Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/libjavajpeg/jcparam.c
41152 views
1
/*
2
* reserved comment block
3
* DO NOT REMOVE OR ALTER!
4
*/
5
/*
6
* jcparam.c
7
*
8
* Copyright (C) 1991-1998, Thomas G. Lane.
9
* This file is part of the Independent JPEG Group's software.
10
* For conditions of distribution and use, see the accompanying README file.
11
*
12
* This file contains optional default-setting code for the JPEG compressor.
13
* Applications do not have to use this file, but those that don't use it
14
* must know a lot more about the innards of the JPEG code.
15
*/
16
17
#define JPEG_INTERNALS
18
#include "jinclude.h"
19
#include "jpeglib.h"
20
21
22
/*
23
* Quantization table setup routines
24
*/
25
26
GLOBAL(void)
27
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl,
28
const unsigned int *basic_table,
29
int scale_factor, boolean force_baseline)
30
/* Define a quantization table equal to the basic_table times
31
* a scale factor (given as a percentage).
32
* If force_baseline is TRUE, the computed quantization table entries
33
* are limited to 1..255 for JPEG baseline compatibility.
34
*/
35
{
36
JQUANT_TBL ** qtblptr;
37
int i;
38
long temp;
39
40
/* Safety check to ensure start_compress not called yet. */
41
if (cinfo->global_state != CSTATE_START)
42
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
43
44
if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS)
45
ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl);
46
47
qtblptr = & cinfo->quant_tbl_ptrs[which_tbl];
48
49
if (*qtblptr == NULL)
50
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo);
51
52
for (i = 0; i < DCTSIZE2; i++) {
53
temp = ((long) basic_table[i] * scale_factor + 50L) / 100L;
54
/* limit the values to the valid range */
55
if (temp <= 0L) temp = 1L;
56
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */
57
if (force_baseline && temp > 255L)
58
temp = 255L; /* limit to baseline range if requested */
59
(*qtblptr)->quantval[i] = (UINT16) temp;
60
}
61
62
/* Initialize sent_table FALSE so table will be written to JPEG file. */
63
(*qtblptr)->sent_table = FALSE;
64
}
65
66
67
GLOBAL(void)
68
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor,
69
boolean force_baseline)
70
/* Set or change the 'quality' (quantization) setting, using default tables
71
* and a straight percentage-scaling quality scale. In most cases it's better
72
* to use jpeg_set_quality (below); this entry point is provided for
73
* applications that insist on a linear percentage scaling.
74
*/
75
{
76
/* These are the sample quantization tables given in JPEG spec section K.1.
77
* The spec says that the values given produce "good" quality, and
78
* when divided by 2, "very good" quality.
79
*/
80
static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = {
81
16, 11, 10, 16, 24, 40, 51, 61,
82
12, 12, 14, 19, 26, 58, 60, 55,
83
14, 13, 16, 24, 40, 57, 69, 56,
84
14, 17, 22, 29, 51, 87, 80, 62,
85
18, 22, 37, 56, 68, 109, 103, 77,
86
24, 35, 55, 64, 81, 104, 113, 92,
87
49, 64, 78, 87, 103, 121, 120, 101,
88
72, 92, 95, 98, 112, 100, 103, 99
89
};
90
static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = {
91
17, 18, 24, 47, 99, 99, 99, 99,
92
18, 21, 26, 66, 99, 99, 99, 99,
93
24, 26, 56, 99, 99, 99, 99, 99,
94
47, 66, 99, 99, 99, 99, 99, 99,
95
99, 99, 99, 99, 99, 99, 99, 99,
96
99, 99, 99, 99, 99, 99, 99, 99,
97
99, 99, 99, 99, 99, 99, 99, 99,
98
99, 99, 99, 99, 99, 99, 99, 99
99
};
100
101
/* Set up two quantization tables using the specified scaling */
102
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl,
103
scale_factor, force_baseline);
104
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl,
105
scale_factor, force_baseline);
106
}
107
108
109
GLOBAL(int)
110
jpeg_quality_scaling (int quality)
111
/* Convert a user-specified quality rating to a percentage scaling factor
112
* for an underlying quantization table, using our recommended scaling curve.
113
* The input 'quality' factor should be 0 (terrible) to 100 (very good).
114
*/
115
{
116
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */
117
if (quality <= 0) quality = 1;
118
if (quality > 100) quality = 100;
119
120
/* The basic table is used as-is (scaling 100) for a quality of 50.
121
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q;
122
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table
123
* to make all the table entries 1 (hence, minimum quantization loss).
124
* Qualities 1..50 are converted to scaling percentage 5000/Q.
125
*/
126
if (quality < 50)
127
quality = 5000 / quality;
128
else
129
quality = 200 - quality*2;
130
131
return quality;
132
}
133
134
135
GLOBAL(void)
136
jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline)
137
/* Set or change the 'quality' (quantization) setting, using default tables.
138
* This is the standard quality-adjusting entry point for typical user
139
* interfaces; only those who want detailed control over quantization tables
140
* would use the preceding three routines directly.
141
*/
142
{
143
/* Convert user 0-100 rating to percentage scaling */
144
quality = jpeg_quality_scaling(quality);
145
146
/* Set up standard quality tables */
147
jpeg_set_linear_quality(cinfo, quality, force_baseline);
148
}
149
150
151
/*
152
* Huffman table setup routines
153
*/
154
155
LOCAL(void)
156
add_huff_table (j_compress_ptr cinfo,
157
JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val)
158
/* Define a Huffman table */
159
{
160
int nsymbols, len;
161
162
if (*htblptr == NULL)
163
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
164
165
/* Copy the number-of-symbols-of-each-code-length counts */
166
MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
167
168
/* Validate the counts. We do this here mainly so we can copy the right
169
* number of symbols from the val[] array, without risking marching off
170
* the end of memory. jchuff.c will do a more thorough test later.
171
*/
172
nsymbols = 0;
173
for (len = 1; len <= 16; len++)
174
nsymbols += bits[len];
175
if (nsymbols < 1 || nsymbols > 256)
176
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
177
178
MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8));
179
180
/* Initialize sent_table FALSE so table will be written to JPEG file. */
181
(*htblptr)->sent_table = FALSE;
182
}
183
184
185
LOCAL(void)
186
std_huff_tables (j_compress_ptr cinfo)
187
/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
188
/* IMPORTANT: these are only valid for 8-bit data precision! */
189
{
190
static const UINT8 bits_dc_luminance[17] =
191
{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
192
static const UINT8 val_dc_luminance[] =
193
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
194
195
static const UINT8 bits_dc_chrominance[17] =
196
{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
197
static const UINT8 val_dc_chrominance[] =
198
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
199
200
static const UINT8 bits_ac_luminance[17] =
201
{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
202
static const UINT8 val_ac_luminance[] =
203
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
204
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
205
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
206
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
207
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
208
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
209
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
210
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
211
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
212
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
213
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
214
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
215
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
216
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
217
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
218
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
219
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
220
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
221
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
222
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
223
0xf9, 0xfa };
224
225
static const UINT8 bits_ac_chrominance[17] =
226
{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
227
static const UINT8 val_ac_chrominance[] =
228
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
229
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
230
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
231
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
232
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
233
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
234
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
235
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
236
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
237
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
238
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
239
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
240
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
241
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
242
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
243
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
244
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
245
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
246
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
247
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
248
0xf9, 0xfa };
249
250
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0],
251
bits_dc_luminance, val_dc_luminance);
252
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0],
253
bits_ac_luminance, val_ac_luminance);
254
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1],
255
bits_dc_chrominance, val_dc_chrominance);
256
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1],
257
bits_ac_chrominance, val_ac_chrominance);
258
}
259
260
261
/*
262
* Default parameter setup for compression.
263
*
264
* Applications that don't choose to use this routine must do their
265
* own setup of all these parameters. Alternately, you can call this
266
* to establish defaults and then alter parameters selectively. This
267
* is the recommended approach since, if we add any new parameters,
268
* your code will still work (they'll be set to reasonable defaults).
269
*/
270
271
GLOBAL(void)
272
jpeg_set_defaults (j_compress_ptr cinfo)
273
{
274
int i;
275
276
/* Safety check to ensure start_compress not called yet. */
277
if (cinfo->global_state != CSTATE_START)
278
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
279
280
/* Allocate comp_info array large enough for maximum component count.
281
* Array is made permanent in case application wants to compress
282
* multiple images at same param settings.
283
*/
284
if (cinfo->comp_info == NULL)
285
cinfo->comp_info = (jpeg_component_info *)
286
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
287
MAX_COMPONENTS * SIZEOF(jpeg_component_info));
288
289
/* Initialize everything not dependent on the color space */
290
291
cinfo->data_precision = BITS_IN_JSAMPLE;
292
/* Set up two quantization tables using default quality of 75 */
293
jpeg_set_quality(cinfo, 75, TRUE);
294
/* Set up two Huffman tables */
295
std_huff_tables(cinfo);
296
297
/* Initialize default arithmetic coding conditioning */
298
for (i = 0; i < NUM_ARITH_TBLS; i++) {
299
cinfo->arith_dc_L[i] = 0;
300
cinfo->arith_dc_U[i] = 1;
301
cinfo->arith_ac_K[i] = 5;
302
}
303
304
/* Default is no multiple-scan output */
305
cinfo->scan_info = NULL;
306
cinfo->num_scans = 0;
307
308
/* Expect normal source image, not raw downsampled data */
309
cinfo->raw_data_in = FALSE;
310
311
/* Use Huffman coding, not arithmetic coding, by default */
312
cinfo->arith_code = FALSE;
313
314
/* By default, don't do extra passes to optimize entropy coding */
315
cinfo->optimize_coding = FALSE;
316
/* The standard Huffman tables are only valid for 8-bit data precision.
317
* If the precision is higher, force optimization on so that usable
318
* tables will be computed. This test can be removed if default tables
319
* are supplied that are valid for the desired precision.
320
*/
321
if (cinfo->data_precision > 8)
322
cinfo->optimize_coding = TRUE;
323
324
/* By default, use the simpler non-cosited sampling alignment */
325
cinfo->CCIR601_sampling = FALSE;
326
327
/* No input smoothing */
328
cinfo->smoothing_factor = 0;
329
330
/* DCT algorithm preference */
331
cinfo->dct_method = JDCT_DEFAULT;
332
333
/* No restart markers */
334
cinfo->restart_interval = 0;
335
cinfo->restart_in_rows = 0;
336
337
/* Fill in default JFIF marker parameters. Note that whether the marker
338
* will actually be written is determined by jpeg_set_colorspace.
339
*
340
* By default, the library emits JFIF version code 1.01.
341
* An application that wants to emit JFIF 1.02 extension markers should set
342
* JFIF_minor_version to 2. We could probably get away with just defaulting
343
* to 1.02, but there may still be some decoders in use that will complain
344
* about that; saying 1.01 should minimize compatibility problems.
345
*/
346
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */
347
cinfo->JFIF_minor_version = 1;
348
cinfo->density_unit = 0; /* Pixel size is unknown by default */
349
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */
350
cinfo->Y_density = 1;
351
352
/* Choose JPEG colorspace based on input space, set defaults accordingly */
353
354
jpeg_default_colorspace(cinfo);
355
}
356
357
358
/*
359
* Select an appropriate JPEG colorspace for in_color_space.
360
*/
361
362
GLOBAL(void)
363
jpeg_default_colorspace (j_compress_ptr cinfo)
364
{
365
switch (cinfo->in_color_space) {
366
case JCS_GRAYSCALE:
367
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE);
368
break;
369
case JCS_RGB:
370
jpeg_set_colorspace(cinfo, JCS_YCbCr);
371
break;
372
case JCS_YCbCr:
373
jpeg_set_colorspace(cinfo, JCS_YCbCr);
374
break;
375
case JCS_CMYK:
376
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */
377
break;
378
case JCS_YCCK:
379
jpeg_set_colorspace(cinfo, JCS_YCCK);
380
break;
381
case JCS_UNKNOWN:
382
jpeg_set_colorspace(cinfo, JCS_UNKNOWN);
383
break;
384
default:
385
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE);
386
}
387
}
388
389
390
/*
391
* Set the JPEG colorspace, and choose colorspace-dependent default values.
392
*/
393
394
GLOBAL(void)
395
jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace)
396
{
397
jpeg_component_info * compptr;
398
int ci;
399
400
#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \
401
(compptr = &cinfo->comp_info[index], \
402
compptr->component_id = (id), \
403
compptr->h_samp_factor = (hsamp), \
404
compptr->v_samp_factor = (vsamp), \
405
compptr->quant_tbl_no = (quant), \
406
compptr->dc_tbl_no = (dctbl), \
407
compptr->ac_tbl_no = (actbl) )
408
409
/* Safety check to ensure start_compress not called yet. */
410
if (cinfo->global_state != CSTATE_START)
411
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
412
413
/* For all colorspaces, we use Q and Huff tables 0 for luminance components,
414
* tables 1 for chrominance components.
415
*/
416
417
cinfo->jpeg_color_space = colorspace;
418
419
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */
420
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */
421
422
switch (colorspace) {
423
case JCS_GRAYSCALE:
424
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
425
cinfo->num_components = 1;
426
/* JFIF specifies component ID 1 */
427
SET_COMP(0, 1, 1,1, 0, 0,0);
428
break;
429
case JCS_RGB:
430
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */
431
cinfo->num_components = 3;
432
SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0);
433
SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0);
434
SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0);
435
break;
436
case JCS_YCbCr:
437
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */
438
cinfo->num_components = 3;
439
/* JFIF specifies component IDs 1,2,3 */
440
/* We default to 2x2 subsamples of chrominance */
441
SET_COMP(0, 1, 2,2, 0, 0,0);
442
SET_COMP(1, 2, 1,1, 1, 1,1);
443
SET_COMP(2, 3, 1,1, 1, 1,1);
444
break;
445
case JCS_CMYK:
446
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */
447
cinfo->num_components = 4;
448
SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0);
449
SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0);
450
SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0);
451
SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0);
452
break;
453
case JCS_YCCK:
454
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */
455
cinfo->num_components = 4;
456
SET_COMP(0, 1, 2,2, 0, 0,0);
457
SET_COMP(1, 2, 1,1, 1, 1,1);
458
SET_COMP(2, 3, 1,1, 1, 1,1);
459
SET_COMP(3, 4, 2,2, 0, 0,0);
460
break;
461
case JCS_UNKNOWN:
462
cinfo->num_components = cinfo->input_components;
463
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS)
464
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
465
MAX_COMPONENTS);
466
for (ci = 0; ci < cinfo->num_components; ci++) {
467
SET_COMP(ci, ci, 1,1, 0, 0,0);
468
}
469
break;
470
default:
471
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
472
}
473
}
474
475
476
#ifdef C_PROGRESSIVE_SUPPORTED
477
478
LOCAL(jpeg_scan_info *)
479
fill_a_scan (jpeg_scan_info * scanptr, int ci,
480
int Ss, int Se, int Ah, int Al)
481
/* Support routine: generate one scan for specified component */
482
{
483
scanptr->comps_in_scan = 1;
484
scanptr->component_index[0] = ci;
485
scanptr->Ss = Ss;
486
scanptr->Se = Se;
487
scanptr->Ah = Ah;
488
scanptr->Al = Al;
489
scanptr++;
490
return scanptr;
491
}
492
493
LOCAL(jpeg_scan_info *)
494
fill_scans (jpeg_scan_info * scanptr, int ncomps,
495
int Ss, int Se, int Ah, int Al)
496
/* Support routine: generate one scan for each component */
497
{
498
int ci;
499
500
for (ci = 0; ci < ncomps; ci++) {
501
scanptr->comps_in_scan = 1;
502
scanptr->component_index[0] = ci;
503
scanptr->Ss = Ss;
504
scanptr->Se = Se;
505
scanptr->Ah = Ah;
506
scanptr->Al = Al;
507
scanptr++;
508
}
509
return scanptr;
510
}
511
512
LOCAL(jpeg_scan_info *)
513
fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al)
514
/* Support routine: generate interleaved DC scan if possible, else N scans */
515
{
516
int ci;
517
518
if (ncomps <= MAX_COMPS_IN_SCAN) {
519
/* Single interleaved DC scan */
520
scanptr->comps_in_scan = ncomps;
521
for (ci = 0; ci < ncomps; ci++)
522
scanptr->component_index[ci] = ci;
523
scanptr->Ss = scanptr->Se = 0;
524
scanptr->Ah = Ah;
525
scanptr->Al = Al;
526
scanptr++;
527
} else {
528
/* Noninterleaved DC scan for each component */
529
scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al);
530
}
531
return scanptr;
532
}
533
534
535
/*
536
* Create a recommended progressive-JPEG script.
537
* cinfo->num_components and cinfo->jpeg_color_space must be correct.
538
*/
539
540
GLOBAL(void)
541
jpeg_simple_progression (j_compress_ptr cinfo)
542
{
543
int ncomps = cinfo->num_components;
544
int nscans;
545
jpeg_scan_info * scanptr;
546
547
/* Safety check to ensure start_compress not called yet. */
548
if (cinfo->global_state != CSTATE_START)
549
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
550
551
/* Figure space needed for script. Calculation must match code below! */
552
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
553
/* Custom script for YCbCr color images. */
554
nscans = 10;
555
} else {
556
/* All-purpose script for other color spaces. */
557
if (ncomps > MAX_COMPS_IN_SCAN)
558
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */
559
else
560
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */
561
}
562
563
/* Allocate space for script.
564
* We need to put it in the permanent pool in case the application performs
565
* multiple compressions without changing the settings. To avoid a memory
566
* leak if jpeg_simple_progression is called repeatedly for the same JPEG
567
* object, we try to re-use previously allocated space, and we allocate
568
* enough space to handle YCbCr even if initially asked for grayscale.
569
*/
570
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) {
571
cinfo->script_space_size = MAX(nscans, 10);
572
cinfo->script_space = (jpeg_scan_info *)
573
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
574
cinfo->script_space_size * SIZEOF(jpeg_scan_info));
575
}
576
scanptr = cinfo->script_space;
577
cinfo->scan_info = scanptr;
578
cinfo->num_scans = nscans;
579
580
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) {
581
/* Custom script for YCbCr color images. */
582
/* Initial DC scan */
583
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
584
/* Initial AC scan: get some luma data out in a hurry */
585
scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2);
586
/* Chroma data is too small to be worth expending many scans on */
587
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1);
588
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1);
589
/* Complete spectral selection for luma AC */
590
scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2);
591
/* Refine next bit of luma AC */
592
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1);
593
/* Finish DC successive approximation */
594
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
595
/* Finish AC successive approximation */
596
scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0);
597
scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0);
598
/* Luma bottom bit comes last since it's usually largest scan */
599
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0);
600
} else {
601
/* All-purpose script for other color spaces. */
602
/* Successive approximation first pass */
603
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1);
604
scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2);
605
scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2);
606
/* Successive approximation second pass */
607
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1);
608
/* Successive approximation final pass */
609
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0);
610
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0);
611
}
612
}
613
614
#endif /* C_PROGRESSIVE_SUPPORTED */
615
616