Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/libjavajpeg/jdphuff.c
41149 views
1
/*
2
* reserved comment block
3
* DO NOT REMOVE OR ALTER!
4
*/
5
/*
6
* jdphuff.c
7
*
8
* Copyright (C) 1995-1997, Thomas G. Lane.
9
* This file is part of the Independent JPEG Group's software.
10
* For conditions of distribution and use, see the accompanying README file.
11
*
12
* This file contains Huffman entropy decoding routines for progressive JPEG.
13
*
14
* Much of the complexity here has to do with supporting input suspension.
15
* If the data source module demands suspension, we want to be able to back
16
* up to the start of the current MCU. To do this, we copy state variables
17
* into local working storage, and update them back to the permanent
18
* storage only upon successful completion of an MCU.
19
*/
20
21
#define JPEG_INTERNALS
22
#include "jinclude.h"
23
#include "jpeglib.h"
24
#include "jdhuff.h" /* Declarations shared with jdhuff.c */
25
26
27
#ifdef D_PROGRESSIVE_SUPPORTED
28
29
/*
30
* Expanded entropy decoder object for progressive Huffman decoding.
31
*
32
* The savable_state subrecord contains fields that change within an MCU,
33
* but must not be updated permanently until we complete the MCU.
34
*/
35
36
typedef struct {
37
unsigned int EOBRUN; /* remaining EOBs in EOBRUN */
38
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
39
} savable_state;
40
41
/* This macro is to work around compilers with missing or broken
42
* structure assignment. You'll need to fix this code if you have
43
* such a compiler and you change MAX_COMPS_IN_SCAN.
44
*/
45
46
#ifndef NO_STRUCT_ASSIGN
47
#define ASSIGN_STATE(dest,src) ((dest) = (src))
48
#else
49
#if MAX_COMPS_IN_SCAN == 4
50
#define ASSIGN_STATE(dest,src) \
51
((dest).EOBRUN = (src).EOBRUN, \
52
(dest).last_dc_val[0] = (src).last_dc_val[0], \
53
(dest).last_dc_val[1] = (src).last_dc_val[1], \
54
(dest).last_dc_val[2] = (src).last_dc_val[2], \
55
(dest).last_dc_val[3] = (src).last_dc_val[3])
56
#endif
57
#endif
58
59
60
typedef struct {
61
struct jpeg_entropy_decoder pub; /* public fields */
62
63
/* These fields are loaded into local variables at start of each MCU.
64
* In case of suspension, we exit WITHOUT updating them.
65
*/
66
bitread_perm_state bitstate; /* Bit buffer at start of MCU */
67
savable_state saved; /* Other state at start of MCU */
68
69
/* These fields are NOT loaded into local working state. */
70
unsigned int restarts_to_go; /* MCUs left in this restart interval */
71
72
/* Pointers to derived tables (these workspaces have image lifespan) */
73
d_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
74
75
d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */
76
} phuff_entropy_decoder;
77
78
typedef phuff_entropy_decoder * phuff_entropy_ptr;
79
80
/* Forward declarations */
81
METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo,
82
JBLOCKROW *MCU_data));
83
METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo,
84
JBLOCKROW *MCU_data));
85
METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo,
86
JBLOCKROW *MCU_data));
87
METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo,
88
JBLOCKROW *MCU_data));
89
90
91
/*
92
* Initialize for a Huffman-compressed scan.
93
*/
94
95
METHODDEF(void)
96
start_pass_phuff_decoder (j_decompress_ptr cinfo)
97
{
98
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
99
boolean is_DC_band, bad;
100
int ci, coefi, tbl;
101
int *coef_bit_ptr;
102
jpeg_component_info * compptr;
103
104
is_DC_band = (cinfo->Ss == 0);
105
106
/* Validate scan parameters */
107
bad = FALSE;
108
if (is_DC_band) {
109
if (cinfo->Se != 0)
110
bad = TRUE;
111
} else {
112
/* need not check Ss/Se < 0 since they came from unsigned bytes */
113
if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2)
114
bad = TRUE;
115
/* AC scans may have only one component */
116
if (cinfo->comps_in_scan != 1)
117
bad = TRUE;
118
}
119
if (cinfo->Ah != 0) {
120
/* Successive approximation refinement scan: must have Al = Ah-1. */
121
if (cinfo->Al != cinfo->Ah-1)
122
bad = TRUE;
123
}
124
if (cinfo->Al > 13) /* need not check for < 0 */
125
bad = TRUE;
126
/* Arguably the maximum Al value should be less than 13 for 8-bit precision,
127
* but the spec doesn't say so, and we try to be liberal about what we
128
* accept. Note: large Al values could result in out-of-range DC
129
* coefficients during early scans, leading to bizarre displays due to
130
* overflows in the IDCT math. But we won't crash.
131
*/
132
if (bad)
133
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
134
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
135
/* Update progression status, and verify that scan order is legal.
136
* Note that inter-scan inconsistencies are treated as warnings
137
* not fatal errors ... not clear if this is right way to behave.
138
*/
139
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
140
int cindex = cinfo->cur_comp_info[ci]->component_index;
141
coef_bit_ptr = & cinfo->coef_bits[cindex][0];
142
if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */
143
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0);
144
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) {
145
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi];
146
if (cinfo->Ah != expected)
147
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi);
148
coef_bit_ptr[coefi] = cinfo->Al;
149
}
150
}
151
152
/* Select MCU decoding routine */
153
if (cinfo->Ah == 0) {
154
if (is_DC_band)
155
entropy->pub.decode_mcu = decode_mcu_DC_first;
156
else
157
entropy->pub.decode_mcu = decode_mcu_AC_first;
158
} else {
159
if (is_DC_band)
160
entropy->pub.decode_mcu = decode_mcu_DC_refine;
161
else
162
entropy->pub.decode_mcu = decode_mcu_AC_refine;
163
}
164
165
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
166
compptr = cinfo->cur_comp_info[ci];
167
/* Make sure requested tables are present, and compute derived tables.
168
* We may build same derived table more than once, but it's not expensive.
169
*/
170
if (is_DC_band) {
171
if (cinfo->Ah == 0) { /* DC refinement needs no table */
172
tbl = compptr->dc_tbl_no;
173
jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
174
& entropy->derived_tbls[tbl]);
175
}
176
} else {
177
tbl = compptr->ac_tbl_no;
178
jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
179
& entropy->derived_tbls[tbl]);
180
/* remember the single active table */
181
entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
182
}
183
/* Initialize DC predictions to 0 */
184
entropy->saved.last_dc_val[ci] = 0;
185
}
186
187
/* Initialize bitread state variables */
188
entropy->bitstate.bits_left = 0;
189
entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
190
entropy->pub.insufficient_data = FALSE;
191
192
/* Initialize private state variables */
193
entropy->saved.EOBRUN = 0;
194
195
/* Initialize restart counter */
196
entropy->restarts_to_go = cinfo->restart_interval;
197
}
198
199
200
/*
201
* Figure F.12: extend sign bit.
202
* On some machines, a shift and add will be faster than a table lookup.
203
*/
204
205
#ifdef AVOID_TABLES
206
207
#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
208
209
#else
210
211
#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
212
213
static const int extend_test[16] = /* entry n is 2**(n-1) */
214
{ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
215
0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
216
217
static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
218
{ 0,
219
(int)(((unsigned)(~0)<<1) + 1), (int)(((unsigned)(~0)<<2) + 1),
220
(int)(((unsigned)(~0)<<3) + 1), (int)(((unsigned)(~0)<<4) + 1),
221
(int)(((unsigned)(~0)<<5) + 1), (int)(((unsigned)(~0)<<6) + 1),
222
(int)(((unsigned)(~0)<<7) + 1), (int)(((unsigned)(~0)<<8) + 1),
223
(int)(((unsigned)(~0)<<9) + 1), (int)(((unsigned)(~0)<<10) + 1),
224
(int)(((unsigned)(~0)<<11) + 1), (int)(((unsigned)(~0)<<12) + 1),
225
(int)(((unsigned)(~0)<<13) + 1), (int)(((unsigned)(~0)<<14) + 1),
226
(int)(((unsigned)(~0)<<15) + 1) };
227
228
#endif /* AVOID_TABLES */
229
230
231
/*
232
* Check for a restart marker & resynchronize decoder.
233
* Returns FALSE if must suspend.
234
*/
235
236
LOCAL(boolean)
237
process_restart (j_decompress_ptr cinfo)
238
{
239
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
240
int ci;
241
242
/* Throw away any unused bits remaining in bit buffer; */
243
/* include any full bytes in next_marker's count of discarded bytes */
244
cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
245
entropy->bitstate.bits_left = 0;
246
247
/* Advance past the RSTn marker */
248
if (! (*cinfo->marker->read_restart_marker) (cinfo))
249
return FALSE;
250
251
/* Re-initialize DC predictions to 0 */
252
for (ci = 0; ci < cinfo->comps_in_scan; ci++)
253
entropy->saved.last_dc_val[ci] = 0;
254
/* Re-init EOB run count, too */
255
entropy->saved.EOBRUN = 0;
256
257
/* Reset restart counter */
258
entropy->restarts_to_go = cinfo->restart_interval;
259
260
/* Reset out-of-data flag, unless read_restart_marker left us smack up
261
* against a marker. In that case we will end up treating the next data
262
* segment as empty, and we can avoid producing bogus output pixels by
263
* leaving the flag set.
264
*/
265
if (cinfo->unread_marker == 0)
266
entropy->pub.insufficient_data = FALSE;
267
268
return TRUE;
269
}
270
271
272
/*
273
* Huffman MCU decoding.
274
* Each of these routines decodes and returns one MCU's worth of
275
* Huffman-compressed coefficients.
276
* The coefficients are reordered from zigzag order into natural array order,
277
* but are not dequantized.
278
*
279
* The i'th block of the MCU is stored into the block pointed to by
280
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
281
*
282
* We return FALSE if data source requested suspension. In that case no
283
* changes have been made to permanent state. (Exception: some output
284
* coefficients may already have been assigned. This is harmless for
285
* spectral selection, since we'll just re-assign them on the next call.
286
* Successive approximation AC refinement has to be more careful, however.)
287
*/
288
289
/*
290
* MCU decoding for DC initial scan (either spectral selection,
291
* or first pass of successive approximation).
292
*/
293
294
METHODDEF(boolean)
295
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
296
{
297
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
298
int Al = cinfo->Al;
299
register int s, r;
300
int blkn, ci;
301
JBLOCKROW block;
302
BITREAD_STATE_VARS;
303
savable_state state;
304
d_derived_tbl * tbl;
305
jpeg_component_info * compptr;
306
307
/* Process restart marker if needed; may have to suspend */
308
if (cinfo->restart_interval) {
309
if (entropy->restarts_to_go == 0)
310
if (! process_restart(cinfo))
311
return FALSE;
312
}
313
314
/* If we've run out of data, just leave the MCU set to zeroes.
315
* This way, we return uniform gray for the remainder of the segment.
316
*/
317
if (! entropy->pub.insufficient_data) {
318
319
/* Load up working state */
320
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
321
ASSIGN_STATE(state, entropy->saved);
322
323
/* Outer loop handles each block in the MCU */
324
325
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
326
block = MCU_data[blkn];
327
ci = cinfo->MCU_membership[blkn];
328
compptr = cinfo->cur_comp_info[ci];
329
tbl = entropy->derived_tbls[compptr->dc_tbl_no];
330
331
/* Decode a single block's worth of coefficients */
332
333
/* Section F.2.2.1: decode the DC coefficient difference */
334
HUFF_DECODE(s, br_state, tbl, return FALSE, label1);
335
if (s) {
336
CHECK_BIT_BUFFER(br_state, s, return FALSE);
337
r = GET_BITS(s);
338
s = HUFF_EXTEND(r, s);
339
}
340
341
/* Convert DC difference to actual value, update last_dc_val */
342
s += state.last_dc_val[ci];
343
state.last_dc_val[ci] = s;
344
/* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
345
(*block)[0] = (JCOEF) (s << Al);
346
}
347
348
/* Completed MCU, so update state */
349
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
350
ASSIGN_STATE(entropy->saved, state);
351
}
352
353
/* Account for restart interval (no-op if not using restarts) */
354
entropy->restarts_to_go--;
355
356
return TRUE;
357
}
358
359
360
/*
361
* MCU decoding for AC initial scan (either spectral selection,
362
* or first pass of successive approximation).
363
*/
364
365
METHODDEF(boolean)
366
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
367
{
368
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
369
int Se = cinfo->Se;
370
int Al = cinfo->Al;
371
register int s, k, r;
372
unsigned int EOBRUN;
373
JBLOCKROW block;
374
BITREAD_STATE_VARS;
375
d_derived_tbl * tbl;
376
377
/* Process restart marker if needed; may have to suspend */
378
if (cinfo->restart_interval) {
379
if (entropy->restarts_to_go == 0)
380
if (! process_restart(cinfo))
381
return FALSE;
382
}
383
384
/* If we've run out of data, just leave the MCU set to zeroes.
385
* This way, we return uniform gray for the remainder of the segment.
386
*/
387
if (! entropy->pub.insufficient_data) {
388
389
/* Load up working state.
390
* We can avoid loading/saving bitread state if in an EOB run.
391
*/
392
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
393
394
/* There is always only one block per MCU */
395
396
if (EOBRUN > 0) /* if it's a band of zeroes... */
397
EOBRUN--; /* ...process it now (we do nothing) */
398
else {
399
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
400
block = MCU_data[0];
401
tbl = entropy->ac_derived_tbl;
402
403
for (k = cinfo->Ss; k <= Se; k++) {
404
HUFF_DECODE(s, br_state, tbl, return FALSE, label2);
405
r = s >> 4;
406
s &= 15;
407
if (s) {
408
k += r;
409
CHECK_BIT_BUFFER(br_state, s, return FALSE);
410
r = GET_BITS(s);
411
s = HUFF_EXTEND(r, s);
412
/* Scale and output coefficient in natural (dezigzagged) order */
413
(*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
414
} else {
415
if (r == 15) { /* ZRL */
416
k += 15; /* skip 15 zeroes in band */
417
} else { /* EOBr, run length is 2^r + appended bits */
418
EOBRUN = 1 << r;
419
if (r) { /* EOBr, r > 0 */
420
CHECK_BIT_BUFFER(br_state, r, return FALSE);
421
r = GET_BITS(r);
422
EOBRUN += r;
423
}
424
EOBRUN--; /* this band is processed at this moment */
425
break; /* force end-of-band */
426
}
427
}
428
}
429
430
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
431
}
432
433
/* Completed MCU, so update state */
434
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
435
}
436
437
/* Account for restart interval (no-op if not using restarts) */
438
entropy->restarts_to_go--;
439
440
return TRUE;
441
}
442
443
444
/*
445
* MCU decoding for DC successive approximation refinement scan.
446
* Note: we assume such scans can be multi-component, although the spec
447
* is not very clear on the point.
448
*/
449
450
METHODDEF(boolean)
451
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
452
{
453
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
454
int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
455
int blkn;
456
JBLOCKROW block;
457
BITREAD_STATE_VARS;
458
459
/* Process restart marker if needed; may have to suspend */
460
if (cinfo->restart_interval) {
461
if (entropy->restarts_to_go == 0)
462
if (! process_restart(cinfo))
463
return FALSE;
464
}
465
466
/* Not worth the cycles to check insufficient_data here,
467
* since we will not change the data anyway if we read zeroes.
468
*/
469
470
/* Load up working state */
471
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
472
473
/* Outer loop handles each block in the MCU */
474
475
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
476
block = MCU_data[blkn];
477
478
/* Encoded data is simply the next bit of the two's-complement DC value */
479
CHECK_BIT_BUFFER(br_state, 1, return FALSE);
480
if (GET_BITS(1))
481
(*block)[0] |= p1;
482
/* Note: since we use |=, repeating the assignment later is safe */
483
}
484
485
/* Completed MCU, so update state */
486
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
487
488
/* Account for restart interval (no-op if not using restarts) */
489
entropy->restarts_to_go--;
490
491
return TRUE;
492
}
493
494
495
/*
496
* MCU decoding for AC successive approximation refinement scan.
497
*/
498
499
METHODDEF(boolean)
500
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
501
{
502
phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
503
int Se = cinfo->Se;
504
int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */
505
int m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */
506
register int s, k, r;
507
unsigned int EOBRUN;
508
JBLOCKROW block;
509
JCOEFPTR thiscoef;
510
BITREAD_STATE_VARS;
511
d_derived_tbl * tbl;
512
int num_newnz;
513
int newnz_pos[DCTSIZE2];
514
515
/* Process restart marker if needed; may have to suspend */
516
if (cinfo->restart_interval) {
517
if (entropy->restarts_to_go == 0)
518
if (! process_restart(cinfo))
519
return FALSE;
520
}
521
522
/* If we've run out of data, don't modify the MCU.
523
*/
524
if (! entropy->pub.insufficient_data) {
525
526
/* Load up working state */
527
BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
528
EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
529
530
/* There is always only one block per MCU */
531
block = MCU_data[0];
532
tbl = entropy->ac_derived_tbl;
533
534
/* If we are forced to suspend, we must undo the assignments to any newly
535
* nonzero coefficients in the block, because otherwise we'd get confused
536
* next time about which coefficients were already nonzero.
537
* But we need not undo addition of bits to already-nonzero coefficients;
538
* instead, we can test the current bit to see if we already did it.
539
*/
540
num_newnz = 0;
541
542
/* initialize coefficient loop counter to start of band */
543
k = cinfo->Ss;
544
545
if (EOBRUN == 0) {
546
for (; k <= Se; k++) {
547
HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
548
r = s >> 4;
549
s &= 15;
550
if (s) {
551
if (s != 1) /* size of new coef should always be 1 */
552
WARNMS(cinfo, JWRN_HUFF_BAD_CODE);
553
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
554
if (GET_BITS(1))
555
s = p1; /* newly nonzero coef is positive */
556
else
557
s = m1; /* newly nonzero coef is negative */
558
} else {
559
if (r != 15) {
560
EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */
561
if (r) {
562
CHECK_BIT_BUFFER(br_state, r, goto undoit);
563
r = GET_BITS(r);
564
EOBRUN += r;
565
}
566
break; /* rest of block is handled by EOB logic */
567
}
568
/* note s = 0 for processing ZRL */
569
}
570
/* Advance over already-nonzero coefs and r still-zero coefs,
571
* appending correction bits to the nonzeroes. A correction bit is 1
572
* if the absolute value of the coefficient must be increased.
573
*/
574
do {
575
thiscoef = *block + jpeg_natural_order[k];
576
if (*thiscoef != 0) {
577
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
578
if (GET_BITS(1)) {
579
if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
580
if (*thiscoef >= 0)
581
*thiscoef += p1;
582
else
583
*thiscoef += m1;
584
}
585
}
586
} else {
587
if (--r < 0)
588
break; /* reached target zero coefficient */
589
}
590
k++;
591
} while (k <= Se);
592
if (s) {
593
int pos = jpeg_natural_order[k];
594
/* Output newly nonzero coefficient */
595
(*block)[pos] = (JCOEF) s;
596
/* Remember its position in case we have to suspend */
597
newnz_pos[num_newnz++] = pos;
598
}
599
}
600
}
601
602
if (EOBRUN > 0) {
603
/* Scan any remaining coefficient positions after the end-of-band
604
* (the last newly nonzero coefficient, if any). Append a correction
605
* bit to each already-nonzero coefficient. A correction bit is 1
606
* if the absolute value of the coefficient must be increased.
607
*/
608
for (; k <= Se; k++) {
609
thiscoef = *block + jpeg_natural_order[k];
610
if (*thiscoef != 0) {
611
CHECK_BIT_BUFFER(br_state, 1, goto undoit);
612
if (GET_BITS(1)) {
613
if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
614
if (*thiscoef >= 0)
615
*thiscoef += p1;
616
else
617
*thiscoef += m1;
618
}
619
}
620
}
621
}
622
/* Count one block completed in EOB run */
623
EOBRUN--;
624
}
625
626
/* Completed MCU, so update state */
627
BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
628
entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */
629
}
630
631
/* Account for restart interval (no-op if not using restarts) */
632
entropy->restarts_to_go--;
633
634
return TRUE;
635
636
undoit:
637
/* Re-zero any output coefficients that we made newly nonzero */
638
while (num_newnz > 0)
639
(*block)[newnz_pos[--num_newnz]] = 0;
640
641
return FALSE;
642
}
643
644
645
/*
646
* Module initialization routine for progressive Huffman entropy decoding.
647
*/
648
649
GLOBAL(void)
650
jinit_phuff_decoder (j_decompress_ptr cinfo)
651
{
652
phuff_entropy_ptr entropy;
653
int *coef_bit_ptr;
654
int ci, i;
655
656
entropy = (phuff_entropy_ptr)
657
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
658
SIZEOF(phuff_entropy_decoder));
659
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
660
entropy->pub.start_pass = start_pass_phuff_decoder;
661
662
/* Mark derived tables unallocated */
663
for (i = 0; i < NUM_HUFF_TBLS; i++) {
664
entropy->derived_tbls[i] = NULL;
665
}
666
667
/* Create progression status table */
668
cinfo->coef_bits = (int (*)[DCTSIZE2])
669
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
670
cinfo->num_components*DCTSIZE2*SIZEOF(int));
671
coef_bit_ptr = & cinfo->coef_bits[0][0];
672
for (ci = 0; ci < cinfo->num_components; ci++)
673
for (i = 0; i < DCTSIZE2; i++)
674
*coef_bit_ptr++ = -1;
675
}
676
677
#endif /* D_PROGRESSIVE_SUPPORTED */
678
679