Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/native/libzip/zlib/trees.c
41153 views
1
/*
2
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3
*
4
* This code is free software; you can redistribute it and/or modify it
5
* under the terms of the GNU General Public License version 2 only, as
6
* published by the Free Software Foundation. Oracle designates this
7
* particular file as subject to the "Classpath" exception as provided
8
* by Oracle in the LICENSE file that accompanied this code.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*/
24
25
/* trees.c -- output deflated data using Huffman coding
26
* Copyright (C) 1995-2017 Jean-loup Gailly
27
* detect_data_type() function provided freely by Cosmin Truta, 2006
28
* For conditions of distribution and use, see copyright notice in zlib.h
29
*/
30
31
/*
32
* ALGORITHM
33
*
34
* The "deflation" process uses several Huffman trees. The more
35
* common source values are represented by shorter bit sequences.
36
*
37
* Each code tree is stored in a compressed form which is itself
38
* a Huffman encoding of the lengths of all the code strings (in
39
* ascending order by source values). The actual code strings are
40
* reconstructed from the lengths in the inflate process, as described
41
* in the deflate specification.
42
*
43
* REFERENCES
44
*
45
* Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
46
* Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
47
*
48
* Storer, James A.
49
* Data Compression: Methods and Theory, pp. 49-50.
50
* Computer Science Press, 1988. ISBN 0-7167-8156-5.
51
*
52
* Sedgewick, R.
53
* Algorithms, p290.
54
* Addison-Wesley, 1983. ISBN 0-201-06672-6.
55
*/
56
57
/* @(#) $Id$ */
58
59
/* #define GEN_TREES_H */
60
61
#include "deflate.h"
62
63
#ifdef ZLIB_DEBUG
64
# include <ctype.h>
65
#endif
66
67
/* ===========================================================================
68
* Constants
69
*/
70
71
#define MAX_BL_BITS 7
72
/* Bit length codes must not exceed MAX_BL_BITS bits */
73
74
#define END_BLOCK 256
75
/* end of block literal code */
76
77
#define REP_3_6 16
78
/* repeat previous bit length 3-6 times (2 bits of repeat count) */
79
80
#define REPZ_3_10 17
81
/* repeat a zero length 3-10 times (3 bits of repeat count) */
82
83
#define REPZ_11_138 18
84
/* repeat a zero length 11-138 times (7 bits of repeat count) */
85
86
local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
87
= {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
88
89
local const int extra_dbits[D_CODES] /* extra bits for each distance code */
90
= {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
91
92
local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
93
= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
94
95
local const uch bl_order[BL_CODES]
96
= {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
97
/* The lengths of the bit length codes are sent in order of decreasing
98
* probability, to avoid transmitting the lengths for unused bit length codes.
99
*/
100
101
/* ===========================================================================
102
* Local data. These are initialized only once.
103
*/
104
105
#define DIST_CODE_LEN 512 /* see definition of array dist_code below */
106
107
#if defined(GEN_TREES_H) || !defined(STDC)
108
/* non ANSI compilers may not accept trees.h */
109
110
local ct_data static_ltree[L_CODES+2];
111
/* The static literal tree. Since the bit lengths are imposed, there is no
112
* need for the L_CODES extra codes used during heap construction. However
113
* The codes 286 and 287 are needed to build a canonical tree (see _tr_init
114
* below).
115
*/
116
117
local ct_data static_dtree[D_CODES];
118
/* The static distance tree. (Actually a trivial tree since all codes use
119
* 5 bits.)
120
*/
121
122
uch _dist_code[DIST_CODE_LEN];
123
/* Distance codes. The first 256 values correspond to the distances
124
* 3 .. 258, the last 256 values correspond to the top 8 bits of
125
* the 15 bit distances.
126
*/
127
128
uch _length_code[MAX_MATCH-MIN_MATCH+1];
129
/* length code for each normalized match length (0 == MIN_MATCH) */
130
131
local int base_length[LENGTH_CODES];
132
/* First normalized length for each code (0 = MIN_MATCH) */
133
134
local int base_dist[D_CODES];
135
/* First normalized distance for each code (0 = distance of 1) */
136
137
#else
138
# include "trees.h"
139
#endif /* GEN_TREES_H */
140
141
struct static_tree_desc_s {
142
const ct_data *static_tree; /* static tree or NULL */
143
const intf *extra_bits; /* extra bits for each code or NULL */
144
int extra_base; /* base index for extra_bits */
145
int elems; /* max number of elements in the tree */
146
int max_length; /* max bit length for the codes */
147
};
148
149
local const static_tree_desc static_l_desc =
150
{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
151
152
local const static_tree_desc static_d_desc =
153
{static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
154
155
local const static_tree_desc static_bl_desc =
156
{(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
157
158
/* ===========================================================================
159
* Local (static) routines in this file.
160
*/
161
162
local void tr_static_init OF((void));
163
local void init_block OF((deflate_state *s));
164
local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
165
local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
166
local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
167
local void build_tree OF((deflate_state *s, tree_desc *desc));
168
local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
169
local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
170
local int build_bl_tree OF((deflate_state *s));
171
local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
172
int blcodes));
173
local void compress_block OF((deflate_state *s, const ct_data *ltree,
174
const ct_data *dtree));
175
local int detect_data_type OF((deflate_state *s));
176
local unsigned bi_reverse OF((unsigned value, int length));
177
local void bi_windup OF((deflate_state *s));
178
local void bi_flush OF((deflate_state *s));
179
180
#ifdef GEN_TREES_H
181
local void gen_trees_header OF((void));
182
#endif
183
184
#ifndef ZLIB_DEBUG
185
# define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
186
/* Send a code of the given tree. c and tree must not have side effects */
187
188
#else /* !ZLIB_DEBUG */
189
# define send_code(s, c, tree) \
190
{ if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
191
send_bits(s, tree[c].Code, tree[c].Len); }
192
#endif
193
194
/* ===========================================================================
195
* Output a short LSB first on the stream.
196
* IN assertion: there is enough room in pendingBuf.
197
*/
198
#define put_short(s, w) { \
199
put_byte(s, (uch)((w) & 0xff)); \
200
put_byte(s, (uch)((ush)(w) >> 8)); \
201
}
202
203
/* ===========================================================================
204
* Send a value on a given number of bits.
205
* IN assertion: length <= 16 and value fits in length bits.
206
*/
207
#ifdef ZLIB_DEBUG
208
local void send_bits OF((deflate_state *s, int value, int length));
209
210
local void send_bits(s, value, length)
211
deflate_state *s;
212
int value; /* value to send */
213
int length; /* number of bits */
214
{
215
Tracevv((stderr," l %2d v %4x ", length, value));
216
Assert(length > 0 && length <= 15, "invalid length");
217
s->bits_sent += (ulg)length;
218
219
/* If not enough room in bi_buf, use (valid) bits from bi_buf and
220
* (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
221
* unused bits in value.
222
*/
223
if (s->bi_valid > (int)Buf_size - length) {
224
s->bi_buf |= (ush)value << s->bi_valid;
225
put_short(s, s->bi_buf);
226
s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
227
s->bi_valid += length - Buf_size;
228
} else {
229
s->bi_buf |= (ush)value << s->bi_valid;
230
s->bi_valid += length;
231
}
232
}
233
#else /* !ZLIB_DEBUG */
234
235
#define send_bits(s, value, length) \
236
{ int len = length;\
237
if (s->bi_valid > (int)Buf_size - len) {\
238
int val = (int)value;\
239
s->bi_buf |= (ush)val << s->bi_valid;\
240
put_short(s, s->bi_buf);\
241
s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
242
s->bi_valid += len - Buf_size;\
243
} else {\
244
s->bi_buf |= (ush)(value) << s->bi_valid;\
245
s->bi_valid += len;\
246
}\
247
}
248
#endif /* ZLIB_DEBUG */
249
250
251
/* the arguments must not have side effects */
252
253
/* ===========================================================================
254
* Initialize the various 'constant' tables.
255
*/
256
local void tr_static_init()
257
{
258
#if defined(GEN_TREES_H) || !defined(STDC)
259
static int static_init_done = 0;
260
int n; /* iterates over tree elements */
261
int bits; /* bit counter */
262
int length; /* length value */
263
int code; /* code value */
264
int dist; /* distance index */
265
ush bl_count[MAX_BITS+1];
266
/* number of codes at each bit length for an optimal tree */
267
268
if (static_init_done) return;
269
270
/* For some embedded targets, global variables are not initialized: */
271
#ifdef NO_INIT_GLOBAL_POINTERS
272
static_l_desc.static_tree = static_ltree;
273
static_l_desc.extra_bits = extra_lbits;
274
static_d_desc.static_tree = static_dtree;
275
static_d_desc.extra_bits = extra_dbits;
276
static_bl_desc.extra_bits = extra_blbits;
277
#endif
278
279
/* Initialize the mapping length (0..255) -> length code (0..28) */
280
length = 0;
281
for (code = 0; code < LENGTH_CODES-1; code++) {
282
base_length[code] = length;
283
for (n = 0; n < (1<<extra_lbits[code]); n++) {
284
_length_code[length++] = (uch)code;
285
}
286
}
287
Assert (length == 256, "tr_static_init: length != 256");
288
/* Note that the length 255 (match length 258) can be represented
289
* in two different ways: code 284 + 5 bits or code 285, so we
290
* overwrite length_code[255] to use the best encoding:
291
*/
292
_length_code[length-1] = (uch)code;
293
294
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
295
dist = 0;
296
for (code = 0 ; code < 16; code++) {
297
base_dist[code] = dist;
298
for (n = 0; n < (1<<extra_dbits[code]); n++) {
299
_dist_code[dist++] = (uch)code;
300
}
301
}
302
Assert (dist == 256, "tr_static_init: dist != 256");
303
dist >>= 7; /* from now on, all distances are divided by 128 */
304
for ( ; code < D_CODES; code++) {
305
base_dist[code] = dist << 7;
306
for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
307
_dist_code[256 + dist++] = (uch)code;
308
}
309
}
310
Assert (dist == 256, "tr_static_init: 256+dist != 512");
311
312
/* Construct the codes of the static literal tree */
313
for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
314
n = 0;
315
while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
316
while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
317
while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
318
while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
319
/* Codes 286 and 287 do not exist, but we must include them in the
320
* tree construction to get a canonical Huffman tree (longest code
321
* all ones)
322
*/
323
gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
324
325
/* The static distance tree is trivial: */
326
for (n = 0; n < D_CODES; n++) {
327
static_dtree[n].Len = 5;
328
static_dtree[n].Code = bi_reverse((unsigned)n, 5);
329
}
330
static_init_done = 1;
331
332
# ifdef GEN_TREES_H
333
gen_trees_header();
334
# endif
335
#endif /* defined(GEN_TREES_H) || !defined(STDC) */
336
}
337
338
/* ===========================================================================
339
* Genererate the file trees.h describing the static trees.
340
*/
341
#ifdef GEN_TREES_H
342
# ifndef ZLIB_DEBUG
343
# include <stdio.h>
344
# endif
345
346
# define SEPARATOR(i, last, width) \
347
((i) == (last)? "\n};\n\n" : \
348
((i) % (width) == (width)-1 ? ",\n" : ", "))
349
350
void gen_trees_header()
351
{
352
FILE *header = fopen("trees.h", "w");
353
int i;
354
355
Assert (header != NULL, "Can't open trees.h");
356
fprintf(header,
357
"/* header created automatically with -DGEN_TREES_H */\n\n");
358
359
fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
360
for (i = 0; i < L_CODES+2; i++) {
361
fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
362
static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
363
}
364
365
fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
366
for (i = 0; i < D_CODES; i++) {
367
fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
368
static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
369
}
370
371
fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
372
for (i = 0; i < DIST_CODE_LEN; i++) {
373
fprintf(header, "%2u%s", _dist_code[i],
374
SEPARATOR(i, DIST_CODE_LEN-1, 20));
375
}
376
377
fprintf(header,
378
"const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
379
for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
380
fprintf(header, "%2u%s", _length_code[i],
381
SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
382
}
383
384
fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
385
for (i = 0; i < LENGTH_CODES; i++) {
386
fprintf(header, "%1u%s", base_length[i],
387
SEPARATOR(i, LENGTH_CODES-1, 20));
388
}
389
390
fprintf(header, "local const int base_dist[D_CODES] = {\n");
391
for (i = 0; i < D_CODES; i++) {
392
fprintf(header, "%5u%s", base_dist[i],
393
SEPARATOR(i, D_CODES-1, 10));
394
}
395
396
fclose(header);
397
}
398
#endif /* GEN_TREES_H */
399
400
/* ===========================================================================
401
* Initialize the tree data structures for a new zlib stream.
402
*/
403
void ZLIB_INTERNAL _tr_init(s)
404
deflate_state *s;
405
{
406
tr_static_init();
407
408
s->l_desc.dyn_tree = s->dyn_ltree;
409
s->l_desc.stat_desc = &static_l_desc;
410
411
s->d_desc.dyn_tree = s->dyn_dtree;
412
s->d_desc.stat_desc = &static_d_desc;
413
414
s->bl_desc.dyn_tree = s->bl_tree;
415
s->bl_desc.stat_desc = &static_bl_desc;
416
417
s->bi_buf = 0;
418
s->bi_valid = 0;
419
#ifdef ZLIB_DEBUG
420
s->compressed_len = 0L;
421
s->bits_sent = 0L;
422
#endif
423
424
/* Initialize the first block of the first file: */
425
init_block(s);
426
}
427
428
/* ===========================================================================
429
* Initialize a new block.
430
*/
431
local void init_block(s)
432
deflate_state *s;
433
{
434
int n; /* iterates over tree elements */
435
436
/* Initialize the trees. */
437
for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
438
for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
439
for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
440
441
s->dyn_ltree[END_BLOCK].Freq = 1;
442
s->opt_len = s->static_len = 0L;
443
s->last_lit = s->matches = 0;
444
}
445
446
#define SMALLEST 1
447
/* Index within the heap array of least frequent node in the Huffman tree */
448
449
450
/* ===========================================================================
451
* Remove the smallest element from the heap and recreate the heap with
452
* one less element. Updates heap and heap_len.
453
*/
454
#define pqremove(s, tree, top) \
455
{\
456
top = s->heap[SMALLEST]; \
457
s->heap[SMALLEST] = s->heap[s->heap_len--]; \
458
pqdownheap(s, tree, SMALLEST); \
459
}
460
461
/* ===========================================================================
462
* Compares to subtrees, using the tree depth as tie breaker when
463
* the subtrees have equal frequency. This minimizes the worst case length.
464
*/
465
#define smaller(tree, n, m, depth) \
466
(tree[n].Freq < tree[m].Freq || \
467
(tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
468
469
/* ===========================================================================
470
* Restore the heap property by moving down the tree starting at node k,
471
* exchanging a node with the smallest of its two sons if necessary, stopping
472
* when the heap property is re-established (each father smaller than its
473
* two sons).
474
*/
475
local void pqdownheap(s, tree, k)
476
deflate_state *s;
477
ct_data *tree; /* the tree to restore */
478
int k; /* node to move down */
479
{
480
int v = s->heap[k];
481
int j = k << 1; /* left son of k */
482
while (j <= s->heap_len) {
483
/* Set j to the smallest of the two sons: */
484
if (j < s->heap_len &&
485
smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
486
j++;
487
}
488
/* Exit if v is smaller than both sons */
489
if (smaller(tree, v, s->heap[j], s->depth)) break;
490
491
/* Exchange v with the smallest son */
492
s->heap[k] = s->heap[j]; k = j;
493
494
/* And continue down the tree, setting j to the left son of k */
495
j <<= 1;
496
}
497
s->heap[k] = v;
498
}
499
500
/* ===========================================================================
501
* Compute the optimal bit lengths for a tree and update the total bit length
502
* for the current block.
503
* IN assertion: the fields freq and dad are set, heap[heap_max] and
504
* above are the tree nodes sorted by increasing frequency.
505
* OUT assertions: the field len is set to the optimal bit length, the
506
* array bl_count contains the frequencies for each bit length.
507
* The length opt_len is updated; static_len is also updated if stree is
508
* not null.
509
*/
510
local void gen_bitlen(s, desc)
511
deflate_state *s;
512
tree_desc *desc; /* the tree descriptor */
513
{
514
ct_data *tree = desc->dyn_tree;
515
int max_code = desc->max_code;
516
const ct_data *stree = desc->stat_desc->static_tree;
517
const intf *extra = desc->stat_desc->extra_bits;
518
int base = desc->stat_desc->extra_base;
519
int max_length = desc->stat_desc->max_length;
520
int h; /* heap index */
521
int n, m; /* iterate over the tree elements */
522
int bits; /* bit length */
523
int xbits; /* extra bits */
524
ush f; /* frequency */
525
int overflow = 0; /* number of elements with bit length too large */
526
527
for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
528
529
/* In a first pass, compute the optimal bit lengths (which may
530
* overflow in the case of the bit length tree).
531
*/
532
tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
533
534
for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
535
n = s->heap[h];
536
bits = tree[tree[n].Dad].Len + 1;
537
if (bits > max_length) bits = max_length, overflow++;
538
tree[n].Len = (ush)bits;
539
/* We overwrite tree[n].Dad which is no longer needed */
540
541
if (n > max_code) continue; /* not a leaf node */
542
543
s->bl_count[bits]++;
544
xbits = 0;
545
if (n >= base) xbits = extra[n-base];
546
f = tree[n].Freq;
547
s->opt_len += (ulg)f * (unsigned)(bits + xbits);
548
if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
549
}
550
if (overflow == 0) return;
551
552
Tracev((stderr,"\nbit length overflow\n"));
553
/* This happens for example on obj2 and pic of the Calgary corpus */
554
555
/* Find the first bit length which could increase: */
556
do {
557
bits = max_length-1;
558
while (s->bl_count[bits] == 0) bits--;
559
s->bl_count[bits]--; /* move one leaf down the tree */
560
s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
561
s->bl_count[max_length]--;
562
/* The brother of the overflow item also moves one step up,
563
* but this does not affect bl_count[max_length]
564
*/
565
overflow -= 2;
566
} while (overflow > 0);
567
568
/* Now recompute all bit lengths, scanning in increasing frequency.
569
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
570
* lengths instead of fixing only the wrong ones. This idea is taken
571
* from 'ar' written by Haruhiko Okumura.)
572
*/
573
for (bits = max_length; bits != 0; bits--) {
574
n = s->bl_count[bits];
575
while (n != 0) {
576
m = s->heap[--h];
577
if (m > max_code) continue;
578
if ((unsigned) tree[m].Len != (unsigned) bits) {
579
Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
580
s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
581
tree[m].Len = (ush)bits;
582
}
583
n--;
584
}
585
}
586
}
587
588
/* ===========================================================================
589
* Generate the codes for a given tree and bit counts (which need not be
590
* optimal).
591
* IN assertion: the array bl_count contains the bit length statistics for
592
* the given tree and the field len is set for all tree elements.
593
* OUT assertion: the field code is set for all tree elements of non
594
* zero code length.
595
*/
596
local void gen_codes (tree, max_code, bl_count)
597
ct_data *tree; /* the tree to decorate */
598
int max_code; /* largest code with non zero frequency */
599
ushf *bl_count; /* number of codes at each bit length */
600
{
601
ush next_code[MAX_BITS+1]; /* next code value for each bit length */
602
unsigned code = 0; /* running code value */
603
int bits; /* bit index */
604
int n; /* code index */
605
606
/* The distribution counts are first used to generate the code values
607
* without bit reversal.
608
*/
609
for (bits = 1; bits <= MAX_BITS; bits++) {
610
code = (code + bl_count[bits-1]) << 1;
611
next_code[bits] = (ush)code;
612
}
613
/* Check that the bit counts in bl_count are consistent. The last code
614
* must be all ones.
615
*/
616
Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
617
"inconsistent bit counts");
618
Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
619
620
for (n = 0; n <= max_code; n++) {
621
int len = tree[n].Len;
622
if (len == 0) continue;
623
/* Now reverse the bits */
624
tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
625
626
Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
627
n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
628
}
629
}
630
631
/* ===========================================================================
632
* Construct one Huffman tree and assigns the code bit strings and lengths.
633
* Update the total bit length for the current block.
634
* IN assertion: the field freq is set for all tree elements.
635
* OUT assertions: the fields len and code are set to the optimal bit length
636
* and corresponding code. The length opt_len is updated; static_len is
637
* also updated if stree is not null. The field max_code is set.
638
*/
639
local void build_tree(s, desc)
640
deflate_state *s;
641
tree_desc *desc; /* the tree descriptor */
642
{
643
ct_data *tree = desc->dyn_tree;
644
const ct_data *stree = desc->stat_desc->static_tree;
645
int elems = desc->stat_desc->elems;
646
int n, m; /* iterate over heap elements */
647
int max_code = -1; /* largest code with non zero frequency */
648
int node; /* new node being created */
649
650
/* Construct the initial heap, with least frequent element in
651
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
652
* heap[0] is not used.
653
*/
654
s->heap_len = 0, s->heap_max = HEAP_SIZE;
655
656
for (n = 0; n < elems; n++) {
657
if (tree[n].Freq != 0) {
658
s->heap[++(s->heap_len)] = max_code = n;
659
s->depth[n] = 0;
660
} else {
661
tree[n].Len = 0;
662
}
663
}
664
665
/* The pkzip format requires that at least one distance code exists,
666
* and that at least one bit should be sent even if there is only one
667
* possible code. So to avoid special checks later on we force at least
668
* two codes of non zero frequency.
669
*/
670
while (s->heap_len < 2) {
671
node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
672
tree[node].Freq = 1;
673
s->depth[node] = 0;
674
s->opt_len--; if (stree) s->static_len -= stree[node].Len;
675
/* node is 0 or 1 so it does not have extra bits */
676
}
677
desc->max_code = max_code;
678
679
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
680
* establish sub-heaps of increasing lengths:
681
*/
682
for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
683
684
/* Construct the Huffman tree by repeatedly combining the least two
685
* frequent nodes.
686
*/
687
node = elems; /* next internal node of the tree */
688
do {
689
pqremove(s, tree, n); /* n = node of least frequency */
690
m = s->heap[SMALLEST]; /* m = node of next least frequency */
691
692
s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
693
s->heap[--(s->heap_max)] = m;
694
695
/* Create a new node father of n and m */
696
tree[node].Freq = tree[n].Freq + tree[m].Freq;
697
s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
698
s->depth[n] : s->depth[m]) + 1);
699
tree[n].Dad = tree[m].Dad = (ush)node;
700
#ifdef DUMP_BL_TREE
701
if (tree == s->bl_tree) {
702
fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
703
node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
704
}
705
#endif
706
/* and insert the new node in the heap */
707
s->heap[SMALLEST] = node++;
708
pqdownheap(s, tree, SMALLEST);
709
710
} while (s->heap_len >= 2);
711
712
s->heap[--(s->heap_max)] = s->heap[SMALLEST];
713
714
/* At this point, the fields freq and dad are set. We can now
715
* generate the bit lengths.
716
*/
717
gen_bitlen(s, (tree_desc *)desc);
718
719
/* The field len is now set, we can generate the bit codes */
720
gen_codes ((ct_data *)tree, max_code, s->bl_count);
721
}
722
723
/* ===========================================================================
724
* Scan a literal or distance tree to determine the frequencies of the codes
725
* in the bit length tree.
726
*/
727
local void scan_tree (s, tree, max_code)
728
deflate_state *s;
729
ct_data *tree; /* the tree to be scanned */
730
int max_code; /* and its largest code of non zero frequency */
731
{
732
int n; /* iterates over all tree elements */
733
int prevlen = -1; /* last emitted length */
734
int curlen; /* length of current code */
735
int nextlen = tree[0].Len; /* length of next code */
736
int count = 0; /* repeat count of the current code */
737
int max_count = 7; /* max repeat count */
738
int min_count = 4; /* min repeat count */
739
740
if (nextlen == 0) max_count = 138, min_count = 3;
741
tree[max_code+1].Len = (ush)0xffff; /* guard */
742
743
for (n = 0; n <= max_code; n++) {
744
curlen = nextlen; nextlen = tree[n+1].Len;
745
if (++count < max_count && curlen == nextlen) {
746
continue;
747
} else if (count < min_count) {
748
s->bl_tree[curlen].Freq += count;
749
} else if (curlen != 0) {
750
if (curlen != prevlen) s->bl_tree[curlen].Freq++;
751
s->bl_tree[REP_3_6].Freq++;
752
} else if (count <= 10) {
753
s->bl_tree[REPZ_3_10].Freq++;
754
} else {
755
s->bl_tree[REPZ_11_138].Freq++;
756
}
757
count = 0; prevlen = curlen;
758
if (nextlen == 0) {
759
max_count = 138, min_count = 3;
760
} else if (curlen == nextlen) {
761
max_count = 6, min_count = 3;
762
} else {
763
max_count = 7, min_count = 4;
764
}
765
}
766
}
767
768
/* ===========================================================================
769
* Send a literal or distance tree in compressed form, using the codes in
770
* bl_tree.
771
*/
772
local void send_tree (s, tree, max_code)
773
deflate_state *s;
774
ct_data *tree; /* the tree to be scanned */
775
int max_code; /* and its largest code of non zero frequency */
776
{
777
int n; /* iterates over all tree elements */
778
int prevlen = -1; /* last emitted length */
779
int curlen; /* length of current code */
780
int nextlen = tree[0].Len; /* length of next code */
781
int count = 0; /* repeat count of the current code */
782
int max_count = 7; /* max repeat count */
783
int min_count = 4; /* min repeat count */
784
785
/* tree[max_code+1].Len = -1; */ /* guard already set */
786
if (nextlen == 0) max_count = 138, min_count = 3;
787
788
for (n = 0; n <= max_code; n++) {
789
curlen = nextlen; nextlen = tree[n+1].Len;
790
if (++count < max_count && curlen == nextlen) {
791
continue;
792
} else if (count < min_count) {
793
do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
794
795
} else if (curlen != 0) {
796
if (curlen != prevlen) {
797
send_code(s, curlen, s->bl_tree); count--;
798
}
799
Assert(count >= 3 && count <= 6, " 3_6?");
800
send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
801
802
} else if (count <= 10) {
803
send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
804
805
} else {
806
send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
807
}
808
count = 0; prevlen = curlen;
809
if (nextlen == 0) {
810
max_count = 138, min_count = 3;
811
} else if (curlen == nextlen) {
812
max_count = 6, min_count = 3;
813
} else {
814
max_count = 7, min_count = 4;
815
}
816
}
817
}
818
819
/* ===========================================================================
820
* Construct the Huffman tree for the bit lengths and return the index in
821
* bl_order of the last bit length code to send.
822
*/
823
local int build_bl_tree(s)
824
deflate_state *s;
825
{
826
int max_blindex; /* index of last bit length code of non zero freq */
827
828
/* Determine the bit length frequencies for literal and distance trees */
829
scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
830
scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
831
832
/* Build the bit length tree: */
833
build_tree(s, (tree_desc *)(&(s->bl_desc)));
834
/* opt_len now includes the length of the tree representations, except
835
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
836
*/
837
838
/* Determine the number of bit length codes to send. The pkzip format
839
* requires that at least 4 bit length codes be sent. (appnote.txt says
840
* 3 but the actual value used is 4.)
841
*/
842
for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
843
if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
844
}
845
/* Update opt_len to include the bit length tree and counts */
846
s->opt_len += 3*((ulg)max_blindex+1) + 5+5+4;
847
Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
848
s->opt_len, s->static_len));
849
850
return max_blindex;
851
}
852
853
/* ===========================================================================
854
* Send the header for a block using dynamic Huffman trees: the counts, the
855
* lengths of the bit length codes, the literal tree and the distance tree.
856
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
857
*/
858
local void send_all_trees(s, lcodes, dcodes, blcodes)
859
deflate_state *s;
860
int lcodes, dcodes, blcodes; /* number of codes for each tree */
861
{
862
int rank; /* index in bl_order */
863
864
Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
865
Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
866
"too many codes");
867
Tracev((stderr, "\nbl counts: "));
868
send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
869
send_bits(s, dcodes-1, 5);
870
send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
871
for (rank = 0; rank < blcodes; rank++) {
872
Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
873
send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
874
}
875
Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
876
877
send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
878
Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
879
880
send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
881
Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
882
}
883
884
/* ===========================================================================
885
* Send a stored block
886
*/
887
void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
888
deflate_state *s;
889
charf *buf; /* input block */
890
ulg stored_len; /* length of input block */
891
int last; /* one if this is the last block for a file */
892
{
893
send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */
894
bi_windup(s); /* align on byte boundary */
895
put_short(s, (ush)stored_len);
896
put_short(s, (ush)~stored_len);
897
zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
898
s->pending += stored_len;
899
#ifdef ZLIB_DEBUG
900
s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
901
s->compressed_len += (stored_len + 4) << 3;
902
s->bits_sent += 2*16;
903
s->bits_sent += stored_len<<3;
904
#endif
905
}
906
907
/* ===========================================================================
908
* Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
909
*/
910
void ZLIB_INTERNAL _tr_flush_bits(s)
911
deflate_state *s;
912
{
913
bi_flush(s);
914
}
915
916
/* ===========================================================================
917
* Send one empty static block to give enough lookahead for inflate.
918
* This takes 10 bits, of which 7 may remain in the bit buffer.
919
*/
920
void ZLIB_INTERNAL _tr_align(s)
921
deflate_state *s;
922
{
923
send_bits(s, STATIC_TREES<<1, 3);
924
send_code(s, END_BLOCK, static_ltree);
925
#ifdef ZLIB_DEBUG
926
s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
927
#endif
928
bi_flush(s);
929
}
930
931
/* ===========================================================================
932
* Determine the best encoding for the current block: dynamic trees, static
933
* trees or store, and write out the encoded block.
934
*/
935
void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
936
deflate_state *s;
937
charf *buf; /* input block, or NULL if too old */
938
ulg stored_len; /* length of input block */
939
int last; /* one if this is the last block for a file */
940
{
941
ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
942
int max_blindex = 0; /* index of last bit length code of non zero freq */
943
944
/* Build the Huffman trees unless a stored block is forced */
945
if (s->level > 0) {
946
947
/* Check if the file is binary or text */
948
if (s->strm->data_type == Z_UNKNOWN)
949
s->strm->data_type = detect_data_type(s);
950
951
/* Construct the literal and distance trees */
952
build_tree(s, (tree_desc *)(&(s->l_desc)));
953
Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
954
s->static_len));
955
956
build_tree(s, (tree_desc *)(&(s->d_desc)));
957
Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
958
s->static_len));
959
/* At this point, opt_len and static_len are the total bit lengths of
960
* the compressed block data, excluding the tree representations.
961
*/
962
963
/* Build the bit length tree for the above two trees, and get the index
964
* in bl_order of the last bit length code to send.
965
*/
966
max_blindex = build_bl_tree(s);
967
968
/* Determine the best encoding. Compute the block lengths in bytes. */
969
opt_lenb = (s->opt_len+3+7)>>3;
970
static_lenb = (s->static_len+3+7)>>3;
971
972
Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
973
opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
974
s->last_lit));
975
976
if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
977
978
} else {
979
Assert(buf != (char*)0, "lost buf");
980
opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
981
}
982
983
#ifdef FORCE_STORED
984
if (buf != (char*)0) { /* force stored block */
985
#else
986
if (stored_len+4 <= opt_lenb && buf != (char*)0) {
987
/* 4: two words for the lengths */
988
#endif
989
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
990
* Otherwise we can't have processed more than WSIZE input bytes since
991
* the last block flush, because compression would have been
992
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
993
* transform a block into a stored block.
994
*/
995
_tr_stored_block(s, buf, stored_len, last);
996
997
#ifdef FORCE_STATIC
998
} else if (static_lenb >= 0) { /* force static trees */
999
#else
1000
} else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
1001
#endif
1002
send_bits(s, (STATIC_TREES<<1)+last, 3);
1003
compress_block(s, (const ct_data *)static_ltree,
1004
(const ct_data *)static_dtree);
1005
#ifdef ZLIB_DEBUG
1006
s->compressed_len += 3 + s->static_len;
1007
#endif
1008
} else {
1009
send_bits(s, (DYN_TREES<<1)+last, 3);
1010
send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
1011
max_blindex+1);
1012
compress_block(s, (const ct_data *)s->dyn_ltree,
1013
(const ct_data *)s->dyn_dtree);
1014
#ifdef ZLIB_DEBUG
1015
s->compressed_len += 3 + s->opt_len;
1016
#endif
1017
}
1018
Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1019
/* The above check is made mod 2^32, for files larger than 512 MB
1020
* and uLong implemented on 32 bits.
1021
*/
1022
init_block(s);
1023
1024
if (last) {
1025
bi_windup(s);
1026
#ifdef ZLIB_DEBUG
1027
s->compressed_len += 7; /* align on byte boundary */
1028
#endif
1029
}
1030
Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1031
s->compressed_len-7*last));
1032
}
1033
1034
/* ===========================================================================
1035
* Save the match info and tally the frequency counts. Return true if
1036
* the current block must be flushed.
1037
*/
1038
int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1039
deflate_state *s;
1040
unsigned dist; /* distance of matched string */
1041
unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1042
{
1043
s->d_buf[s->last_lit] = (ush)dist;
1044
s->l_buf[s->last_lit++] = (uch)lc;
1045
if (dist == 0) {
1046
/* lc is the unmatched char */
1047
s->dyn_ltree[lc].Freq++;
1048
} else {
1049
s->matches++;
1050
/* Here, lc is the match length - MIN_MATCH */
1051
dist--; /* dist = match distance - 1 */
1052
Assert((ush)dist < (ush)MAX_DIST(s) &&
1053
(ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1054
(ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1055
1056
s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1057
s->dyn_dtree[d_code(dist)].Freq++;
1058
}
1059
1060
#ifdef TRUNCATE_BLOCK
1061
/* Try to guess if it is profitable to stop the current block here */
1062
if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1063
/* Compute an upper bound for the compressed length */
1064
ulg out_length = (ulg)s->last_lit*8L;
1065
ulg in_length = (ulg)((long)s->strstart - s->block_start);
1066
int dcode;
1067
for (dcode = 0; dcode < D_CODES; dcode++) {
1068
out_length += (ulg)s->dyn_dtree[dcode].Freq *
1069
(5L+extra_dbits[dcode]);
1070
}
1071
out_length >>= 3;
1072
Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1073
s->last_lit, in_length, out_length,
1074
100L - out_length*100L/in_length));
1075
if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1076
}
1077
#endif
1078
return (s->last_lit == s->lit_bufsize-1);
1079
/* We avoid equality with lit_bufsize because of wraparound at 64K
1080
* on 16 bit machines and because stored blocks are restricted to
1081
* 64K-1 bytes.
1082
*/
1083
}
1084
1085
/* ===========================================================================
1086
* Send the block data compressed using the given Huffman trees
1087
*/
1088
local void compress_block(s, ltree, dtree)
1089
deflate_state *s;
1090
const ct_data *ltree; /* literal tree */
1091
const ct_data *dtree; /* distance tree */
1092
{
1093
unsigned dist; /* distance of matched string */
1094
int lc; /* match length or unmatched char (if dist == 0) */
1095
unsigned lx = 0; /* running index in l_buf */
1096
unsigned code; /* the code to send */
1097
int extra; /* number of extra bits to send */
1098
1099
if (s->last_lit != 0) do {
1100
dist = s->d_buf[lx];
1101
lc = s->l_buf[lx++];
1102
if (dist == 0) {
1103
send_code(s, lc, ltree); /* send a literal byte */
1104
Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1105
} else {
1106
/* Here, lc is the match length - MIN_MATCH */
1107
code = _length_code[lc];
1108
send_code(s, code+LITERALS+1, ltree); /* send the length code */
1109
extra = extra_lbits[code];
1110
if (extra != 0) {
1111
lc -= base_length[code];
1112
send_bits(s, lc, extra); /* send the extra length bits */
1113
}
1114
dist--; /* dist is now the match distance - 1 */
1115
code = d_code(dist);
1116
Assert (code < D_CODES, "bad d_code");
1117
1118
send_code(s, code, dtree); /* send the distance code */
1119
extra = extra_dbits[code];
1120
if (extra != 0) {
1121
dist -= (unsigned)base_dist[code];
1122
send_bits(s, dist, extra); /* send the extra distance bits */
1123
}
1124
} /* literal or match pair ? */
1125
1126
/* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1127
Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1128
"pendingBuf overflow");
1129
1130
} while (lx < s->last_lit);
1131
1132
send_code(s, END_BLOCK, ltree);
1133
}
1134
1135
/* ===========================================================================
1136
* Check if the data type is TEXT or BINARY, using the following algorithm:
1137
* - TEXT if the two conditions below are satisfied:
1138
* a) There are no non-portable control characters belonging to the
1139
* "black list" (0..6, 14..25, 28..31).
1140
* b) There is at least one printable character belonging to the
1141
* "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1142
* - BINARY otherwise.
1143
* - The following partially-portable control characters form a
1144
* "gray list" that is ignored in this detection algorithm:
1145
* (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1146
* IN assertion: the fields Freq of dyn_ltree are set.
1147
*/
1148
local int detect_data_type(s)
1149
deflate_state *s;
1150
{
1151
/* black_mask is the bit mask of black-listed bytes
1152
* set bits 0..6, 14..25, and 28..31
1153
* 0xf3ffc07f = binary 11110011111111111100000001111111
1154
*/
1155
unsigned long black_mask = 0xf3ffc07fUL;
1156
int n;
1157
1158
/* Check for non-textual ("black-listed") bytes. */
1159
for (n = 0; n <= 31; n++, black_mask >>= 1)
1160
if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1161
return Z_BINARY;
1162
1163
/* Check for textual ("white-listed") bytes. */
1164
if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1165
|| s->dyn_ltree[13].Freq != 0)
1166
return Z_TEXT;
1167
for (n = 32; n < LITERALS; n++)
1168
if (s->dyn_ltree[n].Freq != 0)
1169
return Z_TEXT;
1170
1171
/* There are no "black-listed" or "white-listed" bytes:
1172
* this stream either is empty or has tolerated ("gray-listed") bytes only.
1173
*/
1174
return Z_BINARY;
1175
}
1176
1177
/* ===========================================================================
1178
* Reverse the first len bits of a code, using straightforward code (a faster
1179
* method would use a table)
1180
* IN assertion: 1 <= len <= 15
1181
*/
1182
local unsigned bi_reverse(code, len)
1183
unsigned code; /* the value to invert */
1184
int len; /* its bit length */
1185
{
1186
register unsigned res = 0;
1187
do {
1188
res |= code & 1;
1189
code >>= 1, res <<= 1;
1190
} while (--len > 0);
1191
return res >> 1;
1192
}
1193
1194
/* ===========================================================================
1195
* Flush the bit buffer, keeping at most 7 bits in it.
1196
*/
1197
local void bi_flush(s)
1198
deflate_state *s;
1199
{
1200
if (s->bi_valid == 16) {
1201
put_short(s, s->bi_buf);
1202
s->bi_buf = 0;
1203
s->bi_valid = 0;
1204
} else if (s->bi_valid >= 8) {
1205
put_byte(s, (Byte)s->bi_buf);
1206
s->bi_buf >>= 8;
1207
s->bi_valid -= 8;
1208
}
1209
}
1210
1211
/* ===========================================================================
1212
* Flush the bit buffer and align the output on a byte boundary
1213
*/
1214
local void bi_windup(s)
1215
deflate_state *s;
1216
{
1217
if (s->bi_valid > 8) {
1218
put_short(s, s->bi_buf);
1219
} else if (s->bi_valid > 0) {
1220
put_byte(s, (Byte)s->bi_buf);
1221
}
1222
s->bi_buf = 0;
1223
s->bi_valid = 0;
1224
#ifdef ZLIB_DEBUG
1225
s->bits_sent = (s->bits_sent+7) & ~7;
1226
#endif
1227
}
1228
1229