Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/libjavajpeg/jdcoefct.c
41152 views
1
/*
2
* reserved comment block
3
* DO NOT REMOVE OR ALTER!
4
*/
5
/*
6
* jdcoefct.c
7
*
8
* Copyright (C) 1994-1997, Thomas G. Lane.
9
* This file is part of the Independent JPEG Group's software.
10
* For conditions of distribution and use, see the accompanying README file.
11
*
12
* This file contains the coefficient buffer controller for decompression.
13
* This controller is the top level of the JPEG decompressor proper.
14
* The coefficient buffer lies between entropy decoding and inverse-DCT steps.
15
*
16
* In buffered-image mode, this controller is the interface between
17
* input-oriented processing and output-oriented processing.
18
* Also, the input side (only) is used when reading a file for transcoding.
19
*/
20
21
#define JPEG_INTERNALS
22
#include "jinclude.h"
23
#include "jpeglib.h"
24
25
/* Block smoothing is only applicable for progressive JPEG, so: */
26
#ifndef D_PROGRESSIVE_SUPPORTED
27
#undef BLOCK_SMOOTHING_SUPPORTED
28
#endif
29
30
/* Private buffer controller object */
31
32
typedef struct {
33
struct jpeg_d_coef_controller pub; /* public fields */
34
35
/* These variables keep track of the current location of the input side. */
36
/* cinfo->input_iMCU_row is also used for this. */
37
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
38
int MCU_vert_offset; /* counts MCU rows within iMCU row */
39
int MCU_rows_per_iMCU_row; /* number of such rows needed */
40
41
/* The output side's location is represented by cinfo->output_iMCU_row. */
42
43
/* In single-pass modes, it's sufficient to buffer just one MCU.
44
* We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
45
* and let the entropy decoder write into that workspace each time.
46
* (On 80x86, the workspace is FAR even though it's not really very big;
47
* this is to keep the module interfaces unchanged when a large coefficient
48
* buffer is necessary.)
49
* In multi-pass modes, this array points to the current MCU's blocks
50
* within the virtual arrays; it is used only by the input side.
51
*/
52
JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
53
54
#ifdef D_MULTISCAN_FILES_SUPPORTED
55
/* In multi-pass modes, we need a virtual block array for each component. */
56
jvirt_barray_ptr whole_image[MAX_COMPONENTS];
57
#endif
58
59
#ifdef BLOCK_SMOOTHING_SUPPORTED
60
/* When doing block smoothing, we latch coefficient Al values here */
61
int * coef_bits_latch;
62
#define SAVED_COEFS 6 /* we save coef_bits[0..5] */
63
#endif
64
} my_coef_controller;
65
66
typedef my_coef_controller * my_coef_ptr;
67
68
/* Forward declarations */
69
METHODDEF(int) decompress_onepass
70
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
71
#ifdef D_MULTISCAN_FILES_SUPPORTED
72
METHODDEF(int) decompress_data
73
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
74
#endif
75
#ifdef BLOCK_SMOOTHING_SUPPORTED
76
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo));
77
METHODDEF(int) decompress_smooth_data
78
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
79
#endif
80
81
82
LOCAL(void)
83
start_iMCU_row (j_decompress_ptr cinfo)
84
/* Reset within-iMCU-row counters for a new row (input side) */
85
{
86
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
87
88
/* In an interleaved scan, an MCU row is the same as an iMCU row.
89
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
90
* But at the bottom of the image, process only what's left.
91
*/
92
if (cinfo->comps_in_scan > 1) {
93
coef->MCU_rows_per_iMCU_row = 1;
94
} else {
95
if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
96
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
97
else
98
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
99
}
100
101
coef->MCU_ctr = 0;
102
coef->MCU_vert_offset = 0;
103
}
104
105
106
/*
107
* Initialize for an input processing pass.
108
*/
109
110
METHODDEF(void)
111
start_input_pass (j_decompress_ptr cinfo)
112
{
113
cinfo->input_iMCU_row = 0;
114
start_iMCU_row(cinfo);
115
}
116
117
118
/*
119
* Initialize for an output processing pass.
120
*/
121
122
METHODDEF(void)
123
start_output_pass (j_decompress_ptr cinfo)
124
{
125
#ifdef BLOCK_SMOOTHING_SUPPORTED
126
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
127
128
/* If multipass, check to see whether to use block smoothing on this pass */
129
if (coef->pub.coef_arrays != NULL) {
130
if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
131
coef->pub.decompress_data = decompress_smooth_data;
132
else
133
coef->pub.decompress_data = decompress_data;
134
}
135
#endif
136
cinfo->output_iMCU_row = 0;
137
}
138
139
140
/*
141
* Decompress and return some data in the single-pass case.
142
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
143
* Input and output must run in lockstep since we have only a one-MCU buffer.
144
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
145
*
146
* NB: output_buf contains a plane for each component in image,
147
* which we index according to the component's SOF position.
148
*/
149
150
METHODDEF(int)
151
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
152
{
153
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
154
JDIMENSION MCU_col_num; /* index of current MCU within row */
155
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
156
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
157
int blkn, ci, xindex, yindex, yoffset, useful_width;
158
JSAMPARRAY output_ptr;
159
JDIMENSION start_col, output_col;
160
jpeg_component_info *compptr;
161
inverse_DCT_method_ptr inverse_DCT;
162
163
/* Loop to process as much as one whole iMCU row */
164
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
165
yoffset++) {
166
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
167
MCU_col_num++) {
168
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
169
jzero_far((void FAR *) coef->MCU_buffer[0],
170
(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
171
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
172
/* Suspension forced; update state counters and exit */
173
coef->MCU_vert_offset = yoffset;
174
coef->MCU_ctr = MCU_col_num;
175
return JPEG_SUSPENDED;
176
}
177
/* Determine where data should go in output_buf and do the IDCT thing.
178
* We skip dummy blocks at the right and bottom edges (but blkn gets
179
* incremented past them!). Note the inner loop relies on having
180
* allocated the MCU_buffer[] blocks sequentially.
181
*/
182
blkn = 0; /* index of current DCT block within MCU */
183
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
184
compptr = cinfo->cur_comp_info[ci];
185
/* Don't bother to IDCT an uninteresting component. */
186
if (! compptr->component_needed) {
187
blkn += compptr->MCU_blocks;
188
continue;
189
}
190
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
191
useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
192
: compptr->last_col_width;
193
output_ptr = output_buf[compptr->component_index] +
194
yoffset * compptr->DCT_scaled_size;
195
start_col = MCU_col_num * compptr->MCU_sample_width;
196
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
197
if (cinfo->input_iMCU_row < last_iMCU_row ||
198
yoffset+yindex < compptr->last_row_height) {
199
output_col = start_col;
200
for (xindex = 0; xindex < useful_width; xindex++) {
201
(*inverse_DCT) (cinfo, compptr,
202
(JCOEFPTR) coef->MCU_buffer[blkn+xindex],
203
output_ptr, output_col);
204
output_col += compptr->DCT_scaled_size;
205
}
206
}
207
blkn += compptr->MCU_width;
208
output_ptr += compptr->DCT_scaled_size;
209
}
210
}
211
}
212
/* Completed an MCU row, but perhaps not an iMCU row */
213
coef->MCU_ctr = 0;
214
}
215
/* Completed the iMCU row, advance counters for next one */
216
cinfo->output_iMCU_row++;
217
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
218
start_iMCU_row(cinfo);
219
return JPEG_ROW_COMPLETED;
220
}
221
/* Completed the scan */
222
(*cinfo->inputctl->finish_input_pass) (cinfo);
223
return JPEG_SCAN_COMPLETED;
224
}
225
226
227
/*
228
* Dummy consume-input routine for single-pass operation.
229
*/
230
231
METHODDEF(int)
232
dummy_consume_data (j_decompress_ptr cinfo)
233
{
234
return JPEG_SUSPENDED; /* Always indicate nothing was done */
235
}
236
237
238
#ifdef D_MULTISCAN_FILES_SUPPORTED
239
240
/*
241
* Consume input data and store it in the full-image coefficient buffer.
242
* We read as much as one fully interleaved MCU row ("iMCU" row) per call,
243
* ie, v_samp_factor block rows for each component in the scan.
244
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
245
*/
246
247
METHODDEF(int)
248
consume_data (j_decompress_ptr cinfo)
249
{
250
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
251
JDIMENSION MCU_col_num; /* index of current MCU within row */
252
int blkn, ci, xindex, yindex, yoffset;
253
JDIMENSION start_col;
254
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
255
JBLOCKROW buffer_ptr;
256
jpeg_component_info *compptr;
257
258
/* Align the virtual buffers for the components used in this scan. */
259
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
260
compptr = cinfo->cur_comp_info[ci];
261
buffer[ci] = (*cinfo->mem->access_virt_barray)
262
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
263
cinfo->input_iMCU_row * compptr->v_samp_factor,
264
(JDIMENSION) compptr->v_samp_factor, TRUE);
265
/* Note: entropy decoder expects buffer to be zeroed,
266
* but this is handled automatically by the memory manager
267
* because we requested a pre-zeroed array.
268
*/
269
}
270
271
/* Loop to process one whole iMCU row */
272
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
273
yoffset++) {
274
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
275
MCU_col_num++) {
276
/* Construct list of pointers to DCT blocks belonging to this MCU */
277
blkn = 0; /* index of current DCT block within MCU */
278
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
279
compptr = cinfo->cur_comp_info[ci];
280
start_col = MCU_col_num * compptr->MCU_width;
281
for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
282
buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
283
for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
284
coef->MCU_buffer[blkn++] = buffer_ptr++;
285
}
286
}
287
}
288
/* Try to fetch the MCU. */
289
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
290
/* Suspension forced; update state counters and exit */
291
coef->MCU_vert_offset = yoffset;
292
coef->MCU_ctr = MCU_col_num;
293
return JPEG_SUSPENDED;
294
}
295
}
296
/* Completed an MCU row, but perhaps not an iMCU row */
297
coef->MCU_ctr = 0;
298
}
299
/* Completed the iMCU row, advance counters for next one */
300
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
301
start_iMCU_row(cinfo);
302
return JPEG_ROW_COMPLETED;
303
}
304
/* Completed the scan */
305
(*cinfo->inputctl->finish_input_pass) (cinfo);
306
return JPEG_SCAN_COMPLETED;
307
}
308
309
310
/*
311
* Decompress and return some data in the multi-pass case.
312
* Always attempts to emit one fully interleaved MCU row ("iMCU" row).
313
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
314
*
315
* NB: output_buf contains a plane for each component in image.
316
*/
317
318
METHODDEF(int)
319
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
320
{
321
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
322
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
323
JDIMENSION block_num;
324
int ci, block_row, block_rows;
325
JBLOCKARRAY buffer;
326
JBLOCKROW buffer_ptr;
327
JSAMPARRAY output_ptr;
328
JDIMENSION output_col;
329
jpeg_component_info *compptr;
330
inverse_DCT_method_ptr inverse_DCT;
331
332
/* Force some input to be done if we are getting ahead of the input. */
333
while (cinfo->input_scan_number < cinfo->output_scan_number ||
334
(cinfo->input_scan_number == cinfo->output_scan_number &&
335
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
336
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
337
return JPEG_SUSPENDED;
338
}
339
340
/* OK, output from the virtual arrays. */
341
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
342
ci++, compptr++) {
343
/* Don't bother to IDCT an uninteresting component. */
344
if (! compptr->component_needed)
345
continue;
346
/* Align the virtual buffer for this component. */
347
buffer = (*cinfo->mem->access_virt_barray)
348
((j_common_ptr) cinfo, coef->whole_image[ci],
349
cinfo->output_iMCU_row * compptr->v_samp_factor,
350
(JDIMENSION) compptr->v_samp_factor, FALSE);
351
/* Count non-dummy DCT block rows in this iMCU row. */
352
if (cinfo->output_iMCU_row < last_iMCU_row)
353
block_rows = compptr->v_samp_factor;
354
else {
355
/* NB: can't use last_row_height here; it is input-side-dependent! */
356
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
357
if (block_rows == 0) block_rows = compptr->v_samp_factor;
358
}
359
inverse_DCT = cinfo->idct->inverse_DCT[ci];
360
output_ptr = output_buf[ci];
361
/* Loop over all DCT blocks to be processed. */
362
for (block_row = 0; block_row < block_rows; block_row++) {
363
buffer_ptr = buffer[block_row];
364
output_col = 0;
365
for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
366
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
367
output_ptr, output_col);
368
buffer_ptr++;
369
output_col += compptr->DCT_scaled_size;
370
}
371
output_ptr += compptr->DCT_scaled_size;
372
}
373
}
374
375
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
376
return JPEG_ROW_COMPLETED;
377
return JPEG_SCAN_COMPLETED;
378
}
379
380
#endif /* D_MULTISCAN_FILES_SUPPORTED */
381
382
383
#ifdef BLOCK_SMOOTHING_SUPPORTED
384
385
/*
386
* This code applies interblock smoothing as described by section K.8
387
* of the JPEG standard: the first 5 AC coefficients are estimated from
388
* the DC values of a DCT block and its 8 neighboring blocks.
389
* We apply smoothing only for progressive JPEG decoding, and only if
390
* the coefficients it can estimate are not yet known to full precision.
391
*/
392
393
/* Natural-order array positions of the first 5 zigzag-order coefficients */
394
#define Q01_POS 1
395
#define Q10_POS 8
396
#define Q20_POS 16
397
#define Q11_POS 9
398
#define Q02_POS 2
399
400
/*
401
* Determine whether block smoothing is applicable and safe.
402
* We also latch the current states of the coef_bits[] entries for the
403
* AC coefficients; otherwise, if the input side of the decompressor
404
* advances into a new scan, we might think the coefficients are known
405
* more accurately than they really are.
406
*/
407
408
LOCAL(boolean)
409
smoothing_ok (j_decompress_ptr cinfo)
410
{
411
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
412
boolean smoothing_useful = FALSE;
413
int ci, coefi;
414
jpeg_component_info *compptr;
415
JQUANT_TBL * qtable;
416
int * coef_bits;
417
int * coef_bits_latch;
418
419
if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
420
return FALSE;
421
422
/* Allocate latch area if not already done */
423
if (coef->coef_bits_latch == NULL)
424
coef->coef_bits_latch = (int *)
425
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
426
cinfo->num_components *
427
(SAVED_COEFS * SIZEOF(int)));
428
coef_bits_latch = coef->coef_bits_latch;
429
430
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
431
ci++, compptr++) {
432
/* All components' quantization values must already be latched. */
433
if ((qtable = compptr->quant_table) == NULL)
434
return FALSE;
435
/* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
436
if (qtable->quantval[0] == 0 ||
437
qtable->quantval[Q01_POS] == 0 ||
438
qtable->quantval[Q10_POS] == 0 ||
439
qtable->quantval[Q20_POS] == 0 ||
440
qtable->quantval[Q11_POS] == 0 ||
441
qtable->quantval[Q02_POS] == 0)
442
return FALSE;
443
/* DC values must be at least partly known for all components. */
444
coef_bits = cinfo->coef_bits[ci];
445
if (coef_bits[0] < 0)
446
return FALSE;
447
/* Block smoothing is helpful if some AC coefficients remain inaccurate. */
448
for (coefi = 1; coefi <= 5; coefi++) {
449
coef_bits_latch[coefi] = coef_bits[coefi];
450
if (coef_bits[coefi] != 0)
451
smoothing_useful = TRUE;
452
}
453
coef_bits_latch += SAVED_COEFS;
454
}
455
456
return smoothing_useful;
457
}
458
459
460
/*
461
* Variant of decompress_data for use when doing block smoothing.
462
*/
463
464
METHODDEF(int)
465
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
466
{
467
my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
468
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
469
JDIMENSION block_num, last_block_column;
470
int ci, block_row, block_rows, access_rows;
471
JBLOCKARRAY buffer;
472
JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
473
JSAMPARRAY output_ptr;
474
JDIMENSION output_col;
475
jpeg_component_info *compptr;
476
inverse_DCT_method_ptr inverse_DCT;
477
boolean first_row, last_row;
478
JBLOCK workspace;
479
int *coef_bits;
480
JQUANT_TBL *quanttbl;
481
INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
482
int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
483
int Al, pred;
484
485
/* Force some input to be done if we are getting ahead of the input. */
486
while (cinfo->input_scan_number <= cinfo->output_scan_number &&
487
! cinfo->inputctl->eoi_reached) {
488
if (cinfo->input_scan_number == cinfo->output_scan_number) {
489
/* If input is working on current scan, we ordinarily want it to
490
* have completed the current row. But if input scan is DC,
491
* we want it to keep one row ahead so that next block row's DC
492
* values are up to date.
493
*/
494
JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
495
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
496
break;
497
}
498
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
499
return JPEG_SUSPENDED;
500
}
501
502
/* OK, output from the virtual arrays. */
503
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
504
ci++, compptr++) {
505
/* Don't bother to IDCT an uninteresting component. */
506
if (! compptr->component_needed)
507
continue;
508
/* Count non-dummy DCT block rows in this iMCU row. */
509
if (cinfo->output_iMCU_row < last_iMCU_row) {
510
block_rows = compptr->v_samp_factor;
511
access_rows = block_rows * 2; /* this and next iMCU row */
512
last_row = FALSE;
513
} else {
514
/* NB: can't use last_row_height here; it is input-side-dependent! */
515
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
516
if (block_rows == 0) block_rows = compptr->v_samp_factor;
517
access_rows = block_rows; /* this iMCU row only */
518
last_row = TRUE;
519
}
520
/* Align the virtual buffer for this component. */
521
if (cinfo->output_iMCU_row > 0) {
522
access_rows += compptr->v_samp_factor; /* prior iMCU row too */
523
buffer = (*cinfo->mem->access_virt_barray)
524
((j_common_ptr) cinfo, coef->whole_image[ci],
525
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
526
(JDIMENSION) access_rows, FALSE);
527
buffer += compptr->v_samp_factor; /* point to current iMCU row */
528
first_row = FALSE;
529
} else {
530
buffer = (*cinfo->mem->access_virt_barray)
531
((j_common_ptr) cinfo, coef->whole_image[ci],
532
(JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
533
first_row = TRUE;
534
}
535
/* Fetch component-dependent info */
536
coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
537
quanttbl = compptr->quant_table;
538
Q00 = quanttbl->quantval[0];
539
Q01 = quanttbl->quantval[Q01_POS];
540
Q10 = quanttbl->quantval[Q10_POS];
541
Q20 = quanttbl->quantval[Q20_POS];
542
Q11 = quanttbl->quantval[Q11_POS];
543
Q02 = quanttbl->quantval[Q02_POS];
544
inverse_DCT = cinfo->idct->inverse_DCT[ci];
545
output_ptr = output_buf[ci];
546
/* Loop over all DCT blocks to be processed. */
547
for (block_row = 0; block_row < block_rows; block_row++) {
548
buffer_ptr = buffer[block_row];
549
if (first_row && block_row == 0)
550
prev_block_row = buffer_ptr;
551
else
552
prev_block_row = buffer[block_row-1];
553
if (last_row && block_row == block_rows-1)
554
next_block_row = buffer_ptr;
555
else
556
next_block_row = buffer[block_row+1];
557
/* We fetch the surrounding DC values using a sliding-register approach.
558
* Initialize all nine here so as to do the right thing on narrow pics.
559
*/
560
DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
561
DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
562
DC7 = DC8 = DC9 = (int) next_block_row[0][0];
563
output_col = 0;
564
last_block_column = compptr->width_in_blocks - 1;
565
for (block_num = 0; block_num <= last_block_column; block_num++) {
566
/* Fetch current DCT block into workspace so we can modify it. */
567
jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
568
/* Update DC values */
569
if (block_num < last_block_column) {
570
DC3 = (int) prev_block_row[1][0];
571
DC6 = (int) buffer_ptr[1][0];
572
DC9 = (int) next_block_row[1][0];
573
}
574
/* Compute coefficient estimates per K.8.
575
* An estimate is applied only if coefficient is still zero,
576
* and is not known to be fully accurate.
577
*/
578
/* AC01 */
579
if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
580
num = 36 * Q00 * (DC4 - DC6);
581
if (num >= 0) {
582
pred = (int) (((Q01<<7) + num) / (Q01<<8));
583
if (Al > 0 && pred >= (1<<Al))
584
pred = (1<<Al)-1;
585
} else {
586
pred = (int) (((Q01<<7) - num) / (Q01<<8));
587
if (Al > 0 && pred >= (1<<Al))
588
pred = (1<<Al)-1;
589
pred = -pred;
590
}
591
workspace[1] = (JCOEF) pred;
592
}
593
/* AC10 */
594
if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
595
num = 36 * Q00 * (DC2 - DC8);
596
if (num >= 0) {
597
pred = (int) (((Q10<<7) + num) / (Q10<<8));
598
if (Al > 0 && pred >= (1<<Al))
599
pred = (1<<Al)-1;
600
} else {
601
pred = (int) (((Q10<<7) - num) / (Q10<<8));
602
if (Al > 0 && pred >= (1<<Al))
603
pred = (1<<Al)-1;
604
pred = -pred;
605
}
606
workspace[8] = (JCOEF) pred;
607
}
608
/* AC20 */
609
if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
610
num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
611
if (num >= 0) {
612
pred = (int) (((Q20<<7) + num) / (Q20<<8));
613
if (Al > 0 && pred >= (1<<Al))
614
pred = (1<<Al)-1;
615
} else {
616
pred = (int) (((Q20<<7) - num) / (Q20<<8));
617
if (Al > 0 && pred >= (1<<Al))
618
pred = (1<<Al)-1;
619
pred = -pred;
620
}
621
workspace[16] = (JCOEF) pred;
622
}
623
/* AC11 */
624
if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
625
num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
626
if (num >= 0) {
627
pred = (int) (((Q11<<7) + num) / (Q11<<8));
628
if (Al > 0 && pred >= (1<<Al))
629
pred = (1<<Al)-1;
630
} else {
631
pred = (int) (((Q11<<7) - num) / (Q11<<8));
632
if (Al > 0 && pred >= (1<<Al))
633
pred = (1<<Al)-1;
634
pred = -pred;
635
}
636
workspace[9] = (JCOEF) pred;
637
}
638
/* AC02 */
639
if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
640
num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
641
if (num >= 0) {
642
pred = (int) (((Q02<<7) + num) / (Q02<<8));
643
if (Al > 0 && pred >= (1<<Al))
644
pred = (1<<Al)-1;
645
} else {
646
pred = (int) (((Q02<<7) - num) / (Q02<<8));
647
if (Al > 0 && pred >= (1<<Al))
648
pred = (1<<Al)-1;
649
pred = -pred;
650
}
651
workspace[2] = (JCOEF) pred;
652
}
653
/* OK, do the IDCT */
654
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
655
output_ptr, output_col);
656
/* Advance for next column */
657
DC1 = DC2; DC2 = DC3;
658
DC4 = DC5; DC5 = DC6;
659
DC7 = DC8; DC8 = DC9;
660
buffer_ptr++, prev_block_row++, next_block_row++;
661
output_col += compptr->DCT_scaled_size;
662
}
663
output_ptr += compptr->DCT_scaled_size;
664
}
665
}
666
667
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
668
return JPEG_ROW_COMPLETED;
669
return JPEG_SCAN_COMPLETED;
670
}
671
672
#endif /* BLOCK_SMOOTHING_SUPPORTED */
673
674
675
/*
676
* Initialize coefficient buffer controller.
677
*/
678
679
GLOBAL(void)
680
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
681
{
682
my_coef_ptr coef;
683
684
coef = (my_coef_ptr)
685
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
686
SIZEOF(my_coef_controller));
687
cinfo->coef = (struct jpeg_d_coef_controller *) coef;
688
coef->pub.start_input_pass = start_input_pass;
689
coef->pub.start_output_pass = start_output_pass;
690
#ifdef BLOCK_SMOOTHING_SUPPORTED
691
coef->coef_bits_latch = NULL;
692
#endif
693
694
/* Create the coefficient buffer. */
695
if (need_full_buffer) {
696
#ifdef D_MULTISCAN_FILES_SUPPORTED
697
/* Allocate a full-image virtual array for each component, */
698
/* padded to a multiple of samp_factor DCT blocks in each direction. */
699
/* Note we ask for a pre-zeroed array. */
700
int ci, access_rows;
701
jpeg_component_info *compptr;
702
703
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
704
ci++, compptr++) {
705
access_rows = compptr->v_samp_factor;
706
#ifdef BLOCK_SMOOTHING_SUPPORTED
707
/* If block smoothing could be used, need a bigger window */
708
if (cinfo->progressive_mode)
709
access_rows *= 3;
710
#endif
711
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
712
((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
713
(JDIMENSION) jround_up((long) compptr->width_in_blocks,
714
(long) compptr->h_samp_factor),
715
(JDIMENSION) jround_up((long) compptr->height_in_blocks,
716
(long) compptr->v_samp_factor),
717
(JDIMENSION) access_rows);
718
}
719
coef->pub.consume_data = consume_data;
720
coef->pub.decompress_data = decompress_data;
721
coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
722
#else
723
ERREXIT(cinfo, JERR_NOT_COMPILED);
724
#endif
725
} else {
726
/* We only need a single-MCU buffer. */
727
JBLOCKROW buffer;
728
int i;
729
730
buffer = (JBLOCKROW)
731
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
732
D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
733
for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
734
coef->MCU_buffer[i] = buffer + i;
735
}
736
coef->pub.consume_data = dummy_consume_data;
737
coef->pub.decompress_data = decompress_onepass;
738
coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
739
}
740
}
741
742