Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/libjavajpeg/jchuff.c
41152 views
1
/*
2
* reserved comment block
3
* DO NOT REMOVE OR ALTER!
4
*/
5
/*
6
* jchuff.c
7
*
8
* Copyright (C) 1991-1997, Thomas G. Lane.
9
* This file is part of the Independent JPEG Group's software.
10
* For conditions of distribution and use, see the accompanying README file.
11
*
12
* This file contains Huffman entropy encoding routines.
13
*
14
* Much of the complexity here has to do with supporting output suspension.
15
* If the data destination module demands suspension, we want to be able to
16
* back up to the start of the current MCU. To do this, we copy state
17
* variables into local working storage, and update them back to the
18
* permanent JPEG objects only upon successful completion of an MCU.
19
*/
20
21
#define JPEG_INTERNALS
22
#include "jinclude.h"
23
#include "jpeglib.h"
24
#include "jchuff.h" /* Declarations shared with jcphuff.c */
25
26
27
/* Expanded entropy encoder object for Huffman encoding.
28
*
29
* The savable_state subrecord contains fields that change within an MCU,
30
* but must not be updated permanently until we complete the MCU.
31
*/
32
33
typedef struct {
34
INT32 put_buffer; /* current bit-accumulation buffer */
35
int put_bits; /* # of bits now in it */
36
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
37
} savable_state;
38
39
/* This macro is to work around compilers with missing or broken
40
* structure assignment. You'll need to fix this code if you have
41
* such a compiler and you change MAX_COMPS_IN_SCAN.
42
*/
43
44
#ifndef NO_STRUCT_ASSIGN
45
#define ASSIGN_STATE(dest,src) ((dest) = (src))
46
#else
47
#if MAX_COMPS_IN_SCAN == 4
48
#define ASSIGN_STATE(dest,src) \
49
((dest).put_buffer = (src).put_buffer, \
50
(dest).put_bits = (src).put_bits, \
51
(dest).last_dc_val[0] = (src).last_dc_val[0], \
52
(dest).last_dc_val[1] = (src).last_dc_val[1], \
53
(dest).last_dc_val[2] = (src).last_dc_val[2], \
54
(dest).last_dc_val[3] = (src).last_dc_val[3])
55
#endif
56
#endif
57
58
59
typedef struct {
60
struct jpeg_entropy_encoder pub; /* public fields */
61
62
savable_state saved; /* Bit buffer & DC state at start of MCU */
63
64
/* These fields are NOT loaded into local working state. */
65
unsigned int restarts_to_go; /* MCUs left in this restart interval */
66
int next_restart_num; /* next restart number to write (0-7) */
67
68
/* Pointers to derived tables (these workspaces have image lifespan) */
69
c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
70
c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
71
72
#ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */
73
long * dc_count_ptrs[NUM_HUFF_TBLS];
74
long * ac_count_ptrs[NUM_HUFF_TBLS];
75
#endif
76
} huff_entropy_encoder;
77
78
typedef huff_entropy_encoder * huff_entropy_ptr;
79
80
/* Working state while writing an MCU.
81
* This struct contains all the fields that are needed by subroutines.
82
*/
83
84
typedef struct {
85
JOCTET * next_output_byte; /* => next byte to write in buffer */
86
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
87
savable_state cur; /* Current bit buffer & DC state */
88
j_compress_ptr cinfo; /* dump_buffer needs access to this */
89
} working_state;
90
91
92
/* Forward declarations */
93
METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo,
94
JBLOCKROW *MCU_data));
95
METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo));
96
#ifdef ENTROPY_OPT_SUPPORTED
97
METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo,
98
JBLOCKROW *MCU_data));
99
METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo));
100
#endif
101
102
103
/*
104
* Initialize for a Huffman-compressed scan.
105
* If gather_statistics is TRUE, we do not output anything during the scan,
106
* just count the Huffman symbols used and generate Huffman code tables.
107
*/
108
109
METHODDEF(void)
110
start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
111
{
112
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
113
int ci, dctbl, actbl;
114
jpeg_component_info * compptr;
115
116
if (gather_statistics) {
117
#ifdef ENTROPY_OPT_SUPPORTED
118
entropy->pub.encode_mcu = encode_mcu_gather;
119
entropy->pub.finish_pass = finish_pass_gather;
120
#else
121
ERREXIT(cinfo, JERR_NOT_COMPILED);
122
#endif
123
} else {
124
entropy->pub.encode_mcu = encode_mcu_huff;
125
entropy->pub.finish_pass = finish_pass_huff;
126
}
127
128
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
129
compptr = cinfo->cur_comp_info[ci];
130
dctbl = compptr->dc_tbl_no;
131
actbl = compptr->ac_tbl_no;
132
if (gather_statistics) {
133
#ifdef ENTROPY_OPT_SUPPORTED
134
/* Check for invalid table indexes */
135
/* (make_c_derived_tbl does this in the other path) */
136
if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
137
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
138
if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
139
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
140
/* Allocate and zero the statistics tables */
141
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
142
if (entropy->dc_count_ptrs[dctbl] == NULL)
143
entropy->dc_count_ptrs[dctbl] = (long *)
144
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
145
257 * SIZEOF(long));
146
MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long));
147
if (entropy->ac_count_ptrs[actbl] == NULL)
148
entropy->ac_count_ptrs[actbl] = (long *)
149
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
150
257 * SIZEOF(long));
151
MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long));
152
#endif
153
} else {
154
/* Compute derived values for Huffman tables */
155
/* We may do this more than once for a table, but it's not expensive */
156
jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
157
& entropy->dc_derived_tbls[dctbl]);
158
jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
159
& entropy->ac_derived_tbls[actbl]);
160
}
161
/* Initialize DC predictions to 0 */
162
entropy->saved.last_dc_val[ci] = 0;
163
}
164
165
/* Initialize bit buffer to empty */
166
entropy->saved.put_buffer = 0;
167
entropy->saved.put_bits = 0;
168
169
/* Initialize restart stuff */
170
entropy->restarts_to_go = cinfo->restart_interval;
171
entropy->next_restart_num = 0;
172
}
173
174
175
/*
176
* Compute the derived values for a Huffman table.
177
* This routine also performs some validation checks on the table.
178
*
179
* Note this is also used by jcphuff.c.
180
*/
181
182
GLOBAL(void)
183
jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
184
c_derived_tbl ** pdtbl)
185
{
186
JHUFF_TBL *htbl;
187
c_derived_tbl *dtbl;
188
int p, i, l, lastp, si, maxsymbol;
189
char huffsize[257];
190
unsigned int huffcode[257];
191
unsigned int code;
192
193
/* Note that huffsize[] and huffcode[] are filled in code-length order,
194
* paralleling the order of the symbols themselves in htbl->huffval[].
195
*/
196
197
/* Find the input Huffman table */
198
if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
199
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
200
htbl =
201
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
202
if (htbl == NULL)
203
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
204
205
/* Allocate a workspace if we haven't already done so. */
206
if (*pdtbl == NULL)
207
*pdtbl = (c_derived_tbl *)
208
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
209
SIZEOF(c_derived_tbl));
210
dtbl = *pdtbl;
211
212
/* Figure C.1: make table of Huffman code length for each symbol */
213
214
p = 0;
215
for (l = 1; l <= 16; l++) {
216
i = (int) htbl->bits[l];
217
if (i < 0 || p + i > 256) /* protect against table overrun */
218
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
219
while (i--)
220
huffsize[p++] = (char) l;
221
}
222
huffsize[p] = 0;
223
lastp = p;
224
225
/* Figure C.2: generate the codes themselves */
226
/* We also validate that the counts represent a legal Huffman code tree. */
227
228
code = 0;
229
si = huffsize[0];
230
p = 0;
231
while (huffsize[p]) {
232
while (((int) huffsize[p]) == si) {
233
huffcode[p++] = code;
234
code++;
235
}
236
/* code is now 1 more than the last code used for codelength si; but
237
* it must still fit in si bits, since no code is allowed to be all ones.
238
*/
239
if (((INT32) code) >= (((INT32) 1) << si))
240
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
241
code <<= 1;
242
si++;
243
}
244
245
/* Figure C.3: generate encoding tables */
246
/* These are code and size indexed by symbol value */
247
248
/* Set all codeless symbols to have code length 0;
249
* this lets us detect duplicate VAL entries here, and later
250
* allows emit_bits to detect any attempt to emit such symbols.
251
*/
252
MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi));
253
254
/* This is also a convenient place to check for out-of-range
255
* and duplicated VAL entries. We allow 0..255 for AC symbols
256
* but only 0..15 for DC. (We could constrain them further
257
* based on data depth and mode, but this seems enough.)
258
*/
259
maxsymbol = isDC ? 15 : 255;
260
261
for (p = 0; p < lastp; p++) {
262
i = htbl->huffval[p];
263
if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
264
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
265
dtbl->ehufco[i] = huffcode[p];
266
dtbl->ehufsi[i] = huffsize[p];
267
}
268
}
269
270
271
/* Outputting bytes to the file */
272
273
/* Emit a byte, taking 'action' if must suspend. */
274
#define emit_byte(state,val,action) \
275
{ *(state)->next_output_byte++ = (JOCTET) (val); \
276
if (--(state)->free_in_buffer == 0) \
277
if (! dump_buffer(state)) \
278
{ action; } }
279
280
281
LOCAL(boolean)
282
dump_buffer (working_state * state)
283
/* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
284
{
285
struct jpeg_destination_mgr * dest = state->cinfo->dest;
286
287
if (! (*dest->empty_output_buffer) (state->cinfo))
288
return FALSE;
289
/* After a successful buffer dump, must reset buffer pointers */
290
state->next_output_byte = dest->next_output_byte;
291
state->free_in_buffer = dest->free_in_buffer;
292
return TRUE;
293
}
294
295
296
/* Outputting bits to the file */
297
298
/* Only the right 24 bits of put_buffer are used; the valid bits are
299
* left-justified in this part. At most 16 bits can be passed to emit_bits
300
* in one call, and we never retain more than 7 bits in put_buffer
301
* between calls, so 24 bits are sufficient.
302
*/
303
304
INLINE
305
LOCAL(boolean)
306
emit_bits (working_state * state, unsigned int code, int size)
307
/* Emit some bits; return TRUE if successful, FALSE if must suspend */
308
{
309
/* This routine is heavily used, so it's worth coding tightly. */
310
register INT32 put_buffer = (INT32) code;
311
register int put_bits = state->cur.put_bits;
312
313
/* if size is 0, caller used an invalid Huffman table entry */
314
if (size == 0)
315
ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE);
316
317
put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
318
319
put_bits += size; /* new number of bits in buffer */
320
321
put_buffer <<= 24 - put_bits; /* align incoming bits */
322
323
put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */
324
325
while (put_bits >= 8) {
326
int c = (int) ((put_buffer >> 16) & 0xFF);
327
328
emit_byte(state, c, return FALSE);
329
if (c == 0xFF) { /* need to stuff a zero byte? */
330
emit_byte(state, 0, return FALSE);
331
}
332
put_buffer <<= 8;
333
put_bits -= 8;
334
}
335
336
state->cur.put_buffer = put_buffer; /* update state variables */
337
state->cur.put_bits = put_bits;
338
339
return TRUE;
340
}
341
342
343
LOCAL(boolean)
344
flush_bits (working_state * state)
345
{
346
if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */
347
return FALSE;
348
state->cur.put_buffer = 0; /* and reset bit-buffer to empty */
349
state->cur.put_bits = 0;
350
return TRUE;
351
}
352
353
354
/* Encode a single block's worth of coefficients */
355
356
LOCAL(boolean)
357
encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val,
358
c_derived_tbl *dctbl, c_derived_tbl *actbl)
359
{
360
register int temp, temp2;
361
register int nbits;
362
register int k, r, i;
363
364
/* Encode the DC coefficient difference per section F.1.2.1 */
365
366
temp = temp2 = block[0] - last_dc_val;
367
368
if (temp < 0) {
369
temp = -temp; /* temp is abs value of input */
370
/* For a negative input, want temp2 = bitwise complement of abs(input) */
371
/* This code assumes we are on a two's complement machine */
372
temp2--;
373
}
374
375
/* Find the number of bits needed for the magnitude of the coefficient */
376
nbits = 0;
377
while (temp) {
378
nbits++;
379
temp >>= 1;
380
}
381
/* Check for out-of-range coefficient values.
382
* Since we're encoding a difference, the range limit is twice as much.
383
*/
384
if (nbits > MAX_COEF_BITS+1)
385
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
386
387
/* Emit the Huffman-coded symbol for the number of bits */
388
if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits]))
389
return FALSE;
390
391
/* Emit that number of bits of the value, if positive, */
392
/* or the complement of its magnitude, if negative. */
393
if (nbits) /* emit_bits rejects calls with size 0 */
394
if (! emit_bits(state, (unsigned int) temp2, nbits))
395
return FALSE;
396
397
/* Encode the AC coefficients per section F.1.2.2 */
398
399
r = 0; /* r = run length of zeros */
400
401
for (k = 1; k < DCTSIZE2; k++) {
402
if ((temp = block[jpeg_natural_order[k]]) == 0) {
403
r++;
404
} else {
405
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
406
while (r > 15) {
407
if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0]))
408
return FALSE;
409
r -= 16;
410
}
411
412
temp2 = temp;
413
if (temp < 0) {
414
temp = -temp; /* temp is abs value of input */
415
/* This code assumes we are on a two's complement machine */
416
temp2--;
417
}
418
419
/* Find the number of bits needed for the magnitude of the coefficient */
420
nbits = 1; /* there must be at least one 1 bit */
421
while ((temp >>= 1))
422
nbits++;
423
/* Check for out-of-range coefficient values */
424
if (nbits > MAX_COEF_BITS)
425
ERREXIT(state->cinfo, JERR_BAD_DCT_COEF);
426
427
/* Emit Huffman symbol for run length / number of bits */
428
i = (r << 4) + nbits;
429
if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i]))
430
return FALSE;
431
432
/* Emit that number of bits of the value, if positive, */
433
/* or the complement of its magnitude, if negative. */
434
if (! emit_bits(state, (unsigned int) temp2, nbits))
435
return FALSE;
436
437
r = 0;
438
}
439
}
440
441
/* If the last coef(s) were zero, emit an end-of-block code */
442
if (r > 0)
443
if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0]))
444
return FALSE;
445
446
return TRUE;
447
}
448
449
450
/*
451
* Emit a restart marker & resynchronize predictions.
452
*/
453
454
LOCAL(boolean)
455
emit_restart (working_state * state, int restart_num)
456
{
457
int ci;
458
459
if (! flush_bits(state))
460
return FALSE;
461
462
emit_byte(state, 0xFF, return FALSE);
463
emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
464
465
/* Re-initialize DC predictions to 0 */
466
for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
467
state->cur.last_dc_val[ci] = 0;
468
469
/* The restart counter is not updated until we successfully write the MCU. */
470
471
return TRUE;
472
}
473
474
475
/*
476
* Encode and output one MCU's worth of Huffman-compressed coefficients.
477
*/
478
479
METHODDEF(boolean)
480
encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
481
{
482
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
483
working_state state;
484
int blkn, ci;
485
jpeg_component_info * compptr;
486
487
/* Load up working state */
488
state.next_output_byte = cinfo->dest->next_output_byte;
489
state.free_in_buffer = cinfo->dest->free_in_buffer;
490
ASSIGN_STATE(state.cur, entropy->saved);
491
state.cinfo = cinfo;
492
493
/* Emit restart marker if needed */
494
if (cinfo->restart_interval) {
495
if (entropy->restarts_to_go == 0)
496
if (! emit_restart(&state, entropy->next_restart_num))
497
return FALSE;
498
}
499
500
/* Encode the MCU data blocks */
501
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
502
ci = cinfo->MCU_membership[blkn];
503
compptr = cinfo->cur_comp_info[ci];
504
if (! encode_one_block(&state,
505
MCU_data[blkn][0], state.cur.last_dc_val[ci],
506
entropy->dc_derived_tbls[compptr->dc_tbl_no],
507
entropy->ac_derived_tbls[compptr->ac_tbl_no]))
508
return FALSE;
509
/* Update last_dc_val */
510
state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
511
}
512
513
/* Completed MCU, so update state */
514
cinfo->dest->next_output_byte = state.next_output_byte;
515
cinfo->dest->free_in_buffer = state.free_in_buffer;
516
ASSIGN_STATE(entropy->saved, state.cur);
517
518
/* Update restart-interval state too */
519
if (cinfo->restart_interval) {
520
if (entropy->restarts_to_go == 0) {
521
entropy->restarts_to_go = cinfo->restart_interval;
522
entropy->next_restart_num++;
523
entropy->next_restart_num &= 7;
524
}
525
entropy->restarts_to_go--;
526
}
527
528
return TRUE;
529
}
530
531
532
/*
533
* Finish up at the end of a Huffman-compressed scan.
534
*/
535
536
METHODDEF(void)
537
finish_pass_huff (j_compress_ptr cinfo)
538
{
539
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
540
working_state state;
541
542
/* Load up working state ... flush_bits needs it */
543
state.next_output_byte = cinfo->dest->next_output_byte;
544
state.free_in_buffer = cinfo->dest->free_in_buffer;
545
ASSIGN_STATE(state.cur, entropy->saved);
546
state.cinfo = cinfo;
547
548
/* Flush out the last data */
549
if (! flush_bits(&state))
550
ERREXIT(cinfo, JERR_CANT_SUSPEND);
551
552
/* Update state */
553
cinfo->dest->next_output_byte = state.next_output_byte;
554
cinfo->dest->free_in_buffer = state.free_in_buffer;
555
ASSIGN_STATE(entropy->saved, state.cur);
556
}
557
558
559
/*
560
* Huffman coding optimization.
561
*
562
* We first scan the supplied data and count the number of uses of each symbol
563
* that is to be Huffman-coded. (This process MUST agree with the code above.)
564
* Then we build a Huffman coding tree for the observed counts.
565
* Symbols which are not needed at all for the particular image are not
566
* assigned any code, which saves space in the DHT marker as well as in
567
* the compressed data.
568
*/
569
570
#ifdef ENTROPY_OPT_SUPPORTED
571
572
573
/* Process a single block's worth of coefficients */
574
575
LOCAL(void)
576
htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
577
long dc_counts[], long ac_counts[])
578
{
579
register int temp;
580
register int nbits;
581
register int k, r;
582
583
/* Encode the DC coefficient difference per section F.1.2.1 */
584
585
temp = block[0] - last_dc_val;
586
if (temp < 0)
587
temp = -temp;
588
589
/* Find the number of bits needed for the magnitude of the coefficient */
590
nbits = 0;
591
while (temp) {
592
nbits++;
593
temp >>= 1;
594
}
595
/* Check for out-of-range coefficient values.
596
* Since we're encoding a difference, the range limit is twice as much.
597
*/
598
if (nbits > MAX_COEF_BITS+1)
599
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
600
601
/* Count the Huffman symbol for the number of bits */
602
dc_counts[nbits]++;
603
604
/* Encode the AC coefficients per section F.1.2.2 */
605
606
r = 0; /* r = run length of zeros */
607
608
for (k = 1; k < DCTSIZE2; k++) {
609
if ((temp = block[jpeg_natural_order[k]]) == 0) {
610
r++;
611
} else {
612
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
613
while (r > 15) {
614
ac_counts[0xF0]++;
615
r -= 16;
616
}
617
618
/* Find the number of bits needed for the magnitude of the coefficient */
619
if (temp < 0)
620
temp = -temp;
621
622
/* Find the number of bits needed for the magnitude of the coefficient */
623
nbits = 1; /* there must be at least one 1 bit */
624
while ((temp >>= 1))
625
nbits++;
626
/* Check for out-of-range coefficient values */
627
if (nbits > MAX_COEF_BITS)
628
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
629
630
/* Count Huffman symbol for run length / number of bits */
631
ac_counts[(r << 4) + nbits]++;
632
633
r = 0;
634
}
635
}
636
637
/* If the last coef(s) were zero, emit an end-of-block code */
638
if (r > 0)
639
ac_counts[0]++;
640
}
641
642
643
/*
644
* Trial-encode one MCU's worth of Huffman-compressed coefficients.
645
* No data is actually output, so no suspension return is possible.
646
*/
647
648
METHODDEF(boolean)
649
encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
650
{
651
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
652
int blkn, ci;
653
jpeg_component_info * compptr;
654
655
/* Take care of restart intervals if needed */
656
if (cinfo->restart_interval) {
657
if (entropy->restarts_to_go == 0) {
658
/* Re-initialize DC predictions to 0 */
659
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
660
entropy->saved.last_dc_val[ci] = 0;
661
/* Update restart state */
662
entropy->restarts_to_go = cinfo->restart_interval;
663
}
664
entropy->restarts_to_go--;
665
}
666
667
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
668
ci = cinfo->MCU_membership[blkn];
669
compptr = cinfo->cur_comp_info[ci];
670
htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
671
entropy->dc_count_ptrs[compptr->dc_tbl_no],
672
entropy->ac_count_ptrs[compptr->ac_tbl_no]);
673
entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
674
}
675
676
return TRUE;
677
}
678
679
680
/*
681
* Generate the best Huffman code table for the given counts, fill htbl.
682
* Note this is also used by jcphuff.c.
683
*
684
* The JPEG standard requires that no symbol be assigned a codeword of all
685
* one bits (so that padding bits added at the end of a compressed segment
686
* can't look like a valid code). Because of the canonical ordering of
687
* codewords, this just means that there must be an unused slot in the
688
* longest codeword length category. Section K.2 of the JPEG spec suggests
689
* reserving such a slot by pretending that symbol 256 is a valid symbol
690
* with count 1. In theory that's not optimal; giving it count zero but
691
* including it in the symbol set anyway should give a better Huffman code.
692
* But the theoretically better code actually seems to come out worse in
693
* practice, because it produces more all-ones bytes (which incur stuffed
694
* zero bytes in the final file). In any case the difference is tiny.
695
*
696
* The JPEG standard requires Huffman codes to be no more than 16 bits long.
697
* If some symbols have a very small but nonzero probability, the Huffman tree
698
* must be adjusted to meet the code length restriction. We currently use
699
* the adjustment method suggested in JPEG section K.2. This method is *not*
700
* optimal; it may not choose the best possible limited-length code. But
701
* typically only very-low-frequency symbols will be given less-than-optimal
702
* lengths, so the code is almost optimal. Experimental comparisons against
703
* an optimal limited-length-code algorithm indicate that the difference is
704
* microscopic --- usually less than a hundredth of a percent of total size.
705
* So the extra complexity of an optimal algorithm doesn't seem worthwhile.
706
*/
707
708
GLOBAL(void)
709
jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[])
710
{
711
#define MAX_CLEN 32 /* assumed maximum initial code length */
712
UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */
713
int codesize[257]; /* codesize[k] = code length of symbol k */
714
int others[257]; /* next symbol in current branch of tree */
715
int c1, c2;
716
int p, i, j;
717
long v;
718
719
/* This algorithm is explained in section K.2 of the JPEG standard */
720
721
MEMZERO(bits, SIZEOF(bits));
722
MEMZERO(codesize, SIZEOF(codesize));
723
for (i = 0; i < 257; i++)
724
others[i] = -1; /* init links to empty */
725
726
freq[256] = 1; /* make sure 256 has a nonzero count */
727
/* Including the pseudo-symbol 256 in the Huffman procedure guarantees
728
* that no real symbol is given code-value of all ones, because 256
729
* will be placed last in the largest codeword category.
730
*/
731
732
/* Huffman's basic algorithm to assign optimal code lengths to symbols */
733
734
for (;;) {
735
/* Find the smallest nonzero frequency, set c1 = its symbol */
736
/* In case of ties, take the larger symbol number */
737
c1 = -1;
738
v = 1000000000L;
739
for (i = 0; i <= 256; i++) {
740
if (freq[i] && freq[i] <= v) {
741
v = freq[i];
742
c1 = i;
743
}
744
}
745
746
/* Find the next smallest nonzero frequency, set c2 = its symbol */
747
/* In case of ties, take the larger symbol number */
748
c2 = -1;
749
v = 1000000000L;
750
for (i = 0; i <= 256; i++) {
751
if (freq[i] && freq[i] <= v && i != c1) {
752
v = freq[i];
753
c2 = i;
754
}
755
}
756
757
/* Done if we've merged everything into one frequency */
758
if (c2 < 0)
759
break;
760
761
/* Else merge the two counts/trees */
762
freq[c1] += freq[c2];
763
freq[c2] = 0;
764
765
/* Increment the codesize of everything in c1's tree branch */
766
codesize[c1]++;
767
while (others[c1] >= 0) {
768
c1 = others[c1];
769
codesize[c1]++;
770
}
771
772
others[c1] = c2; /* chain c2 onto c1's tree branch */
773
774
/* Increment the codesize of everything in c2's tree branch */
775
codesize[c2]++;
776
while (others[c2] >= 0) {
777
c2 = others[c2];
778
codesize[c2]++;
779
}
780
}
781
782
/* Now count the number of symbols of each code length */
783
for (i = 0; i <= 256; i++) {
784
if (codesize[i]) {
785
/* The JPEG standard seems to think that this can't happen, */
786
/* but I'm paranoid... */
787
if (codesize[i] > MAX_CLEN)
788
ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
789
790
bits[codesize[i]]++;
791
}
792
}
793
794
/* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
795
* Huffman procedure assigned any such lengths, we must adjust the coding.
796
* Here is what the JPEG spec says about how this next bit works:
797
* Since symbols are paired for the longest Huffman code, the symbols are
798
* removed from this length category two at a time. The prefix for the pair
799
* (which is one bit shorter) is allocated to one of the pair; then,
800
* skipping the BITS entry for that prefix length, a code word from the next
801
* shortest nonzero BITS entry is converted into a prefix for two code words
802
* one bit longer.
803
*/
804
805
for (i = MAX_CLEN; i > 16; i--) {
806
while (bits[i] > 0) {
807
j = i - 2; /* find length of new prefix to be used */
808
while (bits[j] == 0) {
809
if (j == 0)
810
ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
811
j--;
812
}
813
814
bits[i] -= 2; /* remove two symbols */
815
bits[i-1]++; /* one goes in this length */
816
bits[j+1] += 2; /* two new symbols in this length */
817
bits[j]--; /* symbol of this length is now a prefix */
818
}
819
}
820
821
/* Remove the count for the pseudo-symbol 256 from the largest codelength */
822
while (bits[i] == 0) /* find largest codelength still in use */
823
i--;
824
bits[i]--;
825
826
/* Return final symbol counts (only for lengths 0..16) */
827
MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits));
828
829
/* Return a list of the symbols sorted by code length */
830
/* It's not real clear to me why we don't need to consider the codelength
831
* changes made above, but the JPEG spec seems to think this works.
832
*/
833
p = 0;
834
for (i = 1; i <= MAX_CLEN; i++) {
835
for (j = 0; j <= 255; j++) {
836
if (codesize[j] == i) {
837
htbl->huffval[p] = (UINT8) j;
838
p++;
839
}
840
}
841
}
842
843
/* Set sent_table FALSE so updated table will be written to JPEG file. */
844
htbl->sent_table = FALSE;
845
}
846
847
848
/*
849
* Finish up a statistics-gathering pass and create the new Huffman tables.
850
*/
851
852
METHODDEF(void)
853
finish_pass_gather (j_compress_ptr cinfo)
854
{
855
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
856
int ci, dctbl, actbl;
857
jpeg_component_info * compptr;
858
JHUFF_TBL **htblptr;
859
boolean did_dc[NUM_HUFF_TBLS];
860
boolean did_ac[NUM_HUFF_TBLS];
861
862
/* It's important not to apply jpeg_gen_optimal_table more than once
863
* per table, because it clobbers the input frequency counts!
864
*/
865
MEMZERO(did_dc, SIZEOF(did_dc));
866
MEMZERO(did_ac, SIZEOF(did_ac));
867
868
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
869
compptr = cinfo->cur_comp_info[ci];
870
dctbl = compptr->dc_tbl_no;
871
actbl = compptr->ac_tbl_no;
872
if (! did_dc[dctbl]) {
873
htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
874
if (*htblptr == NULL)
875
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
876
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
877
did_dc[dctbl] = TRUE;
878
}
879
if (! did_ac[actbl]) {
880
htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
881
if (*htblptr == NULL)
882
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
883
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
884
did_ac[actbl] = TRUE;
885
}
886
}
887
}
888
889
890
#endif /* ENTROPY_OPT_SUPPORTED */
891
892
893
/*
894
* Module initialization routine for Huffman entropy encoding.
895
*/
896
897
GLOBAL(void)
898
jinit_huff_encoder (j_compress_ptr cinfo)
899
{
900
huff_entropy_ptr entropy;
901
int i;
902
903
entropy = (huff_entropy_ptr)
904
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
905
SIZEOF(huff_entropy_encoder));
906
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
907
entropy->pub.start_pass = start_pass_huff;
908
909
/* Mark tables unallocated */
910
for (i = 0; i < NUM_HUFF_TBLS; i++) {
911
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
912
#ifdef ENTROPY_OPT_SUPPORTED
913
entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
914
#endif
915
}
916
}
917
918