Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/libjavajpeg/jfdctflt.c
41152 views
1
/*
2
* reserved comment block
3
* DO NOT REMOVE OR ALTER!
4
*/
5
/*
6
* jfdctflt.c
7
*
8
* Copyright (C) 1994-1996, Thomas G. Lane.
9
* This file is part of the Independent JPEG Group's software.
10
* For conditions of distribution and use, see the accompanying README file.
11
*
12
* This file contains a floating-point implementation of the
13
* forward DCT (Discrete Cosine Transform).
14
*
15
* This implementation should be more accurate than either of the integer
16
* DCT implementations. However, it may not give the same results on all
17
* machines because of differences in roundoff behavior. Speed will depend
18
* on the hardware's floating point capacity.
19
*
20
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
21
* on each column. Direct algorithms are also available, but they are
22
* much more complex and seem not to be any faster when reduced to code.
23
*
24
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
25
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
26
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
27
* JPEG textbook (see REFERENCES section in file README). The following code
28
* is based directly on figure 4-8 in P&M.
29
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
30
* possible to arrange the computation so that many of the multiplies are
31
* simple scalings of the final outputs. These multiplies can then be
32
* folded into the multiplications or divisions by the JPEG quantization
33
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
34
* to be done in the DCT itself.
35
* The primary disadvantage of this method is that with a fixed-point
36
* implementation, accuracy is lost due to imprecise representation of the
37
* scaled quantization values. However, that problem does not arise if
38
* we use floating point arithmetic.
39
*/
40
41
#define JPEG_INTERNALS
42
#include "jinclude.h"
43
#include "jpeglib.h"
44
#include "jdct.h" /* Private declarations for DCT subsystem */
45
46
#ifdef DCT_FLOAT_SUPPORTED
47
48
49
/*
50
* This module is specialized to the case DCTSIZE = 8.
51
*/
52
53
#if DCTSIZE != 8
54
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
55
#endif
56
57
58
/*
59
* Perform the forward DCT on one block of samples.
60
*/
61
62
GLOBAL(void)
63
jpeg_fdct_float (FAST_FLOAT * data)
64
{
65
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
66
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
67
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
68
FAST_FLOAT *dataptr;
69
int ctr;
70
71
/* Pass 1: process rows. */
72
73
dataptr = data;
74
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
75
tmp0 = dataptr[0] + dataptr[7];
76
tmp7 = dataptr[0] - dataptr[7];
77
tmp1 = dataptr[1] + dataptr[6];
78
tmp6 = dataptr[1] - dataptr[6];
79
tmp2 = dataptr[2] + dataptr[5];
80
tmp5 = dataptr[2] - dataptr[5];
81
tmp3 = dataptr[3] + dataptr[4];
82
tmp4 = dataptr[3] - dataptr[4];
83
84
/* Even part */
85
86
tmp10 = tmp0 + tmp3; /* phase 2 */
87
tmp13 = tmp0 - tmp3;
88
tmp11 = tmp1 + tmp2;
89
tmp12 = tmp1 - tmp2;
90
91
dataptr[0] = tmp10 + tmp11; /* phase 3 */
92
dataptr[4] = tmp10 - tmp11;
93
94
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
95
dataptr[2] = tmp13 + z1; /* phase 5 */
96
dataptr[6] = tmp13 - z1;
97
98
/* Odd part */
99
100
tmp10 = tmp4 + tmp5; /* phase 2 */
101
tmp11 = tmp5 + tmp6;
102
tmp12 = tmp6 + tmp7;
103
104
/* The rotator is modified from fig 4-8 to avoid extra negations. */
105
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
106
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
107
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
108
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
109
110
z11 = tmp7 + z3; /* phase 5 */
111
z13 = tmp7 - z3;
112
113
dataptr[5] = z13 + z2; /* phase 6 */
114
dataptr[3] = z13 - z2;
115
dataptr[1] = z11 + z4;
116
dataptr[7] = z11 - z4;
117
118
dataptr += DCTSIZE; /* advance pointer to next row */
119
}
120
121
/* Pass 2: process columns. */
122
123
dataptr = data;
124
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
125
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
126
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
127
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
128
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
129
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
130
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
131
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
132
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
133
134
/* Even part */
135
136
tmp10 = tmp0 + tmp3; /* phase 2 */
137
tmp13 = tmp0 - tmp3;
138
tmp11 = tmp1 + tmp2;
139
tmp12 = tmp1 - tmp2;
140
141
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
142
dataptr[DCTSIZE*4] = tmp10 - tmp11;
143
144
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
145
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
146
dataptr[DCTSIZE*6] = tmp13 - z1;
147
148
/* Odd part */
149
150
tmp10 = tmp4 + tmp5; /* phase 2 */
151
tmp11 = tmp5 + tmp6;
152
tmp12 = tmp6 + tmp7;
153
154
/* The rotator is modified from fig 4-8 to avoid extra negations. */
155
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
156
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
157
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
158
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
159
160
z11 = tmp7 + z3; /* phase 5 */
161
z13 = tmp7 - z3;
162
163
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
164
dataptr[DCTSIZE*3] = z13 - z2;
165
dataptr[DCTSIZE*1] = z11 + z4;
166
dataptr[DCTSIZE*7] = z11 - z4;
167
168
dataptr++; /* advance pointer to next column */
169
}
170
}
171
172
#endif /* DCT_FLOAT_SUPPORTED */
173
174