Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/libjavajpeg/jcsample.c
41149 views
1
/*
2
* reserved comment block
3
* DO NOT REMOVE OR ALTER!
4
*/
5
/*
6
* jcsample.c
7
*
8
* Copyright (C) 1991-1996, Thomas G. Lane.
9
* This file is part of the Independent JPEG Group's software.
10
* For conditions of distribution and use, see the accompanying README file.
11
*
12
* This file contains downsampling routines.
13
*
14
* Downsampling input data is counted in "row groups". A row group
15
* is defined to be max_v_samp_factor pixel rows of each component,
16
* from which the downsampler produces v_samp_factor sample rows.
17
* A single row group is processed in each call to the downsampler module.
18
*
19
* The downsampler is responsible for edge-expansion of its output data
20
* to fill an integral number of DCT blocks horizontally. The source buffer
21
* may be modified if it is helpful for this purpose (the source buffer is
22
* allocated wide enough to correspond to the desired output width).
23
* The caller (the prep controller) is responsible for vertical padding.
24
*
25
* The downsampler may request "context rows" by setting need_context_rows
26
* during startup. In this case, the input arrays will contain at least
27
* one row group's worth of pixels above and below the passed-in data;
28
* the caller will create dummy rows at image top and bottom by replicating
29
* the first or last real pixel row.
30
*
31
* An excellent reference for image resampling is
32
* Digital Image Warping, George Wolberg, 1990.
33
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
34
*
35
* The downsampling algorithm used here is a simple average of the source
36
* pixels covered by the output pixel. The hi-falutin sampling literature
37
* refers to this as a "box filter". In general the characteristics of a box
38
* filter are not very good, but for the specific cases we normally use (1:1
39
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
40
* nearly so bad. If you intend to use other sampling ratios, you'd be well
41
* advised to improve this code.
42
*
43
* A simple input-smoothing capability is provided. This is mainly intended
44
* for cleaning up color-dithered GIF input files (if you find it inadequate,
45
* we suggest using an external filtering program such as pnmconvol). When
46
* enabled, each input pixel P is replaced by a weighted sum of itself and its
47
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
48
* where SF = (smoothing_factor / 1024).
49
* Currently, smoothing is only supported for 2h2v sampling factors.
50
*/
51
52
#define JPEG_INTERNALS
53
#include "jinclude.h"
54
#include "jpeglib.h"
55
56
57
/* Pointer to routine to downsample a single component */
58
typedef JMETHOD(void, downsample1_ptr,
59
(j_compress_ptr cinfo, jpeg_component_info * compptr,
60
JSAMPARRAY input_data, JSAMPARRAY output_data));
61
62
/* Private subobject */
63
64
typedef struct {
65
struct jpeg_downsampler pub; /* public fields */
66
67
/* Downsampling method pointers, one per component */
68
downsample1_ptr methods[MAX_COMPONENTS];
69
} my_downsampler;
70
71
typedef my_downsampler * my_downsample_ptr;
72
73
74
/*
75
* Initialize for a downsampling pass.
76
*/
77
78
METHODDEF(void)
79
start_pass_downsample (j_compress_ptr cinfo)
80
{
81
/* no work for now */
82
}
83
84
85
/*
86
* Expand a component horizontally from width input_cols to width output_cols,
87
* by duplicating the rightmost samples.
88
*/
89
90
LOCAL(void)
91
expand_right_edge (JSAMPARRAY image_data, int num_rows,
92
JDIMENSION input_cols, JDIMENSION output_cols)
93
{
94
register JSAMPROW ptr;
95
register JSAMPLE pixval;
96
register int count;
97
int row;
98
int numcols = (int) (output_cols - input_cols);
99
100
if (numcols > 0) {
101
for (row = 0; row < num_rows; row++) {
102
ptr = image_data[row] + input_cols;
103
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */
104
for (count = numcols; count > 0; count--)
105
*ptr++ = pixval;
106
}
107
}
108
}
109
110
111
/*
112
* Do downsampling for a whole row group (all components).
113
*
114
* In this version we simply downsample each component independently.
115
*/
116
117
METHODDEF(void)
118
sep_downsample (j_compress_ptr cinfo,
119
JSAMPIMAGE input_buf, JDIMENSION in_row_index,
120
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
121
{
122
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
123
int ci;
124
jpeg_component_info * compptr;
125
JSAMPARRAY in_ptr, out_ptr;
126
127
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
128
ci++, compptr++) {
129
in_ptr = input_buf[ci] + in_row_index;
130
out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
131
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
132
}
133
}
134
135
136
/*
137
* Downsample pixel values of a single component.
138
* One row group is processed per call.
139
* This version handles arbitrary integral sampling ratios, without smoothing.
140
* Note that this version is not actually used for customary sampling ratios.
141
*/
142
143
METHODDEF(void)
144
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
145
JSAMPARRAY input_data, JSAMPARRAY output_data)
146
{
147
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
148
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */
149
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
150
JSAMPROW inptr, outptr;
151
INT32 outvalue;
152
153
h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
154
v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
155
numpix = h_expand * v_expand;
156
numpix2 = numpix/2;
157
158
/* Expand input data enough to let all the output samples be generated
159
* by the standard loop. Special-casing padded output would be more
160
* efficient.
161
*/
162
expand_right_edge(input_data, cinfo->max_v_samp_factor,
163
cinfo->image_width, output_cols * h_expand);
164
165
inrow = 0;
166
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
167
outptr = output_data[outrow];
168
for (outcol = 0, outcol_h = 0; outcol < output_cols;
169
outcol++, outcol_h += h_expand) {
170
outvalue = 0;
171
for (v = 0; v < v_expand; v++) {
172
inptr = input_data[inrow+v] + outcol_h;
173
for (h = 0; h < h_expand; h++) {
174
outvalue += (INT32) GETJSAMPLE(*inptr++);
175
}
176
}
177
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
178
}
179
inrow += v_expand;
180
}
181
}
182
183
184
/*
185
* Downsample pixel values of a single component.
186
* This version handles the special case of a full-size component,
187
* without smoothing.
188
*/
189
190
METHODDEF(void)
191
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
192
JSAMPARRAY input_data, JSAMPARRAY output_data)
193
{
194
/* Copy the data */
195
jcopy_sample_rows(input_data, 0, output_data, 0,
196
cinfo->max_v_samp_factor, cinfo->image_width);
197
/* Edge-expand */
198
expand_right_edge(output_data, cinfo->max_v_samp_factor,
199
cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
200
}
201
202
203
/*
204
* Downsample pixel values of a single component.
205
* This version handles the common case of 2:1 horizontal and 1:1 vertical,
206
* without smoothing.
207
*
208
* A note about the "bias" calculations: when rounding fractional values to
209
* integer, we do not want to always round 0.5 up to the next integer.
210
* If we did that, we'd introduce a noticeable bias towards larger values.
211
* Instead, this code is arranged so that 0.5 will be rounded up or down at
212
* alternate pixel locations (a simple ordered dither pattern).
213
*/
214
215
METHODDEF(void)
216
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
217
JSAMPARRAY input_data, JSAMPARRAY output_data)
218
{
219
int outrow;
220
JDIMENSION outcol;
221
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
222
register JSAMPROW inptr, outptr;
223
register int bias;
224
225
/* Expand input data enough to let all the output samples be generated
226
* by the standard loop. Special-casing padded output would be more
227
* efficient.
228
*/
229
expand_right_edge(input_data, cinfo->max_v_samp_factor,
230
cinfo->image_width, output_cols * 2);
231
232
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
233
outptr = output_data[outrow];
234
inptr = input_data[outrow];
235
bias = 0; /* bias = 0,1,0,1,... for successive samples */
236
for (outcol = 0; outcol < output_cols; outcol++) {
237
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
238
+ bias) >> 1);
239
bias ^= 1; /* 0=>1, 1=>0 */
240
inptr += 2;
241
}
242
}
243
}
244
245
246
/*
247
* Downsample pixel values of a single component.
248
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
249
* without smoothing.
250
*/
251
252
METHODDEF(void)
253
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
254
JSAMPARRAY input_data, JSAMPARRAY output_data)
255
{
256
int inrow, outrow;
257
JDIMENSION outcol;
258
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
259
register JSAMPROW inptr0, inptr1, outptr;
260
register int bias;
261
262
/* Expand input data enough to let all the output samples be generated
263
* by the standard loop. Special-casing padded output would be more
264
* efficient.
265
*/
266
expand_right_edge(input_data, cinfo->max_v_samp_factor,
267
cinfo->image_width, output_cols * 2);
268
269
inrow = 0;
270
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
271
outptr = output_data[outrow];
272
inptr0 = input_data[inrow];
273
inptr1 = input_data[inrow+1];
274
bias = 1; /* bias = 1,2,1,2,... for successive samples */
275
for (outcol = 0; outcol < output_cols; outcol++) {
276
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
277
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
278
+ bias) >> 2);
279
bias ^= 3; /* 1=>2, 2=>1 */
280
inptr0 += 2; inptr1 += 2;
281
}
282
inrow += 2;
283
}
284
}
285
286
287
#ifdef INPUT_SMOOTHING_SUPPORTED
288
289
/*
290
* Downsample pixel values of a single component.
291
* This version handles the standard case of 2:1 horizontal and 2:1 vertical,
292
* with smoothing. One row of context is required.
293
*/
294
295
METHODDEF(void)
296
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
297
JSAMPARRAY input_data, JSAMPARRAY output_data)
298
{
299
int inrow, outrow;
300
JDIMENSION colctr;
301
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
302
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
303
INT32 membersum, neighsum, memberscale, neighscale;
304
305
/* Expand input data enough to let all the output samples be generated
306
* by the standard loop. Special-casing padded output would be more
307
* efficient.
308
*/
309
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
310
cinfo->image_width, output_cols * 2);
311
312
/* We don't bother to form the individual "smoothed" input pixel values;
313
* we can directly compute the output which is the average of the four
314
* smoothed values. Each of the four member pixels contributes a fraction
315
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three
316
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
317
* output. The four corner-adjacent neighbor pixels contribute a fraction
318
* SF to just one smoothed pixel, or SF/4 to the final output; while the
319
* eight edge-adjacent neighbors contribute SF to each of two smoothed
320
* pixels, or SF/2 overall. In order to use integer arithmetic, these
321
* factors are scaled by 2^16 = 65536.
322
* Also recall that SF = smoothing_factor / 1024.
323
*/
324
325
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
326
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
327
328
inrow = 0;
329
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
330
outptr = output_data[outrow];
331
inptr0 = input_data[inrow];
332
inptr1 = input_data[inrow+1];
333
above_ptr = input_data[inrow-1];
334
below_ptr = input_data[inrow+2];
335
336
/* Special case for first column: pretend column -1 is same as column 0 */
337
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
338
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
339
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
340
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
341
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
342
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
343
neighsum += neighsum;
344
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
345
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
346
membersum = membersum * memberscale + neighsum * neighscale;
347
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
348
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
349
350
for (colctr = output_cols - 2; colctr > 0; colctr--) {
351
/* sum of pixels directly mapped to this output element */
352
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
353
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
354
/* sum of edge-neighbor pixels */
355
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
356
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
357
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
358
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
359
/* The edge-neighbors count twice as much as corner-neighbors */
360
neighsum += neighsum;
361
/* Add in the corner-neighbors */
362
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
363
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
364
/* form final output scaled up by 2^16 */
365
membersum = membersum * memberscale + neighsum * neighscale;
366
/* round, descale and output it */
367
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
368
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
369
}
370
371
/* Special case for last column */
372
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
373
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
374
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
375
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
376
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
377
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
378
neighsum += neighsum;
379
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
380
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
381
membersum = membersum * memberscale + neighsum * neighscale;
382
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
383
384
inrow += 2;
385
}
386
}
387
388
389
/*
390
* Downsample pixel values of a single component.
391
* This version handles the special case of a full-size component,
392
* with smoothing. One row of context is required.
393
*/
394
395
METHODDEF(void)
396
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
397
JSAMPARRAY input_data, JSAMPARRAY output_data)
398
{
399
int outrow;
400
JDIMENSION colctr;
401
JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
402
register JSAMPROW inptr, above_ptr, below_ptr, outptr;
403
INT32 membersum, neighsum, memberscale, neighscale;
404
int colsum, lastcolsum, nextcolsum;
405
406
/* Expand input data enough to let all the output samples be generated
407
* by the standard loop. Special-casing padded output would be more
408
* efficient.
409
*/
410
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
411
cinfo->image_width, output_cols);
412
413
/* Each of the eight neighbor pixels contributes a fraction SF to the
414
* smoothed pixel, while the main pixel contributes (1-8*SF). In order
415
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
416
* Also recall that SF = smoothing_factor / 1024.
417
*/
418
419
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
420
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
421
422
for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
423
outptr = output_data[outrow];
424
inptr = input_data[outrow];
425
above_ptr = input_data[outrow-1];
426
below_ptr = input_data[outrow+1];
427
428
/* Special case for first column */
429
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
430
GETJSAMPLE(*inptr);
431
membersum = GETJSAMPLE(*inptr++);
432
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
433
GETJSAMPLE(*inptr);
434
neighsum = colsum + (colsum - membersum) + nextcolsum;
435
membersum = membersum * memberscale + neighsum * neighscale;
436
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
437
lastcolsum = colsum; colsum = nextcolsum;
438
439
for (colctr = output_cols - 2; colctr > 0; colctr--) {
440
membersum = GETJSAMPLE(*inptr++);
441
above_ptr++; below_ptr++;
442
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
443
GETJSAMPLE(*inptr);
444
neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
445
membersum = membersum * memberscale + neighsum * neighscale;
446
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
447
lastcolsum = colsum; colsum = nextcolsum;
448
}
449
450
/* Special case for last column */
451
membersum = GETJSAMPLE(*inptr);
452
neighsum = lastcolsum + (colsum - membersum) + colsum;
453
membersum = membersum * memberscale + neighsum * neighscale;
454
*outptr = (JSAMPLE) ((membersum + 32768) >> 16);
455
456
}
457
}
458
459
#endif /* INPUT_SMOOTHING_SUPPORTED */
460
461
462
/*
463
* Module initialization routine for downsampling.
464
* Note that we must select a routine for each component.
465
*/
466
467
GLOBAL(void)
468
jinit_downsampler (j_compress_ptr cinfo)
469
{
470
my_downsample_ptr downsample;
471
int ci;
472
jpeg_component_info * compptr;
473
boolean smoothok = TRUE;
474
475
downsample = (my_downsample_ptr)
476
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
477
SIZEOF(my_downsampler));
478
cinfo->downsample = (struct jpeg_downsampler *) downsample;
479
downsample->pub.start_pass = start_pass_downsample;
480
downsample->pub.downsample = sep_downsample;
481
downsample->pub.need_context_rows = FALSE;
482
483
if (cinfo->CCIR601_sampling)
484
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
485
486
/* Verify we can handle the sampling factors, and set up method pointers */
487
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
488
ci++, compptr++) {
489
if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
490
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
491
#ifdef INPUT_SMOOTHING_SUPPORTED
492
if (cinfo->smoothing_factor) {
493
downsample->methods[ci] = fullsize_smooth_downsample;
494
downsample->pub.need_context_rows = TRUE;
495
} else
496
#endif
497
downsample->methods[ci] = fullsize_downsample;
498
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
499
compptr->v_samp_factor == cinfo->max_v_samp_factor) {
500
smoothok = FALSE;
501
downsample->methods[ci] = h2v1_downsample;
502
} else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
503
compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
504
#ifdef INPUT_SMOOTHING_SUPPORTED
505
if (cinfo->smoothing_factor) {
506
downsample->methods[ci] = h2v2_smooth_downsample;
507
downsample->pub.need_context_rows = TRUE;
508
} else
509
#endif
510
downsample->methods[ci] = h2v2_downsample;
511
} else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
512
(cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
513
smoothok = FALSE;
514
downsample->methods[ci] = int_downsample;
515
} else
516
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
517
}
518
519
#ifdef INPUT_SMOOTHING_SUPPORTED
520
if (cinfo->smoothing_factor && !smoothok)
521
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
522
#endif
523
}
524
525