Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/libjavajpeg/jdhuff.c
41149 views
1
/*
2
* reserved comment block
3
* DO NOT REMOVE OR ALTER!
4
*/
5
/*
6
* jdhuff.c
7
*
8
* Copyright (C) 1991-1997, Thomas G. Lane.
9
* This file is part of the Independent JPEG Group's software.
10
* For conditions of distribution and use, see the accompanying README file.
11
*
12
* This file contains Huffman entropy decoding routines.
13
*
14
* Much of the complexity here has to do with supporting input suspension.
15
* If the data source module demands suspension, we want to be able to back
16
* up to the start of the current MCU. To do this, we copy state variables
17
* into local working storage, and update them back to the permanent
18
* storage only upon successful completion of an MCU.
19
*/
20
21
#define JPEG_INTERNALS
22
#include "jinclude.h"
23
#include "jpeglib.h"
24
#include "jdhuff.h" /* Declarations shared with jdphuff.c */
25
26
27
/*
28
* Expanded entropy decoder object for Huffman decoding.
29
*
30
* The savable_state subrecord contains fields that change within an MCU,
31
* but must not be updated permanently until we complete the MCU.
32
*/
33
34
typedef struct {
35
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
36
} savable_state;
37
38
/* This macro is to work around compilers with missing or broken
39
* structure assignment. You'll need to fix this code if you have
40
* such a compiler and you change MAX_COMPS_IN_SCAN.
41
*/
42
43
#ifndef NO_STRUCT_ASSIGN
44
#define ASSIGN_STATE(dest,src) ((dest) = (src))
45
#else
46
#if MAX_COMPS_IN_SCAN == 4
47
#define ASSIGN_STATE(dest,src) \
48
((dest).last_dc_val[0] = (src).last_dc_val[0], \
49
(dest).last_dc_val[1] = (src).last_dc_val[1], \
50
(dest).last_dc_val[2] = (src).last_dc_val[2], \
51
(dest).last_dc_val[3] = (src).last_dc_val[3])
52
#endif
53
#endif
54
55
56
typedef struct {
57
struct jpeg_entropy_decoder pub; /* public fields */
58
59
/* These fields are loaded into local variables at start of each MCU.
60
* In case of suspension, we exit WITHOUT updating them.
61
*/
62
bitread_perm_state bitstate; /* Bit buffer at start of MCU */
63
savable_state saved; /* Other state at start of MCU */
64
65
/* These fields are NOT loaded into local working state. */
66
unsigned int restarts_to_go; /* MCUs left in this restart interval */
67
68
/* Pointers to derived tables (these workspaces have image lifespan) */
69
d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
70
d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
71
72
/* Precalculated info set up by start_pass for use in decode_mcu: */
73
74
/* Pointers to derived tables to be used for each block within an MCU */
75
d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
76
d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
77
/* Whether we care about the DC and AC coefficient values for each block */
78
boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
79
boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
80
} huff_entropy_decoder;
81
82
typedef huff_entropy_decoder * huff_entropy_ptr;
83
84
85
/*
86
* Initialize for a Huffman-compressed scan.
87
*/
88
89
METHODDEF(void)
90
start_pass_huff_decoder (j_decompress_ptr cinfo)
91
{
92
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
93
int ci, blkn, dctbl, actbl;
94
jpeg_component_info * compptr;
95
96
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
97
* This ought to be an error condition, but we make it a warning because
98
* there are some baseline files out there with all zeroes in these bytes.
99
*/
100
if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
101
cinfo->Ah != 0 || cinfo->Al != 0)
102
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
103
104
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
105
compptr = cinfo->cur_comp_info[ci];
106
dctbl = compptr->dc_tbl_no;
107
actbl = compptr->ac_tbl_no;
108
/* Compute derived values for Huffman tables */
109
/* We may do this more than once for a table, but it's not expensive */
110
jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
111
& entropy->dc_derived_tbls[dctbl]);
112
jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
113
& entropy->ac_derived_tbls[actbl]);
114
/* Initialize DC predictions to 0 */
115
entropy->saved.last_dc_val[ci] = 0;
116
}
117
118
/* Precalculate decoding info for each block in an MCU of this scan */
119
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
120
ci = cinfo->MCU_membership[blkn];
121
compptr = cinfo->cur_comp_info[ci];
122
/* Precalculate which table to use for each block */
123
entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
124
entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
125
/* Decide whether we really care about the coefficient values */
126
if (compptr->component_needed) {
127
entropy->dc_needed[blkn] = TRUE;
128
/* we don't need the ACs if producing a 1/8th-size image */
129
entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
130
} else {
131
entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
132
}
133
}
134
135
/* Initialize bitread state variables */
136
entropy->bitstate.bits_left = 0;
137
entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
138
entropy->pub.insufficient_data = FALSE;
139
140
/* Initialize restart counter */
141
entropy->restarts_to_go = cinfo->restart_interval;
142
}
143
144
145
/*
146
* Compute the derived values for a Huffman table.
147
* This routine also performs some validation checks on the table.
148
*
149
* Note this is also used by jdphuff.c.
150
*/
151
152
GLOBAL(void)
153
jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
154
d_derived_tbl ** pdtbl)
155
{
156
JHUFF_TBL *htbl;
157
d_derived_tbl *dtbl;
158
int p, i, l, si, numsymbols;
159
int lookbits, ctr;
160
char huffsize[257];
161
unsigned int huffcode[257];
162
unsigned int code;
163
164
/* Note that huffsize[] and huffcode[] are filled in code-length order,
165
* paralleling the order of the symbols themselves in htbl->huffval[].
166
*/
167
168
/* Find the input Huffman table */
169
if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
170
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
171
htbl =
172
isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
173
if (htbl == NULL)
174
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
175
176
/* Allocate a workspace if we haven't already done so. */
177
if (*pdtbl == NULL)
178
*pdtbl = (d_derived_tbl *)
179
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
180
SIZEOF(d_derived_tbl));
181
dtbl = *pdtbl;
182
dtbl->pub = htbl; /* fill in back link */
183
184
/* Figure C.1: make table of Huffman code length for each symbol */
185
186
p = 0;
187
for (l = 1; l <= 16; l++) {
188
i = (int) htbl->bits[l];
189
if (i < 0 || p + i > 256) /* protect against table overrun */
190
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
191
while (i--)
192
huffsize[p++] = (char) l;
193
}
194
huffsize[p] = 0;
195
numsymbols = p;
196
197
/* Figure C.2: generate the codes themselves */
198
/* We also validate that the counts represent a legal Huffman code tree. */
199
200
code = 0;
201
si = huffsize[0];
202
p = 0;
203
while (huffsize[p]) {
204
while (((int) huffsize[p]) == si) {
205
huffcode[p++] = code;
206
code++;
207
}
208
/* code is now 1 more than the last code used for codelength si; but
209
* it must still fit in si bits, since no code is allowed to be all ones.
210
*/
211
if (((INT32) code) >= (((INT32) 1) << si))
212
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
213
code <<= 1;
214
si++;
215
}
216
217
/* Figure F.15: generate decoding tables for bit-sequential decoding */
218
219
p = 0;
220
for (l = 1; l <= 16; l++) {
221
if (htbl->bits[l]) {
222
/* valoffset[l] = huffval[] index of 1st symbol of code length l,
223
* minus the minimum code of length l
224
*/
225
dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
226
p += htbl->bits[l];
227
dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
228
} else {
229
dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
230
}
231
}
232
dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
233
234
/* Compute lookahead tables to speed up decoding.
235
* First we set all the table entries to 0, indicating "too long";
236
* then we iterate through the Huffman codes that are short enough and
237
* fill in all the entries that correspond to bit sequences starting
238
* with that code.
239
*/
240
241
MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
242
243
p = 0;
244
for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
245
for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
246
/* l = current code's length, p = its index in huffcode[] & huffval[]. */
247
/* Generate left-justified code followed by all possible bit sequences */
248
lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
249
for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
250
dtbl->look_nbits[lookbits] = l;
251
dtbl->look_sym[lookbits] = htbl->huffval[p];
252
lookbits++;
253
}
254
}
255
}
256
257
/* Validate symbols as being reasonable.
258
* For AC tables, we make no check, but accept all byte values 0..255.
259
* For DC tables, we require the symbols to be in range 0..15.
260
* (Tighter bounds could be applied depending on the data depth and mode,
261
* but this is sufficient to ensure safe decoding.)
262
*/
263
if (isDC) {
264
for (i = 0; i < numsymbols; i++) {
265
int sym = htbl->huffval[i];
266
if (sym < 0 || sym > 15)
267
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
268
}
269
}
270
}
271
272
273
/*
274
* Out-of-line code for bit fetching (shared with jdphuff.c).
275
* See jdhuff.h for info about usage.
276
* Note: current values of get_buffer and bits_left are passed as parameters,
277
* but are returned in the corresponding fields of the state struct.
278
*
279
* On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
280
* of get_buffer to be used. (On machines with wider words, an even larger
281
* buffer could be used.) However, on some machines 32-bit shifts are
282
* quite slow and take time proportional to the number of places shifted.
283
* (This is true with most PC compilers, for instance.) In this case it may
284
* be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
285
* average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
286
*/
287
288
#ifdef SLOW_SHIFT_32
289
#define MIN_GET_BITS 15 /* minimum allowable value */
290
#else
291
#define MIN_GET_BITS (BIT_BUF_SIZE-7)
292
#endif
293
294
295
GLOBAL(boolean)
296
jpeg_fill_bit_buffer (bitread_working_state * state,
297
register bit_buf_type get_buffer, register int bits_left,
298
int nbits)
299
/* Load up the bit buffer to a depth of at least nbits */
300
{
301
/* Copy heavily used state fields into locals (hopefully registers) */
302
register const JOCTET * next_input_byte = state->next_input_byte;
303
register size_t bytes_in_buffer = state->bytes_in_buffer;
304
j_decompress_ptr cinfo = state->cinfo;
305
306
/* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
307
/* (It is assumed that no request will be for more than that many bits.) */
308
/* We fail to do so only if we hit a marker or are forced to suspend. */
309
310
if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
311
while (bits_left < MIN_GET_BITS) {
312
register int c;
313
314
/* Attempt to read a byte */
315
if (bytes_in_buffer == 0) {
316
if (! (*cinfo->src->fill_input_buffer) (cinfo))
317
return FALSE;
318
next_input_byte = cinfo->src->next_input_byte;
319
bytes_in_buffer = cinfo->src->bytes_in_buffer;
320
}
321
bytes_in_buffer--;
322
c = GETJOCTET(*next_input_byte++);
323
324
/* If it's 0xFF, check and discard stuffed zero byte */
325
if (c == 0xFF) {
326
/* Loop here to discard any padding FF's on terminating marker,
327
* so that we can save a valid unread_marker value. NOTE: we will
328
* accept multiple FF's followed by a 0 as meaning a single FF data
329
* byte. This data pattern is not valid according to the standard.
330
*/
331
do {
332
if (bytes_in_buffer == 0) {
333
if (! (*cinfo->src->fill_input_buffer) (cinfo))
334
return FALSE;
335
next_input_byte = cinfo->src->next_input_byte;
336
bytes_in_buffer = cinfo->src->bytes_in_buffer;
337
}
338
bytes_in_buffer--;
339
c = GETJOCTET(*next_input_byte++);
340
} while (c == 0xFF);
341
342
if (c == 0) {
343
/* Found FF/00, which represents an FF data byte */
344
c = 0xFF;
345
} else {
346
/* Oops, it's actually a marker indicating end of compressed data.
347
* Save the marker code for later use.
348
* Fine point: it might appear that we should save the marker into
349
* bitread working state, not straight into permanent state. But
350
* once we have hit a marker, we cannot need to suspend within the
351
* current MCU, because we will read no more bytes from the data
352
* source. So it is OK to update permanent state right away.
353
*/
354
cinfo->unread_marker = c;
355
/* See if we need to insert some fake zero bits. */
356
goto no_more_bytes;
357
}
358
}
359
360
/* OK, load c into get_buffer */
361
get_buffer = (get_buffer << 8) | c;
362
bits_left += 8;
363
} /* end while */
364
} else {
365
no_more_bytes:
366
/* We get here if we've read the marker that terminates the compressed
367
* data segment. There should be enough bits in the buffer register
368
* to satisfy the request; if so, no problem.
369
*/
370
if (nbits > bits_left) {
371
/* Uh-oh. Report corrupted data to user and stuff zeroes into
372
* the data stream, so that we can produce some kind of image.
373
* We use a nonvolatile flag to ensure that only one warning message
374
* appears per data segment.
375
*/
376
if (! cinfo->entropy->insufficient_data) {
377
WARNMS(cinfo, JWRN_HIT_MARKER);
378
cinfo->entropy->insufficient_data = TRUE;
379
}
380
/* Fill the buffer with zero bits */
381
get_buffer <<= MIN_GET_BITS - bits_left;
382
bits_left = MIN_GET_BITS;
383
}
384
}
385
386
/* Unload the local registers */
387
state->next_input_byte = next_input_byte;
388
state->bytes_in_buffer = bytes_in_buffer;
389
state->get_buffer = get_buffer;
390
state->bits_left = bits_left;
391
392
return TRUE;
393
}
394
395
396
/*
397
* Out-of-line code for Huffman code decoding.
398
* See jdhuff.h for info about usage.
399
*/
400
401
GLOBAL(int)
402
jpeg_huff_decode (bitread_working_state * state,
403
register bit_buf_type get_buffer, register int bits_left,
404
d_derived_tbl * htbl, int min_bits)
405
{
406
register int l = min_bits;
407
register INT32 code;
408
409
/* HUFF_DECODE has determined that the code is at least min_bits */
410
/* bits long, so fetch that many bits in one swoop. */
411
412
CHECK_BIT_BUFFER(*state, l, return -1);
413
code = GET_BITS(l);
414
415
/* Collect the rest of the Huffman code one bit at a time. */
416
/* This is per Figure F.16 in the JPEG spec. */
417
418
while (code > htbl->maxcode[l]) {
419
code <<= 1;
420
CHECK_BIT_BUFFER(*state, 1, return -1);
421
code |= GET_BITS(1);
422
l++;
423
}
424
425
/* Unload the local registers */
426
state->get_buffer = get_buffer;
427
state->bits_left = bits_left;
428
429
/* With garbage input we may reach the sentinel value l = 17. */
430
431
if (l > 16) {
432
WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
433
return 0; /* fake a zero as the safest result */
434
}
435
436
return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
437
}
438
439
440
/*
441
* Figure F.12: extend sign bit.
442
* On some machines, a shift and add will be faster than a table lookup.
443
*/
444
445
#ifdef AVOID_TABLES
446
447
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
448
449
#else
450
451
#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
452
453
static const int extend_test[16] = /* entry n is 2**(n-1) */
454
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
455
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
456
457
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
458
{ 0,
459
(int)(((unsigned)(~0)<<1) + 1), (int)(((unsigned)(~0)<<2) + 1),
460
(int)(((unsigned)(~0)<<3) + 1), (int)(((unsigned)(~0)<<4) + 1),
461
(int)(((unsigned)(~0)<<5) + 1), (int)(((unsigned)(~0)<<6) + 1),
462
(int)(((unsigned)(~0)<<7) + 1), (int)(((unsigned)(~0)<<8) + 1),
463
(int)(((unsigned)(~0)<<9) + 1), (int)(((unsigned)(~0)<<10) + 1),
464
(int)(((unsigned)(~0)<<11) + 1), (int)(((unsigned)(~0)<<12) + 1),
465
(int)(((unsigned)(~0)<<13) + 1), (int)(((unsigned)(~0)<<14) + 1),
466
(int)(((unsigned)(~0)<<15) + 1) };
467
468
#endif /* AVOID_TABLES */
469
470
471
/*
472
* Check for a restart marker & resynchronize decoder.
473
* Returns FALSE if must suspend.
474
*/
475
476
LOCAL(boolean)
477
process_restart (j_decompress_ptr cinfo)
478
{
479
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
480
int ci;
481
482
/* Throw away any unused bits remaining in bit buffer; */
483
/* include any full bytes in next_marker's count of discarded bytes */
484
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
485
entropy->bitstate.bits_left = 0;
486
487
/* Advance past the RSTn marker */
488
if (! (*cinfo->marker->read_restart_marker) (cinfo))
489
return FALSE;
490
491
/* Re-initialize DC predictions to 0 */
492
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
493
entropy->saved.last_dc_val[ci] = 0;
494
495
/* Reset restart counter */
496
entropy->restarts_to_go = cinfo->restart_interval;
497
498
/* Reset out-of-data flag, unless read_restart_marker left us smack up
499
* against a marker. In that case we will end up treating the next data
500
* segment as empty, and we can avoid producing bogus output pixels by
501
* leaving the flag set.
502
*/
503
if (cinfo->unread_marker == 0)
504
entropy->pub.insufficient_data = FALSE;
505
506
return TRUE;
507
}
508
509
510
/*
511
* Decode and return one MCU's worth of Huffman-compressed coefficients.
512
* The coefficients are reordered from zigzag order into natural array order,
513
* but are not dequantized.
514
*
515
* The i'th block of the MCU is stored into the block pointed to by
516
* MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
517
* (Wholesale zeroing is usually a little faster than retail...)
518
*
519
* Returns FALSE if data source requested suspension. In that case no
520
* changes have been made to permanent state. (Exception: some output
521
* coefficients may already have been assigned. This is harmless for
522
* this module, since we'll just re-assign them on the next call.)
523
*/
524
525
METHODDEF(boolean)
526
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
527
{
528
huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
529
int blkn;
530
BITREAD_STATE_VARS;
531
savable_state state;
532
533
/* Process restart marker if needed; may have to suspend */
534
if (cinfo->restart_interval) {
535
if (entropy->restarts_to_go == 0)
536
if (! process_restart(cinfo))
537
return FALSE;
538
}
539
540
/* If we've run out of data, just leave the MCU set to zeroes.
541
* This way, we return uniform gray for the remainder of the segment.
542
*/
543
if (! entropy->pub.insufficient_data) {
544
545
/* Load up working state */
546
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
547
ASSIGN_STATE(state, entropy->saved);
548
549
/* Outer loop handles each block in the MCU */
550
551
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
552
JBLOCKROW block = MCU_data[blkn];
553
d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
554
d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
555
register int s, k, r;
556
557
/* Decode a single block's worth of coefficients */
558
559
/* Section F.2.2.1: decode the DC coefficient difference */
560
HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
561
if (s) {
562
CHECK_BIT_BUFFER(br_state, s, return FALSE);
563
r = GET_BITS(s);
564
s = HUFF_EXTEND(r, s);
565
}
566
567
if (entropy->dc_needed[blkn]) {
568
/* Convert DC difference to actual value, update last_dc_val */
569
int ci = cinfo->MCU_membership[blkn];
570
s += state.last_dc_val[ci];
571
state.last_dc_val[ci] = s;
572
/* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
573
(*block)[0] = (JCOEF) s;
574
}
575
576
if (entropy->ac_needed[blkn]) {
577
578
/* Section F.2.2.2: decode the AC coefficients */
579
/* Since zeroes are skipped, output area must be cleared beforehand */
580
for (k = 1; k < DCTSIZE2; k++) {
581
HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
582
583
r = s >> 4;
584
s &= 15;
585
586
if (s) {
587
k += r;
588
CHECK_BIT_BUFFER(br_state, s, return FALSE);
589
r = GET_BITS(s);
590
s = HUFF_EXTEND(r, s);
591
/* Output coefficient in natural (dezigzagged) order.
592
* Note: the extra entries in jpeg_natural_order[] will save us
593
* if k >= DCTSIZE2, which could happen if the data is corrupted.
594
*/
595
(*block)[jpeg_natural_order[k]] = (JCOEF) s;
596
} else {
597
if (r != 15)
598
break;
599
k += 15;
600
}
601
}
602
603
} else {
604
605
/* Section F.2.2.2: decode the AC coefficients */
606
/* In this path we just discard the values */
607
for (k = 1; k < DCTSIZE2; k++) {
608
HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
609
610
r = s >> 4;
611
s &= 15;
612
613
if (s) {
614
k += r;
615
CHECK_BIT_BUFFER(br_state, s, return FALSE);
616
DROP_BITS(s);
617
} else {
618
if (r != 15)
619
break;
620
k += 15;
621
}
622
}
623
624
}
625
}
626
627
/* Completed MCU, so update state */
628
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
629
ASSIGN_STATE(entropy->saved, state);
630
}
631
632
/* Account for restart interval (no-op if not using restarts) */
633
entropy->restarts_to_go--;
634
635
return TRUE;
636
}
637
638
639
/*
640
* Module initialization routine for Huffman entropy decoding.
641
*/
642
643
GLOBAL(void)
644
jinit_huff_decoder (j_decompress_ptr cinfo)
645
{
646
huff_entropy_ptr entropy;
647
int i;
648
649
entropy = (huff_entropy_ptr)
650
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
651
SIZEOF(huff_entropy_decoder));
652
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
653
entropy->pub.start_pass = start_pass_huff_decoder;
654
entropy->pub.decode_mcu = decode_mcu;
655
656
/* Mark tables unallocated */
657
for (i = 0; i < NUM_HUFF_TBLS; i++) {
658
entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
659
}
660
}
661
662