCH) {
1889
check_match(s, s->strstart, s->match_start, s->match_length);
1890
1891
_tr_tally_dist(s, s->strstart - s->match_start,
1892
s->match_length - MIN_MATCH, bflush);
1893
1894
s->lookahead -= s->match_length;
1895
1896
/* Insert new strings in the hash table only if the match length
1897
* is not too large. This saves time but degrades compression.
1898
*/
1899
#ifndef FASTEST
1900
if (s->match_length <= s->max_insert_length &&
1901
s->lookahead >= MIN_MATCH) {
1902
s->match_length--; /* string at strstart already in table */
1903
do {
1904
s->strstart++;
1905
INSERT_STRING(s, s->strstart, hash_head);
1906
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
1907
* always MIN_MATCH bytes ahead.
1908
*/
1909
} while (--s->match_length != 0);
1910
s->strstart++;
1911
} else
1912
#endif
1913
{
1914
s->strstart += s->match_length;
1915
s->match_length = 0;
1916
s->ins_h = s->window[s->strstart];
1917
UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1918
#if MIN_MATCH != 3
1919
Call UPDATE_HASH() MIN_MATCH-3 more times
1920
#endif
1921
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1922
* matter since it will be recomputed at next deflate call.
1923
*/
1924
}
1925
} else {
1926
/* No match, output a literal byte */
1927
Tracevv((stderr,"%c", s->window[s->strstart]));
1928
_tr_tally_lit (s, s->window[s->strstart], bflush);
1929
s->lookahead--;
1930
s->strstart++;
1931
}
1932
if (bflush) FLUSH_BLOCK(s, 0);
1933
}
1934
s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1935
if (flush == Z_FINISH) {
1936
FLUSH_BLOCK(s, 1);
1937
return finish_done;
1938
}
1939
if (s->last_lit)
1940
FLUSH_BLOCK(s, 0);
1941
return block_done;
1942
}
1943
1944
#ifndef FASTEST
1945
/* ===========================================================================
1946
* Same as above, but achieves better compression. We use a lazy
1947
* evaluation for matches: a match is finally adopted only if there is
1948
* no better match at the next window position.
1949
*/
1950
local block_state deflate_slow(s, flush)
1951
deflate_state *s;
1952
int flush;
1953
{
1954
IPos hash_head; /* head of hash chain */
1955
int bflush; /* set if current block must be flushed */
1956
1957
/* Process the input block. */
1958
for (;;) {
1959
/* Make sure that we always have enough lookahead, except
1960
* at the end of the input file. We need MAX_MATCH bytes
1961
* for the next match, plus MIN_MATCH bytes to insert the
1962
* string following the next match.
1963
*/
1964
if (s->lookahead < MIN_LOOKAHEAD) {
1965
fill_window(s);
1966
if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1967
return need_more;
1968
}
1969
if (s->lookahead == 0) break; /* flush the current block */
1970
}
1971
1972
/* Insert the string window[strstart .. strstart+2] in the
1973
* dictionary, and set hash_head to the head of the hash chain:
1974
*/
1975
hash_head = NIL;
1976
if (s->lookahead >= MIN_MATCH) {
1977
INSERT_STRING(s, s->strstart, hash_head);
1978
}
1979
1980
/* Find the longest match, discarding those <= prev_length.
1981
*/
1982
s->prev_length = s->match_length, s->prev_match = s->match_start;
1983
s->match_length = MIN_MATCH-1;
1984
1985
if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1986
s->strstart - hash_head <= MAX_DIST(s)) {
1987
/* To simplify the code, we prevent matches with the string
1988
* of window index 0 (in particular we have to avoid a match
1989
* of the string with itself at the start of the input file).
1990
*/
1991
s->match_length = longest_match (s, hash_head);
1992
/* longest_match() sets match_start */
1993
1994
if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1995
#if TOO_FAR <= 32767
1996
|| (s->match_length == MIN_MATCH &&
1997
s->strstart - s->match_start > TOO_FAR)
1998
#endif
1999
)) {
2000
2001
/* If prev_match is also MIN_MATCH, match_start is garbage
2002
* but we will ignore the current match anyway.
2003
*/
2004
s->match_length = MIN_MATCH-1;
2005
}
2006
}
2007
/* If there was a match at the previous step and the current
2008
* match is not better, output the previous match:
2009
*/
2010
if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
2011
uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
2012
/* Do not insert strings in hash table beyond this. */
2013
2014
check_match(s, s->strstart-1, s->prev_match, s->prev_length);
2015
2016
_tr_tally_dist(s, s->strstart -1 - s->prev_match,
2017
s->prev_length - MIN_MATCH, bflush);
2018
2019
/* Insert in hash table all strings up to the end of the match.
2020
* strstart-1 and strstart are already inserted. If there is not
2021
* enough lookahead, the last two strings are not inserted in
2022
* the hash table.
2023
*/
2024
s->lookahead -= s->prev_length-1;
2025
s->prev_length -= 2;
2026
do {
2027
if (++s->strstart <= max_insert) {
2028
INSERT_STRING(s, s->strstart, hash_head);
2029
}
2030
} while (--s->prev_length != 0);
2031
s->match_available = 0;
2032
s->match_length = MIN_MATCH-1;
2033
s->strstart++;
2034
2035
if (bflush) FLUSH_BLOCK(s, 0);
2036
2037
} else if (s->match_available) {
2038
/* If there was no match at the previous position, output a
2039
* single literal. If there was a match but the current match
2040
* is longer, truncate the previous match to a single literal.
2041
*/
2042
Tracevv((stderr,"%c", s->window[s->strstart-1]));
2043
_tr_tally_lit(s, s->window[s->strstart-1], bflush);
2044
if (bflush) {
2045
FLUSH_BLOCK_ONLY(s, 0);
2046
}
2047
s->strstart++;
2048
s->lookahead--;
2049
if (s->strm->avail_out == 0) return need_more;
2050
} else {
2051
/* There is no previous match to compare with, wait for
2052
* the next step to decide.
2053
*/
2054
s->match_available = 1;
2055
s->strstart++;
2056
s->lookahead--;
2057
}
2058
}
2059
Assert (flush != Z_NO_FLUSH, "no flush?");
2060
if (s->match_available) {
2061
Tracevv((stderr,"%c", s->window[s->strstart-1]));
2062
_tr_tally_lit(s, s->window[s->strstart-1], bflush);
2063
s->match_available = 0;
2064
}
2065
s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2066
if (flush == Z_FINISH) {
2067
FLUSH_BLOCK(s, 1);
2068
return finish_done;
2069
}
2070
if (s->last_lit)
2071
FLUSH_BLOCK(s, 0);
2072
return block_done;
2073
}
2074
#endif /* FASTEST */
2075
2076
/* ===========================================================================
2077
* For Z_RLE, simply look for runs of bytes, generate matches only of distance
2078
* one. Do not maintain a hash table. (It will be regenerated if this run of
2079
* deflate switches away from Z_RLE.)
2080
*/
2081
local block_state deflate_rle(s, flush)
2082
deflate_state *s;
2083
int flush;
2084
{
2085
int bflush; /* set if current block must be flushed */
2086
uInt prev; /* byte at distance one to match */
2087
Bytef *scan, *strend; /* scan goes up to strend for length of run */
2088
2089
for (;;) {
2090
/* Make sure that we always have enough lookahead, except
2091
* at the end of the input file. We need MAX_MATCH bytes
2092
* for the longest run, plus one for the unrolled loop.
2093
*/
2094
if (s->lookahead <= MAX_MATCH) {
2095
fill_window(s);
2096
if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2097
return need_more;
2098
}
2099
if (s->lookahead == 0) break; /* flush the current block */
2100
}
2101
2102
/* See how many times the previous byte repeats */
2103
s->match_length = 0;
2104
if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2105
scan = s->window + s->strstart - 1;
2106
prev = *scan;
2107
if (prev == *++scan && prev == *++scan && prev == *++scan) {
2108
strend = s->window + s->strstart + MAX_MATCH;
2109
do {
2110
} while (prev == *++scan && prev == *++scan &&
2111
prev == *++scan && prev == *++scan &&
2112
prev == *++scan && prev == *++scan &&
2113
prev == *++scan && prev == *++scan &&
2114
scan < strend);
2115
s->match_length = MAX_MATCH - (uInt)(strend - scan);
2116
if (s->match_length > s->lookahead)
2117
s->match_length = s->lookahead;
2118
}
2119
Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
2120
}
2121
2122
/* Emit match if have run of MIN_MATCH or longer, else emit literal */
2123
if (s->match_length >= MIN_MATCH) {
2124
check_match(s, s->strstart, s->strstart - 1, s->match_length);
2125
2126
_tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2127
2128
s->lookahead -= s->match_length;
2129
s->strstart += s->match_length;
2130
s->match_length = 0;
2131
} else {
2132
/* No match, output a literal byte */
2133
Tracevv((stderr,"%c", s->window[s->strstart]));
2134
_tr_tally_lit (s, s->window[s->strstart], bflush);
2135
s->lookahead--;
2136
s->strstart++;
2137
}
2138
if (bflush) FLUSH_BLOCK(s, 0);
2139
}
2140
s->insert = 0;
2141
if (flush == Z_FINISH) {
2142
FLUSH_BLOCK(s, 1);
2143
return finish_done;
2144
}
2145
if (s->last_lit)
2146
FLUSH_BLOCK(s, 0);
2147
return block_done;
2148
}
2149
2150
/* ===========================================================================
2151
* For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2152
* (It will be regenerated if this run of deflate switches away from Huffman.)
2153
*/
2154
local block_state deflate_huff(s, flush)
2155
deflate_state *s;
2156
int flush;
2157
{
2158
int bflush; /* set if current block must be flushed */
2159
2160
for (;;) {
2161
/* Make sure that we have a literal to write. */
2162
if (s->lookahead == 0) {
2163
fill_window(s);
2164
if (s->lookahead == 0) {
2165
if (flush == Z_NO_FLUSH)
2166
return need_more;
2167
break; /* flush the current block */
2168
}
2169
}
2170
2171
/* Output a literal byte */
2172
s->match_length = 0;
2173
Tracevv((stderr,"%c", s->window[s->strstart]));
2174
_tr_tally_lit (s, s->window[s->strstart], bflush);
2175
s->lookahead--;
2176
s->strstart++;
2177
if (bflush) FLUSH_BLOCK(s, 0);
2178
}
2179
s->insert = 0;
2180
if (flush == Z_FINISH) {
2181
FLUSH_BLOCK(s, 1);
2182
return finish_done;
2183
}
2184
if (s->last_lit)
2185
FLUSH_BLOCK(s, 0);
2186
return block_done;
2187
}
2188
2189