Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/libjavajpeg/jcphuff.c
41152 views
1
/*
2
* reserved comment block
3
* DO NOT REMOVE OR ALTER!
4
*/
5
/*
6
* jcphuff.c
7
*
8
* Copyright (C) 1995-1997, Thomas G. Lane.
9
* This file is part of the Independent JPEG Group's software.
10
* For conditions of distribution and use, see the accompanying README file.
11
*
12
* This file contains Huffman entropy encoding routines for progressive JPEG.
13
*
14
* We do not support output suspension in this module, since the library
15
* currently does not allow multiple-scan files to be written with output
16
* suspension.
17
*/
18
19
#define JPEG_INTERNALS
20
#include "jinclude.h"
21
#include "jpeglib.h"
22
#include "jchuff.h" /* Declarations shared with jchuff.c */
23
24
#ifdef C_PROGRESSIVE_SUPPORTED
25
26
/* Expanded entropy encoder object for progressive Huffman encoding. */
27
28
typedef struct {
29
struct jpeg_entropy_encoder pub; /* public fields */
30
31
/* Mode flag: TRUE for optimization, FALSE for actual data output */
32
boolean gather_statistics;
33
34
/* Bit-level coding status.
35
* next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
36
*/
37
JOCTET * next_output_byte; /* => next byte to write in buffer */
38
size_t free_in_buffer; /* # of byte spaces remaining in buffer */
39
INT32 put_buffer; /* current bit-accumulation buffer */
40
int put_bits; /* # of bits now in it */
41
j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
42
43
/* Coding status for DC components */
44
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
45
46
/* Coding status for AC components */
47
int ac_tbl_no; /* the table number of the single component */
48
unsigned int EOBRUN; /* run length of EOBs */
49
unsigned int BE; /* # of buffered correction bits before MCU */
50
char * bit_buffer; /* buffer for correction bits (1 per char) */
51
/* packing correction bits tightly would save some space but cost time... */
52
53
unsigned int restarts_to_go; /* MCUs left in this restart interval */
54
int next_restart_num; /* next restart number to write (0-7) */
55
56
/* Pointers to derived tables (these workspaces have image lifespan).
57
* Since any one scan codes only DC or only AC, we only need one set
58
* of tables, not one for DC and one for AC.
59
*/
60
c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
61
62
/* Statistics tables for optimization; again, one set is enough */
63
long * count_ptrs[NUM_HUFF_TBLS];
64
} phuff_entropy_encoder;
65
66
typedef phuff_entropy_encoder * phuff_entropy_ptr;
67
68
/* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
69
* buffer can hold. Larger sizes may slightly improve compression, but
70
* 1000 is already well into the realm of overkill.
71
* The minimum safe size is 64 bits.
72
*/
73
74
#define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
75
76
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
77
* We assume that int right shift is unsigned if INT32 right shift is,
78
* which should be safe.
79
*/
80
81
#ifdef RIGHT_SHIFT_IS_UNSIGNED
82
#define ISHIFT_TEMPS int ishift_temp;
83
#define IRIGHT_SHIFT(x,shft) \
84
((ishift_temp = (x)) < 0 ? \
85
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
86
(ishift_temp >> (shft)))
87
#else
88
#define ISHIFT_TEMPS
89
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
90
#endif
91
92
/* Forward declarations */
93
METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
94
JBLOCKROW *MCU_data));
95
METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
96
JBLOCKROW *MCU_data));
97
METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
98
JBLOCKROW *MCU_data));
99
METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
100
JBLOCKROW *MCU_data));
101
METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
102
METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
103
104
105
/*
106
* Initialize for a Huffman-compressed scan using progressive JPEG.
107
*/
108
109
METHODDEF(void)
110
start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
111
{
112
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
113
boolean is_DC_band;
114
int ci, tbl;
115
jpeg_component_info * compptr;
116
117
entropy->cinfo = cinfo;
118
entropy->gather_statistics = gather_statistics;
119
120
is_DC_band = (cinfo->Ss == 0);
121
122
/* We assume jcmaster.c already validated the scan parameters. */
123
124
/* Select execution routines */
125
if (cinfo->Ah == 0) {
126
if (is_DC_band)
127
entropy->pub.encode_mcu = encode_mcu_DC_first;
128
else
129
entropy->pub.encode_mcu = encode_mcu_AC_first;
130
} else {
131
if (is_DC_band)
132
entropy->pub.encode_mcu = encode_mcu_DC_refine;
133
else {
134
entropy->pub.encode_mcu = encode_mcu_AC_refine;
135
/* AC refinement needs a correction bit buffer */
136
if (entropy->bit_buffer == NULL)
137
entropy->bit_buffer = (char *)
138
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
139
MAX_CORR_BITS * SIZEOF(char));
140
}
141
}
142
if (gather_statistics)
143
entropy->pub.finish_pass = finish_pass_gather_phuff;
144
else
145
entropy->pub.finish_pass = finish_pass_phuff;
146
147
/* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
148
* for AC coefficients.
149
*/
150
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
151
compptr = cinfo->cur_comp_info[ci];
152
/* Initialize DC predictions to 0 */
153
entropy->last_dc_val[ci] = 0;
154
/* Get table index */
155
if (is_DC_band) {
156
if (cinfo->Ah != 0) /* DC refinement needs no table */
157
continue;
158
tbl = compptr->dc_tbl_no;
159
} else {
160
entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
161
}
162
if (gather_statistics) {
163
/* Check for invalid table index */
164
/* (make_c_derived_tbl does this in the other path) */
165
if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
166
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
167
/* Allocate and zero the statistics tables */
168
/* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
169
if (entropy->count_ptrs[tbl] == NULL)
170
entropy->count_ptrs[tbl] = (long *)
171
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
172
257 * SIZEOF(long));
173
MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
174
} else {
175
/* Compute derived values for Huffman table */
176
/* We may do this more than once for a table, but it's not expensive */
177
jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
178
& entropy->derived_tbls[tbl]);
179
}
180
}
181
182
/* Initialize AC stuff */
183
entropy->EOBRUN = 0;
184
entropy->BE = 0;
185
186
/* Initialize bit buffer to empty */
187
entropy->put_buffer = 0;
188
entropy->put_bits = 0;
189
190
/* Initialize restart stuff */
191
entropy->restarts_to_go = cinfo->restart_interval;
192
entropy->next_restart_num = 0;
193
}
194
195
196
/* Outputting bytes to the file.
197
* NB: these must be called only when actually outputting,
198
* that is, entropy->gather_statistics == FALSE.
199
*/
200
201
/* Emit a byte */
202
#define emit_byte(entropy,val) \
203
{ *(entropy)->next_output_byte++ = (JOCTET) (val); \
204
if (--(entropy)->free_in_buffer == 0) \
205
dump_buffer(entropy); }
206
207
208
LOCAL(void)
209
dump_buffer (phuff_entropy_ptr entropy)
210
/* Empty the output buffer; we do not support suspension in this module. */
211
{
212
struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
213
214
if (! (*dest->empty_output_buffer) (entropy->cinfo))
215
ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
216
/* After a successful buffer dump, must reset buffer pointers */
217
entropy->next_output_byte = dest->next_output_byte;
218
entropy->free_in_buffer = dest->free_in_buffer;
219
}
220
221
222
/* Outputting bits to the file */
223
224
/* Only the right 24 bits of put_buffer are used; the valid bits are
225
* left-justified in this part. At most 16 bits can be passed to emit_bits
226
* in one call, and we never retain more than 7 bits in put_buffer
227
* between calls, so 24 bits are sufficient.
228
*/
229
230
INLINE
231
LOCAL(void)
232
emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
233
/* Emit some bits, unless we are in gather mode */
234
{
235
/* This routine is heavily used, so it's worth coding tightly. */
236
register INT32 put_buffer = (INT32) code;
237
register int put_bits = entropy->put_bits;
238
239
/* if size is 0, caller used an invalid Huffman table entry */
240
if (size == 0)
241
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
242
243
if (entropy->gather_statistics)
244
return; /* do nothing if we're only getting stats */
245
246
put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
247
248
put_bits += size; /* new number of bits in buffer */
249
250
put_buffer <<= 24 - put_bits; /* align incoming bits */
251
252
put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
253
254
while (put_bits >= 8) {
255
int c = (int) ((put_buffer >> 16) & 0xFF);
256
257
emit_byte(entropy, c);
258
if (c == 0xFF) { /* need to stuff a zero byte? */
259
emit_byte(entropy, 0);
260
}
261
put_buffer <<= 8;
262
put_bits -= 8;
263
}
264
265
entropy->put_buffer = put_buffer; /* update variables */
266
entropy->put_bits = put_bits;
267
}
268
269
270
LOCAL(void)
271
flush_bits (phuff_entropy_ptr entropy)
272
{
273
emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
274
entropy->put_buffer = 0; /* and reset bit-buffer to empty */
275
entropy->put_bits = 0;
276
}
277
278
279
/*
280
* Emit (or just count) a Huffman symbol.
281
*/
282
283
INLINE
284
LOCAL(void)
285
emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
286
{
287
if (entropy->gather_statistics)
288
entropy->count_ptrs[tbl_no][symbol]++;
289
else {
290
c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
291
emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
292
}
293
}
294
295
296
/*
297
* Emit bits from a correction bit buffer.
298
*/
299
300
LOCAL(void)
301
emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
302
unsigned int nbits)
303
{
304
if (entropy->gather_statistics)
305
return; /* no real work */
306
307
while (nbits > 0) {
308
emit_bits(entropy, (unsigned int) (*bufstart), 1);
309
bufstart++;
310
nbits--;
311
}
312
}
313
314
315
/*
316
* Emit any pending EOBRUN symbol.
317
*/
318
319
LOCAL(void)
320
emit_eobrun (phuff_entropy_ptr entropy)
321
{
322
register int temp, nbits;
323
324
if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
325
temp = entropy->EOBRUN;
326
nbits = 0;
327
while ((temp >>= 1))
328
nbits++;
329
/* safety check: shouldn't happen given limited correction-bit buffer */
330
if (nbits > 14)
331
ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
332
333
emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
334
if (nbits)
335
emit_bits(entropy, entropy->EOBRUN, nbits);
336
337
entropy->EOBRUN = 0;
338
339
/* Emit any buffered correction bits */
340
emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
341
entropy->BE = 0;
342
}
343
}
344
345
346
/*
347
* Emit a restart marker & resynchronize predictions.
348
*/
349
350
LOCAL(void)
351
emit_restart (phuff_entropy_ptr entropy, int restart_num)
352
{
353
int ci;
354
355
emit_eobrun(entropy);
356
357
if (! entropy->gather_statistics) {
358
flush_bits(entropy);
359
emit_byte(entropy, 0xFF);
360
emit_byte(entropy, JPEG_RST0 + restart_num);
361
}
362
363
if (entropy->cinfo->Ss == 0) {
364
/* Re-initialize DC predictions to 0 */
365
for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
366
entropy->last_dc_val[ci] = 0;
367
} else {
368
/* Re-initialize all AC-related fields to 0 */
369
entropy->EOBRUN = 0;
370
entropy->BE = 0;
371
}
372
}
373
374
375
/*
376
* MCU encoding for DC initial scan (either spectral selection,
377
* or first pass of successive approximation).
378
*/
379
380
METHODDEF(boolean)
381
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
382
{
383
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
384
register int temp, temp2;
385
register int nbits;
386
int blkn, ci;
387
int Al = cinfo->Al;
388
JBLOCKROW block;
389
jpeg_component_info * compptr;
390
ISHIFT_TEMPS
391
392
entropy->next_output_byte = cinfo->dest->next_output_byte;
393
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
394
395
/* Emit restart marker if needed */
396
if (cinfo->restart_interval)
397
if (entropy->restarts_to_go == 0)
398
emit_restart(entropy, entropy->next_restart_num);
399
400
/* Encode the MCU data blocks */
401
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
402
block = MCU_data[blkn];
403
ci = cinfo->MCU_membership[blkn];
404
compptr = cinfo->cur_comp_info[ci];
405
406
/* Compute the DC value after the required point transform by Al.
407
* This is simply an arithmetic right shift.
408
*/
409
temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
410
411
/* DC differences are figured on the point-transformed values. */
412
temp = temp2 - entropy->last_dc_val[ci];
413
entropy->last_dc_val[ci] = temp2;
414
415
/* Encode the DC coefficient difference per section G.1.2.1 */
416
temp2 = temp;
417
if (temp < 0) {
418
temp = -temp; /* temp is abs value of input */
419
/* For a negative input, want temp2 = bitwise complement of abs(input) */
420
/* This code assumes we are on a two's complement machine */
421
temp2--;
422
}
423
424
/* Find the number of bits needed for the magnitude of the coefficient */
425
nbits = 0;
426
while (temp) {
427
nbits++;
428
temp >>= 1;
429
}
430
/* Check for out-of-range coefficient values.
431
* Since we're encoding a difference, the range limit is twice as much.
432
*/
433
if (nbits > MAX_COEF_BITS+1)
434
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
435
436
/* Count/emit the Huffman-coded symbol for the number of bits */
437
emit_symbol(entropy, compptr->dc_tbl_no, nbits);
438
439
/* Emit that number of bits of the value, if positive, */
440
/* or the complement of its magnitude, if negative. */
441
if (nbits) /* emit_bits rejects calls with size 0 */
442
emit_bits(entropy, (unsigned int) temp2, nbits);
443
}
444
445
cinfo->dest->next_output_byte = entropy->next_output_byte;
446
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
447
448
/* Update restart-interval state too */
449
if (cinfo->restart_interval) {
450
if (entropy->restarts_to_go == 0) {
451
entropy->restarts_to_go = cinfo->restart_interval;
452
entropy->next_restart_num++;
453
entropy->next_restart_num &= 7;
454
}
455
entropy->restarts_to_go--;
456
}
457
458
return TRUE;
459
}
460
461
462
/*
463
* MCU encoding for AC initial scan (either spectral selection,
464
* or first pass of successive approximation).
465
*/
466
467
METHODDEF(boolean)
468
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
469
{
470
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
471
register int temp, temp2;
472
register int nbits;
473
register int r, k;
474
int Se = cinfo->Se;
475
int Al = cinfo->Al;
476
JBLOCKROW block;
477
478
entropy->next_output_byte = cinfo->dest->next_output_byte;
479
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
480
481
/* Emit restart marker if needed */
482
if (cinfo->restart_interval)
483
if (entropy->restarts_to_go == 0)
484
emit_restart(entropy, entropy->next_restart_num);
485
486
/* Encode the MCU data block */
487
block = MCU_data[0];
488
489
/* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
490
491
r = 0; /* r = run length of zeros */
492
493
for (k = cinfo->Ss; k <= Se; k++) {
494
if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
495
r++;
496
continue;
497
}
498
/* We must apply the point transform by Al. For AC coefficients this
499
* is an integer division with rounding towards 0. To do this portably
500
* in C, we shift after obtaining the absolute value; so the code is
501
* interwoven with finding the abs value (temp) and output bits (temp2).
502
*/
503
if (temp < 0) {
504
temp = -temp; /* temp is abs value of input */
505
temp >>= Al; /* apply the point transform */
506
/* For a negative coef, want temp2 = bitwise complement of abs(coef) */
507
temp2 = ~temp;
508
} else {
509
temp >>= Al; /* apply the point transform */
510
temp2 = temp;
511
}
512
/* Watch out for case that nonzero coef is zero after point transform */
513
if (temp == 0) {
514
r++;
515
continue;
516
}
517
518
/* Emit any pending EOBRUN */
519
if (entropy->EOBRUN > 0)
520
emit_eobrun(entropy);
521
/* if run length > 15, must emit special run-length-16 codes (0xF0) */
522
while (r > 15) {
523
emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
524
r -= 16;
525
}
526
527
/* Find the number of bits needed for the magnitude of the coefficient */
528
nbits = 1; /* there must be at least one 1 bit */
529
while ((temp >>= 1))
530
nbits++;
531
/* Check for out-of-range coefficient values */
532
if (nbits > MAX_COEF_BITS)
533
ERREXIT(cinfo, JERR_BAD_DCT_COEF);
534
535
/* Count/emit Huffman symbol for run length / number of bits */
536
emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
537
538
/* Emit that number of bits of the value, if positive, */
539
/* or the complement of its magnitude, if negative. */
540
emit_bits(entropy, (unsigned int) temp2, nbits);
541
542
r = 0; /* reset zero run length */
543
}
544
545
if (r > 0) { /* If there are trailing zeroes, */
546
entropy->EOBRUN++; /* count an EOB */
547
if (entropy->EOBRUN == 0x7FFF)
548
emit_eobrun(entropy); /* force it out to avoid overflow */
549
}
550
551
cinfo->dest->next_output_byte = entropy->next_output_byte;
552
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
553
554
/* Update restart-interval state too */
555
if (cinfo->restart_interval) {
556
if (entropy->restarts_to_go == 0) {
557
entropy->restarts_to_go = cinfo->restart_interval;
558
entropy->next_restart_num++;
559
entropy->next_restart_num &= 7;
560
}
561
entropy->restarts_to_go--;
562
}
563
564
return TRUE;
565
}
566
567
568
/*
569
* MCU encoding for DC successive approximation refinement scan.
570
* Note: we assume such scans can be multi-component, although the spec
571
* is not very clear on the point.
572
*/
573
574
METHODDEF(boolean)
575
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
576
{
577
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
578
register int temp;
579
int blkn;
580
int Al = cinfo->Al;
581
JBLOCKROW block;
582
583
entropy->next_output_byte = cinfo->dest->next_output_byte;
584
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
585
586
/* Emit restart marker if needed */
587
if (cinfo->restart_interval)
588
if (entropy->restarts_to_go == 0)
589
emit_restart(entropy, entropy->next_restart_num);
590
591
/* Encode the MCU data blocks */
592
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
593
block = MCU_data[blkn];
594
595
/* We simply emit the Al'th bit of the DC coefficient value. */
596
temp = (*block)[0];
597
emit_bits(entropy, (unsigned int) (temp >> Al), 1);
598
}
599
600
cinfo->dest->next_output_byte = entropy->next_output_byte;
601
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
602
603
/* Update restart-interval state too */
604
if (cinfo->restart_interval) {
605
if (entropy->restarts_to_go == 0) {
606
entropy->restarts_to_go = cinfo->restart_interval;
607
entropy->next_restart_num++;
608
entropy->next_restart_num &= 7;
609
}
610
entropy->restarts_to_go--;
611
}
612
613
return TRUE;
614
}
615
616
617
/*
618
* MCU encoding for AC successive approximation refinement scan.
619
*/
620
621
METHODDEF(boolean)
622
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
623
{
624
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
625
register int temp;
626
register int r, k;
627
int EOB;
628
char *BR_buffer;
629
unsigned int BR;
630
int Se = cinfo->Se;
631
int Al = cinfo->Al;
632
JBLOCKROW block;
633
int absvalues[DCTSIZE2];
634
635
entropy->next_output_byte = cinfo->dest->next_output_byte;
636
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
637
638
/* Emit restart marker if needed */
639
if (cinfo->restart_interval)
640
if (entropy->restarts_to_go == 0)
641
emit_restart(entropy, entropy->next_restart_num);
642
643
/* Encode the MCU data block */
644
block = MCU_data[0];
645
646
/* It is convenient to make a pre-pass to determine the transformed
647
* coefficients' absolute values and the EOB position.
648
*/
649
EOB = 0;
650
for (k = cinfo->Ss; k <= Se; k++) {
651
temp = (*block)[jpeg_natural_order[k]];
652
/* We must apply the point transform by Al. For AC coefficients this
653
* is an integer division with rounding towards 0. To do this portably
654
* in C, we shift after obtaining the absolute value.
655
*/
656
if (temp < 0)
657
temp = -temp; /* temp is abs value of input */
658
temp >>= Al; /* apply the point transform */
659
absvalues[k] = temp; /* save abs value for main pass */
660
if (temp == 1)
661
EOB = k; /* EOB = index of last newly-nonzero coef */
662
}
663
664
/* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
665
666
r = 0; /* r = run length of zeros */
667
BR = 0; /* BR = count of buffered bits added now */
668
BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
669
670
for (k = cinfo->Ss; k <= Se; k++) {
671
if ((temp = absvalues[k]) == 0) {
672
r++;
673
continue;
674
}
675
676
/* Emit any required ZRLs, but not if they can be folded into EOB */
677
while (r > 15 && k <= EOB) {
678
/* emit any pending EOBRUN and the BE correction bits */
679
emit_eobrun(entropy);
680
/* Emit ZRL */
681
emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
682
r -= 16;
683
/* Emit buffered correction bits that must be associated with ZRL */
684
emit_buffered_bits(entropy, BR_buffer, BR);
685
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
686
BR = 0;
687
}
688
689
/* If the coef was previously nonzero, it only needs a correction bit.
690
* NOTE: a straight translation of the spec's figure G.7 would suggest
691
* that we also need to test r > 15. But if r > 15, we can only get here
692
* if k > EOB, which implies that this coefficient is not 1.
693
*/
694
if (temp > 1) {
695
/* The correction bit is the next bit of the absolute value. */
696
BR_buffer[BR++] = (char) (temp & 1);
697
continue;
698
}
699
700
/* Emit any pending EOBRUN and the BE correction bits */
701
emit_eobrun(entropy);
702
703
/* Count/emit Huffman symbol for run length / number of bits */
704
emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
705
706
/* Emit output bit for newly-nonzero coef */
707
temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
708
emit_bits(entropy, (unsigned int) temp, 1);
709
710
/* Emit buffered correction bits that must be associated with this code */
711
emit_buffered_bits(entropy, BR_buffer, BR);
712
BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
713
BR = 0;
714
r = 0; /* reset zero run length */
715
}
716
717
if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
718
entropy->EOBRUN++; /* count an EOB */
719
entropy->BE += BR; /* concat my correction bits to older ones */
720
/* We force out the EOB if we risk either:
721
* 1. overflow of the EOB counter;
722
* 2. overflow of the correction bit buffer during the next MCU.
723
*/
724
if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
725
emit_eobrun(entropy);
726
}
727
728
cinfo->dest->next_output_byte = entropy->next_output_byte;
729
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
730
731
/* Update restart-interval state too */
732
if (cinfo->restart_interval) {
733
if (entropy->restarts_to_go == 0) {
734
entropy->restarts_to_go = cinfo->restart_interval;
735
entropy->next_restart_num++;
736
entropy->next_restart_num &= 7;
737
}
738
entropy->restarts_to_go--;
739
}
740
741
return TRUE;
742
}
743
744
745
/*
746
* Finish up at the end of a Huffman-compressed progressive scan.
747
*/
748
749
METHODDEF(void)
750
finish_pass_phuff (j_compress_ptr cinfo)
751
{
752
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
753
754
entropy->next_output_byte = cinfo->dest->next_output_byte;
755
entropy->free_in_buffer = cinfo->dest->free_in_buffer;
756
757
/* Flush out any buffered data */
758
emit_eobrun(entropy);
759
flush_bits(entropy);
760
761
cinfo->dest->next_output_byte = entropy->next_output_byte;
762
cinfo->dest->free_in_buffer = entropy->free_in_buffer;
763
}
764
765
766
/*
767
* Finish up a statistics-gathering pass and create the new Huffman tables.
768
*/
769
770
METHODDEF(void)
771
finish_pass_gather_phuff (j_compress_ptr cinfo)
772
{
773
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
774
boolean is_DC_band;
775
int ci, tbl;
776
jpeg_component_info * compptr;
777
JHUFF_TBL **htblptr;
778
boolean did[NUM_HUFF_TBLS];
779
780
/* Flush out buffered data (all we care about is counting the EOB symbol) */
781
emit_eobrun(entropy);
782
783
is_DC_band = (cinfo->Ss == 0);
784
785
/* It's important not to apply jpeg_gen_optimal_table more than once
786
* per table, because it clobbers the input frequency counts!
787
*/
788
MEMZERO(did, SIZEOF(did));
789
790
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
791
compptr = cinfo->cur_comp_info[ci];
792
if (is_DC_band) {
793
if (cinfo->Ah != 0) /* DC refinement needs no table */
794
continue;
795
tbl = compptr->dc_tbl_no;
796
} else {
797
tbl = compptr->ac_tbl_no;
798
}
799
if (! did[tbl]) {
800
if (is_DC_band)
801
htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
802
else
803
htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
804
if (*htblptr == NULL)
805
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
806
jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
807
did[tbl] = TRUE;
808
}
809
}
810
}
811
812
813
/*
814
* Module initialization routine for progressive Huffman entropy encoding.
815
*/
816
817
GLOBAL(void)
818
jinit_phuff_encoder (j_compress_ptr cinfo)
819
{
820
phuff_entropy_ptr entropy;
821
int i;
822
823
entropy = (phuff_entropy_ptr)
824
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
825
SIZEOF(phuff_entropy_encoder));
826
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
827
entropy->pub.start_pass = start_pass_phuff;
828
829
/* Mark tables unallocated */
830
for (i = 0; i < NUM_HUFF_TBLS; i++) {
831
entropy->derived_tbls[i] = NULL;
832
entropy->count_ptrs[i] = NULL;
833
}
834
entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
835
}
836
837
#endif /* C_PROGRESSIVE_SUPPORTED */
838
839