Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/libjavajpeg/jddctmgr.c
41149 views
1
/*
2
* reserved comment block
3
* DO NOT REMOVE OR ALTER!
4
*/
5
/*
6
* jddctmgr.c
7
*
8
* Copyright (C) 1994-1996, Thomas G. Lane.
9
* This file is part of the Independent JPEG Group's software.
10
* For conditions of distribution and use, see the accompanying README file.
11
*
12
* This file contains the inverse-DCT management logic.
13
* This code selects a particular IDCT implementation to be used,
14
* and it performs related housekeeping chores. No code in this file
15
* is executed per IDCT step, only during output pass setup.
16
*
17
* Note that the IDCT routines are responsible for performing coefficient
18
* dequantization as well as the IDCT proper. This module sets up the
19
* dequantization multiplier table needed by the IDCT routine.
20
*/
21
22
#define JPEG_INTERNALS
23
#include "jinclude.h"
24
#include "jpeglib.h"
25
#include "jdct.h" /* Private declarations for DCT subsystem */
26
27
28
/*
29
* The decompressor input side (jdinput.c) saves away the appropriate
30
* quantization table for each component at the start of the first scan
31
* involving that component. (This is necessary in order to correctly
32
* decode files that reuse Q-table slots.)
33
* When we are ready to make an output pass, the saved Q-table is converted
34
* to a multiplier table that will actually be used by the IDCT routine.
35
* The multiplier table contents are IDCT-method-dependent. To support
36
* application changes in IDCT method between scans, we can remake the
37
* multiplier tables if necessary.
38
* In buffered-image mode, the first output pass may occur before any data
39
* has been seen for some components, and thus before their Q-tables have
40
* been saved away. To handle this case, multiplier tables are preset
41
* to zeroes; the result of the IDCT will be a neutral gray level.
42
*/
43
44
45
/* Private subobject for this module */
46
47
typedef struct {
48
struct jpeg_inverse_dct pub; /* public fields */
49
50
/* This array contains the IDCT method code that each multiplier table
51
* is currently set up for, or -1 if it's not yet set up.
52
* The actual multiplier tables are pointed to by dct_table in the
53
* per-component comp_info structures.
54
*/
55
int cur_method[MAX_COMPONENTS];
56
} my_idct_controller;
57
58
typedef my_idct_controller * my_idct_ptr;
59
60
61
/* Allocated multiplier tables: big enough for any supported variant */
62
63
typedef union {
64
ISLOW_MULT_TYPE islow_array[DCTSIZE2];
65
#ifdef DCT_IFAST_SUPPORTED
66
IFAST_MULT_TYPE ifast_array[DCTSIZE2];
67
#endif
68
#ifdef DCT_FLOAT_SUPPORTED
69
FLOAT_MULT_TYPE float_array[DCTSIZE2];
70
#endif
71
} multiplier_table;
72
73
74
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
75
* so be sure to compile that code if either ISLOW or SCALING is requested.
76
*/
77
#ifdef DCT_ISLOW_SUPPORTED
78
#define PROVIDE_ISLOW_TABLES
79
#else
80
#ifdef IDCT_SCALING_SUPPORTED
81
#define PROVIDE_ISLOW_TABLES
82
#endif
83
#endif
84
85
86
/*
87
* Prepare for an output pass.
88
* Here we select the proper IDCT routine for each component and build
89
* a matching multiplier table.
90
*/
91
92
METHODDEF(void)
93
start_pass (j_decompress_ptr cinfo)
94
{
95
my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
96
int ci, i;
97
jpeg_component_info *compptr;
98
int method = 0;
99
inverse_DCT_method_ptr method_ptr = NULL;
100
JQUANT_TBL * qtbl;
101
102
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
103
ci++, compptr++) {
104
/* Select the proper IDCT routine for this component's scaling */
105
switch (compptr->DCT_scaled_size) {
106
#ifdef IDCT_SCALING_SUPPORTED
107
case 1:
108
method_ptr = jpeg_idct_1x1;
109
method = JDCT_ISLOW; /* jidctred uses islow-style table */
110
break;
111
case 2:
112
method_ptr = jpeg_idct_2x2;
113
method = JDCT_ISLOW; /* jidctred uses islow-style table */
114
break;
115
case 4:
116
method_ptr = jpeg_idct_4x4;
117
method = JDCT_ISLOW; /* jidctred uses islow-style table */
118
break;
119
#endif
120
case DCTSIZE:
121
switch (cinfo->dct_method) {
122
#ifdef DCT_ISLOW_SUPPORTED
123
case JDCT_ISLOW:
124
method_ptr = jpeg_idct_islow;
125
method = JDCT_ISLOW;
126
break;
127
#endif
128
#ifdef DCT_IFAST_SUPPORTED
129
case JDCT_IFAST:
130
method_ptr = jpeg_idct_ifast;
131
method = JDCT_IFAST;
132
break;
133
#endif
134
#ifdef DCT_FLOAT_SUPPORTED
135
case JDCT_FLOAT:
136
method_ptr = jpeg_idct_float;
137
method = JDCT_FLOAT;
138
break;
139
#endif
140
default:
141
ERREXIT(cinfo, JERR_NOT_COMPILED);
142
break;
143
}
144
break;
145
default:
146
ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
147
break;
148
}
149
idct->pub.inverse_DCT[ci] = method_ptr;
150
/* Create multiplier table from quant table.
151
* However, we can skip this if the component is uninteresting
152
* or if we already built the table. Also, if no quant table
153
* has yet been saved for the component, we leave the
154
* multiplier table all-zero; we'll be reading zeroes from the
155
* coefficient controller's buffer anyway.
156
*/
157
if (! compptr->component_needed || idct->cur_method[ci] == method)
158
continue;
159
qtbl = compptr->quant_table;
160
if (qtbl == NULL) /* happens if no data yet for component */
161
continue;
162
idct->cur_method[ci] = method;
163
switch (method) {
164
#ifdef PROVIDE_ISLOW_TABLES
165
case JDCT_ISLOW:
166
{
167
/* For LL&M IDCT method, multipliers are equal to raw quantization
168
* coefficients, but are stored as ints to ensure access efficiency.
169
*/
170
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
171
for (i = 0; i < DCTSIZE2; i++) {
172
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
173
}
174
}
175
break;
176
#endif
177
#ifdef DCT_IFAST_SUPPORTED
178
case JDCT_IFAST:
179
{
180
/* For AA&N IDCT method, multipliers are equal to quantization
181
* coefficients scaled by scalefactor[row]*scalefactor[col], where
182
* scalefactor[0] = 1
183
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
184
* For integer operation, the multiplier table is to be scaled by
185
* IFAST_SCALE_BITS.
186
*/
187
IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
188
#define CONST_BITS 14
189
static const INT16 aanscales[DCTSIZE2] = {
190
/* precomputed values scaled up by 14 bits */
191
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
192
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
193
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
194
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
195
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
196
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
197
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
198
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
199
};
200
SHIFT_TEMPS
201
202
for (i = 0; i < DCTSIZE2; i++) {
203
ifmtbl[i] = (IFAST_MULT_TYPE)
204
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i],
205
(INT32) aanscales[i]),
206
CONST_BITS-IFAST_SCALE_BITS);
207
}
208
}
209
break;
210
#endif
211
#ifdef DCT_FLOAT_SUPPORTED
212
case JDCT_FLOAT:
213
{
214
/* For float AA&N IDCT method, multipliers are equal to quantization
215
* coefficients scaled by scalefactor[row]*scalefactor[col], where
216
* scalefactor[0] = 1
217
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
218
*/
219
FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
220
int row, col;
221
static const double aanscalefactor[DCTSIZE] = {
222
1.0, 1.387039845, 1.306562965, 1.175875602,
223
1.0, 0.785694958, 0.541196100, 0.275899379
224
};
225
226
i = 0;
227
for (row = 0; row < DCTSIZE; row++) {
228
for (col = 0; col < DCTSIZE; col++) {
229
fmtbl[i] = (FLOAT_MULT_TYPE)
230
((double) qtbl->quantval[i] *
231
aanscalefactor[row] * aanscalefactor[col]);
232
i++;
233
}
234
}
235
}
236
break;
237
#endif
238
default:
239
ERREXIT(cinfo, JERR_NOT_COMPILED);
240
break;
241
}
242
}
243
}
244
245
246
/*
247
* Initialize IDCT manager.
248
*/
249
250
GLOBAL(void)
251
jinit_inverse_dct (j_decompress_ptr cinfo)
252
{
253
my_idct_ptr idct;
254
int ci;
255
jpeg_component_info *compptr;
256
257
idct = (my_idct_ptr)
258
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
259
SIZEOF(my_idct_controller));
260
cinfo->idct = (struct jpeg_inverse_dct *) idct;
261
idct->pub.start_pass = start_pass;
262
263
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
264
ci++, compptr++) {
265
/* Allocate and pre-zero a multiplier table for each component */
266
compptr->dct_table =
267
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
268
SIZEOF(multiplier_table));
269
MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
270
/* Mark multiplier table not yet set up for any method */
271
idct->cur_method[ci] = -1;
272
}
273
}
274
275