Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.base/share/native/libzip/zlib/zcrc32.c
41153 views
1
/*
2
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3
*
4
* This code is free software; you can redistribute it and/or modify it
5
* under the terms of the GNU General Public License version 2 only, as
6
* published by the Free Software Foundation. Oracle designates this
7
* particular file as subject to the "Classpath" exception as provided
8
* by Oracle in the LICENSE file that accompanied this code.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*/
24
25
/* crc32.c -- compute the CRC-32 of a data stream
26
* Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler
27
* For conditions of distribution and use, see copyright notice in zlib.h
28
*
29
* Thanks to Rodney Brown <[email protected]> for his contribution of faster
30
* CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
31
* tables for updating the shift register in one step with three exclusive-ors
32
* instead of four steps with four exclusive-ors. This results in about a
33
* factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
34
*/
35
36
/* @(#) $Id$ */
37
38
/*
39
Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
40
protection on the static variables used to control the first-use generation
41
of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
42
first call get_crc_table() to initialize the tables before allowing more than
43
one thread to use crc32().
44
45
DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
46
*/
47
48
#ifdef MAKECRCH
49
# include <stdio.h>
50
# ifndef DYNAMIC_CRC_TABLE
51
# define DYNAMIC_CRC_TABLE
52
# endif /* !DYNAMIC_CRC_TABLE */
53
#endif /* MAKECRCH */
54
55
#include "zutil.h" /* for STDC and FAR definitions */
56
57
/* Definitions for doing the crc four data bytes at a time. */
58
#if !defined(NOBYFOUR) && defined(Z_U4)
59
# define BYFOUR
60
#endif
61
#ifdef BYFOUR
62
local unsigned long crc32_little OF((unsigned long,
63
const unsigned char FAR *, z_size_t));
64
local unsigned long crc32_big OF((unsigned long,
65
const unsigned char FAR *, z_size_t));
66
# define TBLS 8
67
#else
68
# define TBLS 1
69
#endif /* BYFOUR */
70
71
/* Local functions for crc concatenation */
72
local unsigned long gf2_matrix_times OF((unsigned long *mat,
73
unsigned long vec));
74
local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
75
local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
76
77
78
#ifdef DYNAMIC_CRC_TABLE
79
80
local volatile int crc_table_empty = 1;
81
local z_crc_t FAR crc_table[TBLS][256];
82
local void make_crc_table OF((void));
83
#ifdef MAKECRCH
84
local void write_table OF((FILE *, const z_crc_t FAR *));
85
#endif /* MAKECRCH */
86
/*
87
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
88
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
89
90
Polynomials over GF(2) are represented in binary, one bit per coefficient,
91
with the lowest powers in the most significant bit. Then adding polynomials
92
is just exclusive-or, and multiplying a polynomial by x is a right shift by
93
one. If we call the above polynomial p, and represent a byte as the
94
polynomial q, also with the lowest power in the most significant bit (so the
95
byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
96
where a mod b means the remainder after dividing a by b.
97
98
This calculation is done using the shift-register method of multiplying and
99
taking the remainder. The register is initialized to zero, and for each
100
incoming bit, x^32 is added mod p to the register if the bit is a one (where
101
x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
102
x (which is shifting right by one and adding x^32 mod p if the bit shifted
103
out is a one). We start with the highest power (least significant bit) of
104
q and repeat for all eight bits of q.
105
106
The first table is simply the CRC of all possible eight bit values. This is
107
all the information needed to generate CRCs on data a byte at a time for all
108
combinations of CRC register values and incoming bytes. The remaining tables
109
allow for word-at-a-time CRC calculation for both big-endian and little-
110
endian machines, where a word is four bytes.
111
*/
112
local void make_crc_table()
113
{
114
z_crc_t c;
115
int n, k;
116
z_crc_t poly; /* polynomial exclusive-or pattern */
117
/* terms of polynomial defining this crc (except x^32): */
118
static volatile int first = 1; /* flag to limit concurrent making */
119
static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
120
121
/* See if another task is already doing this (not thread-safe, but better
122
than nothing -- significantly reduces duration of vulnerability in
123
case the advice about DYNAMIC_CRC_TABLE is ignored) */
124
if (first) {
125
first = 0;
126
127
/* make exclusive-or pattern from polynomial (0xedb88320UL) */
128
poly = 0;
129
for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
130
poly |= (z_crc_t)1 << (31 - p[n]);
131
132
/* generate a crc for every 8-bit value */
133
for (n = 0; n < 256; n++) {
134
c = (z_crc_t)n;
135
for (k = 0; k < 8; k++)
136
c = c & 1 ? poly ^ (c >> 1) : c >> 1;
137
crc_table[0][n] = c;
138
}
139
140
#ifdef BYFOUR
141
/* generate crc for each value followed by one, two, and three zeros,
142
and then the byte reversal of those as well as the first table */
143
for (n = 0; n < 256; n++) {
144
c = crc_table[0][n];
145
crc_table[4][n] = ZSWAP32(c);
146
for (k = 1; k < 4; k++) {
147
c = crc_table[0][c & 0xff] ^ (c >> 8);
148
crc_table[k][n] = c;
149
crc_table[k + 4][n] = ZSWAP32(c);
150
}
151
}
152
#endif /* BYFOUR */
153
154
crc_table_empty = 0;
155
}
156
else { /* not first */
157
/* wait for the other guy to finish (not efficient, but rare) */
158
while (crc_table_empty)
159
;
160
}
161
162
#ifdef MAKECRCH
163
/* write out CRC tables to crc32.h */
164
{
165
FILE *out;
166
167
out = fopen("crc32.h", "w");
168
if (out == NULL) return;
169
fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
170
fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
171
fprintf(out, "local const z_crc_t FAR ");
172
fprintf(out, "crc_table[TBLS][256] =\n{\n {\n");
173
write_table(out, crc_table[0]);
174
# ifdef BYFOUR
175
fprintf(out, "#ifdef BYFOUR\n");
176
for (k = 1; k < 8; k++) {
177
fprintf(out, " },\n {\n");
178
write_table(out, crc_table[k]);
179
}
180
fprintf(out, "#endif\n");
181
# endif /* BYFOUR */
182
fprintf(out, " }\n};\n");
183
fclose(out);
184
}
185
#endif /* MAKECRCH */
186
}
187
188
#ifdef MAKECRCH
189
local void write_table(out, table)
190
FILE *out;
191
const z_crc_t FAR *table;
192
{
193
int n;
194
195
for (n = 0; n < 256; n++)
196
fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ",
197
(unsigned long)(table[n]),
198
n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
199
}
200
#endif /* MAKECRCH */
201
202
#else /* !DYNAMIC_CRC_TABLE */
203
/* ========================================================================
204
* Tables of CRC-32s of all single-byte values, made by make_crc_table().
205
*/
206
#include "crc32.h"
207
#endif /* DYNAMIC_CRC_TABLE */
208
209
/* =========================================================================
210
* This function can be used by asm versions of crc32()
211
*/
212
const z_crc_t FAR * ZEXPORT get_crc_table()
213
{
214
#ifdef DYNAMIC_CRC_TABLE
215
if (crc_table_empty)
216
make_crc_table();
217
#endif /* DYNAMIC_CRC_TABLE */
218
return (const z_crc_t FAR *)crc_table;
219
}
220
221
/* ========================================================================= */
222
#define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
223
#define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
224
225
/* ========================================================================= */
226
uLong ZEXPORT crc32_z(crc, buf, len)
227
uLong crc;
228
const unsigned char FAR *buf;
229
z_size_t len;
230
{
231
if (buf == Z_NULL) return 0UL;
232
233
#ifdef DYNAMIC_CRC_TABLE
234
if (crc_table_empty)
235
make_crc_table();
236
#endif /* DYNAMIC_CRC_TABLE */
237
238
#ifdef BYFOUR
239
if (sizeof(void *) == sizeof(ptrdiff_t)) {
240
z_crc_t endian;
241
242
endian = 1;
243
if (*((unsigned char *)(&endian)))
244
return (uLong)crc32_little(crc, buf, len);
245
else
246
return (uLong)crc32_big(crc, buf, len);
247
}
248
#endif /* BYFOUR */
249
crc = crc ^ 0xffffffffUL;
250
while (len >= 8) {
251
DO8;
252
len -= 8;
253
}
254
if (len) do {
255
DO1;
256
} while (--len);
257
return crc ^ 0xffffffffUL;
258
}
259
260
/* ========================================================================= */
261
uLong ZEXPORT crc32(crc, buf, len)
262
uLong crc;
263
const unsigned char FAR *buf;
264
uInt len;
265
{
266
return crc32_z(crc, buf, len);
267
}
268
269
#ifdef BYFOUR
270
271
/*
272
This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit
273
integer pointer type. This violates the strict aliasing rule, where a
274
compiler can assume, for optimization purposes, that two pointers to
275
fundamentally different types won't ever point to the same memory. This can
276
manifest as a problem only if one of the pointers is written to. This code
277
only reads from those pointers. So long as this code remains isolated in
278
this compilation unit, there won't be a problem. For this reason, this code
279
should not be copied and pasted into a compilation unit in which other code
280
writes to the buffer that is passed to these routines.
281
*/
282
283
/* ========================================================================= */
284
#define DOLIT4 c ^= *buf4++; \
285
c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
286
crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
287
#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
288
289
/* ========================================================================= */
290
local unsigned long crc32_little(crc, buf, len)
291
unsigned long crc;
292
const unsigned char FAR *buf;
293
z_size_t len;
294
{
295
register z_crc_t c;
296
register const z_crc_t FAR *buf4;
297
298
c = (z_crc_t)crc;
299
c = ~c;
300
while (len && ((ptrdiff_t)buf & 3)) {
301
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
302
len--;
303
}
304
305
buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
306
while (len >= 32) {
307
DOLIT32;
308
len -= 32;
309
}
310
while (len >= 4) {
311
DOLIT4;
312
len -= 4;
313
}
314
buf = (const unsigned char FAR *)buf4;
315
316
if (len) do {
317
c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
318
} while (--len);
319
c = ~c;
320
return (unsigned long)c;
321
}
322
323
/* ========================================================================= */
324
#define DOBIG4 c ^= *buf4++; \
325
c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
326
crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
327
#define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
328
329
/* ========================================================================= */
330
local unsigned long crc32_big(crc, buf, len)
331
unsigned long crc;
332
const unsigned char FAR *buf;
333
z_size_t len;
334
{
335
register z_crc_t c;
336
register const z_crc_t FAR *buf4;
337
338
c = ZSWAP32((z_crc_t)crc);
339
c = ~c;
340
while (len && ((ptrdiff_t)buf & 3)) {
341
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
342
len--;
343
}
344
345
buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
346
while (len >= 32) {
347
DOBIG32;
348
len -= 32;
349
}
350
while (len >= 4) {
351
DOBIG4;
352
len -= 4;
353
}
354
buf = (const unsigned char FAR *)buf4;
355
356
if (len) do {
357
c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
358
} while (--len);
359
c = ~c;
360
return (unsigned long)(ZSWAP32(c));
361
}
362
363
#endif /* BYFOUR */
364
365
#define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */
366
367
/* ========================================================================= */
368
local unsigned long gf2_matrix_times(mat, vec)
369
unsigned long *mat;
370
unsigned long vec;
371
{
372
unsigned long sum;
373
374
sum = 0;
375
while (vec) {
376
if (vec & 1)
377
sum ^= *mat;
378
vec >>= 1;
379
mat++;
380
}
381
return sum;
382
}
383
384
/* ========================================================================= */
385
local void gf2_matrix_square(square, mat)
386
unsigned long *square;
387
unsigned long *mat;
388
{
389
int n;
390
391
for (n = 0; n < GF2_DIM; n++)
392
square[n] = gf2_matrix_times(mat, mat[n]);
393
}
394
395
/* ========================================================================= */
396
local uLong crc32_combine_(crc1, crc2, len2)
397
uLong crc1;
398
uLong crc2;
399
z_off64_t len2;
400
{
401
int n;
402
unsigned long row;
403
unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
404
unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
405
406
/* degenerate case (also disallow negative lengths) */
407
if (len2 <= 0)
408
return crc1;
409
410
/* put operator for one zero bit in odd */
411
odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
412
row = 1;
413
for (n = 1; n < GF2_DIM; n++) {
414
odd[n] = row;
415
row <<= 1;
416
}
417
418
/* put operator for two zero bits in even */
419
gf2_matrix_square(even, odd);
420
421
/* put operator for four zero bits in odd */
422
gf2_matrix_square(odd, even);
423
424
/* apply len2 zeros to crc1 (first square will put the operator for one
425
zero byte, eight zero bits, in even) */
426
do {
427
/* apply zeros operator for this bit of len2 */
428
gf2_matrix_square(even, odd);
429
if (len2 & 1)
430
crc1 = gf2_matrix_times(even, crc1);
431
len2 >>= 1;
432
433
/* if no more bits set, then done */
434
if (len2 == 0)
435
break;
436
437
/* another iteration of the loop with odd and even swapped */
438
gf2_matrix_square(odd, even);
439
if (len2 & 1)
440
crc1 = gf2_matrix_times(odd, crc1);
441
len2 >>= 1;
442
443
/* if no more bits set, then done */
444
} while (len2 != 0);
445
446
/* return combined crc */
447
crc1 ^= crc2;
448
return crc1;
449
}
450
451
/* ========================================================================= */
452
uLong ZEXPORT crc32_combine(crc1, crc2, len2)
453
uLong crc1;
454
uLong crc2;
455
z_off_t len2;
456
{
457
return crc32_combine_(crc1, crc2, len2);
458
}
459
460
uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
461
uLong crc1;
462
uLong crc2;
463
z_off64_t len2;
464
{
465
return crc32_combine_(crc1, crc2, len2);
466
}
467
468