Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/classes/sun/java2d/marlin/Curve.java
41159 views
1
/*
2
* Copyright (c) 2007, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package sun.java2d.marlin;
27
28
final class Curve {
29
30
double ax, ay, bx, by, cx, cy, dx, dy;
31
double dax, day, dbx, dby;
32
33
Curve() {
34
}
35
36
void set(final double[] points, final int type) {
37
// if instead of switch (perf + most probable cases first)
38
if (type == 8) {
39
set(points[0], points[1],
40
points[2], points[3],
41
points[4], points[5],
42
points[6], points[7]);
43
} else if (type == 4) {
44
set(points[0], points[1],
45
points[2], points[3]);
46
} else {
47
set(points[0], points[1],
48
points[2], points[3],
49
points[4], points[5]);
50
}
51
}
52
53
void set(final double x1, final double y1,
54
final double x2, final double y2,
55
final double x3, final double y3,
56
final double x4, final double y4)
57
{
58
final double dx32 = 3.0d * (x3 - x2);
59
final double dy32 = 3.0d * (y3 - y2);
60
final double dx21 = 3.0d * (x2 - x1);
61
final double dy21 = 3.0d * (y2 - y1);
62
ax = (x4 - x1) - dx32; // A = P3 - P0 - 3 (P2 - P1) = (P3 - P0) + 3 (P1 - P2)
63
ay = (y4 - y1) - dy32;
64
bx = (dx32 - dx21); // B = 3 (P2 - P1) - 3(P1 - P0) = 3 (P2 + P0) - 6 P1
65
by = (dy32 - dy21);
66
cx = dx21; // C = 3 (P1 - P0)
67
cy = dy21;
68
dx = x1; // D = P0
69
dy = y1;
70
dax = 3.0d * ax;
71
day = 3.0d * ay;
72
dbx = 2.0d * bx;
73
dby = 2.0d * by;
74
}
75
76
void set(final double x1, final double y1,
77
final double x2, final double y2,
78
final double x3, final double y3)
79
{
80
final double dx21 = (x2 - x1);
81
final double dy21 = (y2 - y1);
82
ax = 0.0d; // A = 0
83
ay = 0.0d;
84
bx = (x3 - x2) - dx21; // B = P3 - P0 - 2 P2
85
by = (y3 - y2) - dy21;
86
cx = 2.0d * dx21; // C = 2 (P2 - P1)
87
cy = 2.0d * dy21;
88
dx = x1; // D = P1
89
dy = y1;
90
dax = 0.0d;
91
day = 0.0d;
92
dbx = 2.0d * bx;
93
dby = 2.0d * by;
94
}
95
96
void set(final double x1, final double y1,
97
final double x2, final double y2)
98
{
99
final double dx21 = (x2 - x1);
100
final double dy21 = (y2 - y1);
101
ax = 0.0d; // A = 0
102
ay = 0.0d;
103
bx = 0.0d; // B = 0
104
by = 0.0d;
105
cx = dx21; // C = (P2 - P1)
106
cy = dy21;
107
dx = x1; // D = P1
108
dy = y1;
109
dax = 0.0d;
110
day = 0.0d;
111
dbx = 0.0d;
112
dby = 0.0d;
113
}
114
115
int dxRoots(final double[] roots, final int off) {
116
return Helpers.quadraticRoots(dax, dbx, cx, roots, off);
117
}
118
119
int dyRoots(final double[] roots, final int off) {
120
return Helpers.quadraticRoots(day, dby, cy, roots, off);
121
}
122
123
int infPoints(final double[] pts, final int off) {
124
// inflection point at t if -f'(t)x*f''(t)y + f'(t)y*f''(t)x == 0
125
// Fortunately, this turns out to be quadratic, so there are at
126
// most 2 inflection points.
127
final double a = dax * dby - dbx * day;
128
final double b = 2.0d * (cy * dax - day * cx);
129
final double c = cy * dbx - cx * dby;
130
131
return Helpers.quadraticRoots(a, b, c, pts, off);
132
}
133
134
int xPoints(final double[] ts, final int off, final double x)
135
{
136
return Helpers.cubicRootsInAB(ax, bx, cx, dx - x, ts, off, 0.0d, 1.0d);
137
}
138
139
int yPoints(final double[] ts, final int off, final double y)
140
{
141
return Helpers.cubicRootsInAB(ay, by, cy, dy - y, ts, off, 0.0d, 1.0d);
142
}
143
144
// finds points where the first and second derivative are
145
// perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where
146
// * is a dot product). Unfortunately, we have to solve a cubic.
147
private int perpendiculardfddf(final double[] pts, final int off) {
148
assert pts.length >= off + 4;
149
150
// these are the coefficients of some multiple of g(t) (not g(t),
151
// because the roots of a polynomial are not changed after multiplication
152
// by a constant, and this way we save a few multiplications).
153
final double a = 2.0d * (dax * dax + day * day);
154
final double b = 3.0d * (dax * dbx + day * dby);
155
final double c = 2.0d * (dax * cx + day * cy) + dbx * dbx + dby * dby;
156
final double d = dbx * cx + dby * cy;
157
158
return Helpers.cubicRootsInAB(a, b, c, d, pts, off, 0.0d, 1.0d);
159
}
160
161
// Tries to find the roots of the function ROC(t)-w in [0, 1). It uses
162
// a variant of the false position algorithm to find the roots. False
163
// position requires that 2 initial values x0,x1 be given, and that the
164
// function must have opposite signs at those values. To find such
165
// values, we need the local extrema of the ROC function, for which we
166
// need the roots of its derivative; however, it's harder to find the
167
// roots of the derivative in this case than it is to find the roots
168
// of the original function. So, we find all points where this curve's
169
// first and second derivative are perpendicular, and we pretend these
170
// are our local extrema. There are at most 3 of these, so we will check
171
// at most 4 sub-intervals of (0,1). ROC has asymptotes at inflection
172
// points, so roc-w can have at least 6 roots. This shouldn't be a
173
// problem for what we're trying to do (draw a nice looking curve).
174
int rootsOfROCMinusW(final double[] roots, final int off, final double w2, final double err) {
175
// no OOB exception, because by now off<=6, and roots.length >= 10
176
assert off <= 6 && roots.length >= 10;
177
178
int ret = off;
179
final int end = off + perpendiculardfddf(roots, off);
180
roots[end] = 1.0d; // always check interval end points
181
182
double t0 = 0.0d, ft0 = ROCsq(t0) - w2;
183
184
for (int i = off; i <= end; i++) {
185
double t1 = roots[i], ft1 = ROCsq(t1) - w2;
186
if (ft0 == 0.0d) {
187
roots[ret++] = t0;
188
} else if (ft1 * ft0 < 0.0d) { // have opposite signs
189
// (ROC(t)^2 == w^2) == (ROC(t) == w) is true because
190
// ROC(t) >= 0 for all t.
191
roots[ret++] = falsePositionROCsqMinusX(t0, t1, w2, err);
192
}
193
t0 = t1;
194
ft0 = ft1;
195
}
196
197
return ret - off;
198
}
199
200
private static double eliminateInf(final double x) {
201
return (x == Double.POSITIVE_INFINITY ? Double.MAX_VALUE :
202
(x == Double.NEGATIVE_INFINITY ? Double.MIN_VALUE : x));
203
}
204
205
// A slight modification of the false position algorithm on wikipedia.
206
// This only works for the ROCsq-x functions. It might be nice to have
207
// the function as an argument, but that would be awkward in java6.
208
// TODO: It is something to consider for java8 (or whenever lambda
209
// expressions make it into the language), depending on how closures
210
// and turn out. Same goes for the newton's method
211
// algorithm in Helpers.java
212
private double falsePositionROCsqMinusX(final double t0, final double t1,
213
final double w2, final double err)
214
{
215
final int iterLimit = 100;
216
int side = 0;
217
double t = t1, ft = eliminateInf(ROCsq(t) - w2);
218
double s = t0, fs = eliminateInf(ROCsq(s) - w2);
219
double r = s, fr;
220
221
for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) {
222
r = (fs * t - ft * s) / (fs - ft);
223
fr = ROCsq(r) - w2;
224
if (sameSign(fr, ft)) {
225
ft = fr; t = r;
226
if (side < 0) {
227
fs /= (1 << (-side));
228
side--;
229
} else {
230
side = -1;
231
}
232
} else if (fr * fs > 0.0d) {
233
fs = fr; s = r;
234
if (side > 0) {
235
ft /= (1 << side);
236
side++;
237
} else {
238
side = 1;
239
}
240
} else {
241
break;
242
}
243
}
244
return r;
245
}
246
247
private static boolean sameSign(final double x, final double y) {
248
// another way is to test if x*y > 0. This is bad for small x, y.
249
return (x < 0.0d && y < 0.0d) || (x > 0.0d && y > 0.0d);
250
}
251
252
// returns the radius of curvature squared at t of this curve
253
// see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications)
254
private double ROCsq(final double t) {
255
final double dx = t * (t * dax + dbx) + cx;
256
final double dy = t * (t * day + dby) + cy;
257
final double ddx = 2.0d * dax * t + dbx;
258
final double ddy = 2.0d * day * t + dby;
259
final double dx2dy2 = dx * dx + dy * dy;
260
final double ddx2ddy2 = ddx * ddx + ddy * ddy;
261
final double ddxdxddydy = ddx * dx + ddy * dy;
262
return dx2dy2 * ((dx2dy2 * dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy * ddxdxddydy));
263
}
264
}
265
266