Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/native/libzip/zlib/zadler32.c
41153 views
1
/*
2
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3
*
4
* This code is free software; you can redistribute it and/or modify it
5
* under the terms of the GNU General Public License version 2 only, as
6
* published by the Free Software Foundation. Oracle designates this
7
* particular file as subject to the "Classpath" exception as provided
8
* by Oracle in the LICENSE file that accompanied this code.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*/
24
25
/* adler32.c -- compute the Adler-32 checksum of a data stream
26
* Copyright (C) 1995-2011, 2016 Mark Adler
27
* For conditions of distribution and use, see copyright notice in zlib.h
28
*/
29
30
/* @(#) $Id$ */
31
32
#include "zutil.h"
33
34
local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2));
35
36
#define BASE 65521U /* largest prime smaller than 65536 */
37
#define NMAX 5552
38
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
39
40
#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
41
#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
42
#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
43
#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
44
#define DO16(buf) DO8(buf,0); DO8(buf,8);
45
46
/* use NO_DIVIDE if your processor does not do division in hardware --
47
try it both ways to see which is faster */
48
#ifdef NO_DIVIDE
49
/* note that this assumes BASE is 65521, where 65536 % 65521 == 15
50
(thank you to John Reiser for pointing this out) */
51
# define CHOP(a) \
52
do { \
53
unsigned long tmp = a >> 16; \
54
a &= 0xffffUL; \
55
a += (tmp << 4) - tmp; \
56
} while (0)
57
# define MOD28(a) \
58
do { \
59
CHOP(a); \
60
if (a >= BASE) a -= BASE; \
61
} while (0)
62
# define MOD(a) \
63
do { \
64
CHOP(a); \
65
MOD28(a); \
66
} while (0)
67
# define MOD63(a) \
68
do { /* this assumes a is not negative */ \
69
z_off64_t tmp = a >> 32; \
70
a &= 0xffffffffL; \
71
a += (tmp << 8) - (tmp << 5) + tmp; \
72
tmp = a >> 16; \
73
a &= 0xffffL; \
74
a += (tmp << 4) - tmp; \
75
tmp = a >> 16; \
76
a &= 0xffffL; \
77
a += (tmp << 4) - tmp; \
78
if (a >= BASE) a -= BASE; \
79
} while (0)
80
#else
81
# define MOD(a) a %= BASE
82
# define MOD28(a) a %= BASE
83
# define MOD63(a) a %= BASE
84
#endif
85
86
/* ========================================================================= */
87
uLong ZEXPORT adler32_z(adler, buf, len)
88
uLong adler;
89
const Bytef *buf;
90
z_size_t len;
91
{
92
unsigned long sum2;
93
unsigned n;
94
95
/* split Adler-32 into component sums */
96
sum2 = (adler >> 16) & 0xffff;
97
adler &= 0xffff;
98
99
/* in case user likes doing a byte at a time, keep it fast */
100
if (len == 1) {
101
adler += buf[0];
102
if (adler >= BASE)
103
adler -= BASE;
104
sum2 += adler;
105
if (sum2 >= BASE)
106
sum2 -= BASE;
107
return adler | (sum2 << 16);
108
}
109
110
/* initial Adler-32 value (deferred check for len == 1 speed) */
111
if (buf == Z_NULL)
112
return 1L;
113
114
/* in case short lengths are provided, keep it somewhat fast */
115
if (len < 16) {
116
while (len--) {
117
adler += *buf++;
118
sum2 += adler;
119
}
120
if (adler >= BASE)
121
adler -= BASE;
122
MOD28(sum2); /* only added so many BASE's */
123
return adler | (sum2 << 16);
124
}
125
126
/* do length NMAX blocks -- requires just one modulo operation */
127
while (len >= NMAX) {
128
len -= NMAX;
129
n = NMAX / 16; /* NMAX is divisible by 16 */
130
do {
131
DO16(buf); /* 16 sums unrolled */
132
buf += 16;
133
} while (--n);
134
MOD(adler);
135
MOD(sum2);
136
}
137
138
/* do remaining bytes (less than NMAX, still just one modulo) */
139
if (len) { /* avoid modulos if none remaining */
140
while (len >= 16) {
141
len -= 16;
142
DO16(buf);
143
buf += 16;
144
}
145
while (len--) {
146
adler += *buf++;
147
sum2 += adler;
148
}
149
MOD(adler);
150
MOD(sum2);
151
}
152
153
/* return recombined sums */
154
return adler | (sum2 << 16);
155
}
156
157
/* ========================================================================= */
158
uLong ZEXPORT adler32(adler, buf, len)
159
uLong adler;
160
const Bytef *buf;
161
uInt len;
162
{
163
return adler32_z(adler, buf, len);
164
}
165
166
/* ========================================================================= */
167
local uLong adler32_combine_(adler1, adler2, len2)
168
uLong adler1;
169
uLong adler2;
170
z_off64_t len2;
171
{
172
unsigned long sum1;
173
unsigned long sum2;
174
unsigned rem;
175
176
/* for negative len, return invalid adler32 as a clue for debugging */
177
if (len2 < 0)
178
return 0xffffffffUL;
179
180
/* the derivation of this formula is left as an exercise for the reader */
181
MOD63(len2); /* assumes len2 >= 0 */
182
rem = (unsigned)len2;
183
sum1 = adler1 & 0xffff;
184
sum2 = rem * sum1;
185
MOD(sum2);
186
sum1 += (adler2 & 0xffff) + BASE - 1;
187
sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
188
if (sum1 >= BASE) sum1 -= BASE;
189
if (sum1 >= BASE) sum1 -= BASE;
190
if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
191
if (sum2 >= BASE) sum2 -= BASE;
192
return sum1 | (sum2 << 16);
193
}
194
195
/* ========================================================================= */
196
uLong ZEXPORT adler32_combine(adler1, adler2, len2)
197
uLong adler1;
198
uLong adler2;
199
z_off_t len2;
200
{
201
return adler32_combine_(adler1, adler2, len2);
202
}
203
204
uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
205
uLong adler1;
206
uLong adler2;
207
z_off64_t len2;
208
{
209
return adler32_combine_(adler1, adler2, len2);
210
}
211
212