Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/libjavajpeg/jdct.h
41152 views
1
/*
2
* reserved comment block
3
* DO NOT REMOVE OR ALTER!
4
*/
5
/*
6
* jdct.h
7
*
8
* Copyright (C) 1994-1996, Thomas G. Lane.
9
* This file is part of the Independent JPEG Group's software.
10
* For conditions of distribution and use, see the accompanying README file.
11
*
12
* This include file contains common declarations for the forward and
13
* inverse DCT modules. These declarations are private to the DCT managers
14
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
15
* The individual DCT algorithms are kept in separate files to ease
16
* machine-dependent tuning (e.g., assembly coding).
17
*/
18
19
20
/*
21
* A forward DCT routine is given a pointer to a work area of type DCTELEM[];
22
* the DCT is to be performed in-place in that buffer. Type DCTELEM is int
23
* for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT
24
* implementations use an array of type FAST_FLOAT, instead.)
25
* The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
26
* The DCT outputs are returned scaled up by a factor of 8; they therefore
27
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
28
* convention improves accuracy in integer implementations and saves some
29
* work in floating-point ones.
30
* Quantization of the output coefficients is done by jcdctmgr.c.
31
*/
32
33
#if BITS_IN_JSAMPLE == 8
34
typedef int DCTELEM; /* 16 or 32 bits is fine */
35
#else
36
typedef INT32 DCTELEM; /* must have 32 bits */
37
#endif
38
39
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
40
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
41
42
43
/*
44
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
45
* to an output sample array. The routine must dequantize the input data as
46
* well as perform the IDCT; for dequantization, it uses the multiplier table
47
* pointed to by compptr->dct_table. The output data is to be placed into the
48
* sample array starting at a specified column. (Any row offset needed will
49
* be applied to the array pointer before it is passed to the IDCT code.)
50
* Note that the number of samples emitted by the IDCT routine is
51
* DCT_scaled_size * DCT_scaled_size.
52
*/
53
54
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
55
56
/*
57
* Each IDCT routine has its own ideas about the best dct_table element type.
58
*/
59
60
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
61
#if BITS_IN_JSAMPLE == 8
62
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
63
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
64
#else
65
typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
66
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
67
#endif
68
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
69
70
71
/*
72
* Each IDCT routine is responsible for range-limiting its results and
73
* converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
74
* be quite far out of range if the input data is corrupt, so a bulletproof
75
* range-limiting step is required. We use a mask-and-table-lookup method
76
* to do the combined operations quickly. See the comments with
77
* prepare_range_limit_table (in jdmaster.c) for more info.
78
*/
79
80
#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
81
82
#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
83
84
85
/* Short forms of external names for systems with brain-damaged linkers. */
86
87
#ifdef NEED_SHORT_EXTERNAL_NAMES
88
#define jpeg_fdct_islow jFDislow
89
#define jpeg_fdct_ifast jFDifast
90
#define jpeg_fdct_float jFDfloat
91
#define jpeg_idct_islow jRDislow
92
#define jpeg_idct_ifast jRDifast
93
#define jpeg_idct_float jRDfloat
94
#define jpeg_idct_4x4 jRD4x4
95
#define jpeg_idct_2x2 jRD2x2
96
#define jpeg_idct_1x1 jRD1x1
97
#endif /* NEED_SHORT_EXTERNAL_NAMES */
98
99
/* Extern declarations for the forward and inverse DCT routines. */
100
101
EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
102
EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
103
EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
104
105
EXTERN(void) jpeg_idct_islow
106
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
107
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
108
EXTERN(void) jpeg_idct_ifast
109
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
110
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
111
EXTERN(void) jpeg_idct_float
112
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
113
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
114
EXTERN(void) jpeg_idct_4x4
115
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
116
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
117
EXTERN(void) jpeg_idct_2x2
118
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
119
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
120
EXTERN(void) jpeg_idct_1x1
121
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
122
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
123
124
125
/*
126
* Macros for handling fixed-point arithmetic; these are used by many
127
* but not all of the DCT/IDCT modules.
128
*
129
* All values are expected to be of type INT32.
130
* Fractional constants are scaled left by CONST_BITS bits.
131
* CONST_BITS is defined within each module using these macros,
132
* and may differ from one module to the next.
133
*/
134
135
#define ONE ((INT32) 1)
136
#define CONST_SCALE (ONE << CONST_BITS)
137
138
/* Convert a positive real constant to an integer scaled by CONST_SCALE.
139
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
140
* thus causing a lot of useless floating-point operations at run time.
141
*/
142
143
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
144
145
/* Descale and correctly round an INT32 value that's scaled by N bits.
146
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding
147
* the fudge factor is correct for either sign of X.
148
*/
149
150
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
151
152
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
153
* This macro is used only when the two inputs will actually be no more than
154
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
155
* full 32x32 multiply. This provides a useful speedup on many machines.
156
* Unfortunately there is no way to specify a 16x16->32 multiply portably
157
* in C, but some C compilers will do the right thing if you provide the
158
* correct combination of casts.
159
*/
160
161
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
162
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
163
#endif
164
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
165
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
166
#endif
167
168
#ifndef MULTIPLY16C16 /* default definition */
169
#define MULTIPLY16C16(var,const) ((var) * (const))
170
#endif
171
172
/* Same except both inputs are variables. */
173
174
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
175
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
176
#endif
177
178
#ifndef MULTIPLY16V16 /* default definition */
179
#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
180
#endif
181
182