Path: blob/master/src/java.desktop/share/native/libjavajpeg/jfdctflt.c
41152 views
/*1* reserved comment block2* DO NOT REMOVE OR ALTER!3*/4/*5* jfdctflt.c6*7* Copyright (C) 1994-1996, Thomas G. Lane.8* This file is part of the Independent JPEG Group's software.9* For conditions of distribution and use, see the accompanying README file.10*11* This file contains a floating-point implementation of the12* forward DCT (Discrete Cosine Transform).13*14* This implementation should be more accurate than either of the integer15* DCT implementations. However, it may not give the same results on all16* machines because of differences in roundoff behavior. Speed will depend17* on the hardware's floating point capacity.18*19* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT20* on each column. Direct algorithms are also available, but they are21* much more complex and seem not to be any faster when reduced to code.22*23* This implementation is based on Arai, Agui, and Nakajima's algorithm for24* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in25* Japanese, but the algorithm is described in the Pennebaker & Mitchell26* JPEG textbook (see REFERENCES section in file README). The following code27* is based directly on figure 4-8 in P&M.28* While an 8-point DCT cannot be done in less than 11 multiplies, it is29* possible to arrange the computation so that many of the multiplies are30* simple scalings of the final outputs. These multiplies can then be31* folded into the multiplications or divisions by the JPEG quantization32* table entries. The AA&N method leaves only 5 multiplies and 29 adds33* to be done in the DCT itself.34* The primary disadvantage of this method is that with a fixed-point35* implementation, accuracy is lost due to imprecise representation of the36* scaled quantization values. However, that problem does not arise if37* we use floating point arithmetic.38*/3940#define JPEG_INTERNALS41#include "jinclude.h"42#include "jpeglib.h"43#include "jdct.h" /* Private declarations for DCT subsystem */4445#ifdef DCT_FLOAT_SUPPORTED464748/*49* This module is specialized to the case DCTSIZE = 8.50*/5152#if DCTSIZE != 853Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */54#endif555657/*58* Perform the forward DCT on one block of samples.59*/6061GLOBAL(void)62jpeg_fdct_float (FAST_FLOAT * data)63{64FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;65FAST_FLOAT tmp10, tmp11, tmp12, tmp13;66FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;67FAST_FLOAT *dataptr;68int ctr;6970/* Pass 1: process rows. */7172dataptr = data;73for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {74tmp0 = dataptr[0] + dataptr[7];75tmp7 = dataptr[0] - dataptr[7];76tmp1 = dataptr[1] + dataptr[6];77tmp6 = dataptr[1] - dataptr[6];78tmp2 = dataptr[2] + dataptr[5];79tmp5 = dataptr[2] - dataptr[5];80tmp3 = dataptr[3] + dataptr[4];81tmp4 = dataptr[3] - dataptr[4];8283/* Even part */8485tmp10 = tmp0 + tmp3; /* phase 2 */86tmp13 = tmp0 - tmp3;87tmp11 = tmp1 + tmp2;88tmp12 = tmp1 - tmp2;8990dataptr[0] = tmp10 + tmp11; /* phase 3 */91dataptr[4] = tmp10 - tmp11;9293z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */94dataptr[2] = tmp13 + z1; /* phase 5 */95dataptr[6] = tmp13 - z1;9697/* Odd part */9899tmp10 = tmp4 + tmp5; /* phase 2 */100tmp11 = tmp5 + tmp6;101tmp12 = tmp6 + tmp7;102103/* The rotator is modified from fig 4-8 to avoid extra negations. */104z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */105z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */106z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */107z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */108109z11 = tmp7 + z3; /* phase 5 */110z13 = tmp7 - z3;111112dataptr[5] = z13 + z2; /* phase 6 */113dataptr[3] = z13 - z2;114dataptr[1] = z11 + z4;115dataptr[7] = z11 - z4;116117dataptr += DCTSIZE; /* advance pointer to next row */118}119120/* Pass 2: process columns. */121122dataptr = data;123for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {124tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];125tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];126tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];127tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];128tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];129tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];130tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];131tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];132133/* Even part */134135tmp10 = tmp0 + tmp3; /* phase 2 */136tmp13 = tmp0 - tmp3;137tmp11 = tmp1 + tmp2;138tmp12 = tmp1 - tmp2;139140dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */141dataptr[DCTSIZE*4] = tmp10 - tmp11;142143z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */144dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */145dataptr[DCTSIZE*6] = tmp13 - z1;146147/* Odd part */148149tmp10 = tmp4 + tmp5; /* phase 2 */150tmp11 = tmp5 + tmp6;151tmp12 = tmp6 + tmp7;152153/* The rotator is modified from fig 4-8 to avoid extra negations. */154z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */155z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */156z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */157z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */158159z11 = tmp7 + z3; /* phase 5 */160z13 = tmp7 - z3;161162dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */163dataptr[DCTSIZE*3] = z13 - z2;164dataptr[DCTSIZE*1] = z11 + z4;165dataptr[DCTSIZE*7] = z11 - z4;166167dataptr++; /* advance pointer to next column */168}169}170171#endif /* DCT_FLOAT_SUPPORTED */172173174