Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/libjavajpeg/jfdctfst.c
41149 views
1
/*
2
* reserved comment block
3
* DO NOT REMOVE OR ALTER!
4
*/
5
/*
6
* jfdctfst.c
7
*
8
* Copyright (C) 1994-1996, Thomas G. Lane.
9
* This file is part of the Independent JPEG Group's software.
10
* For conditions of distribution and use, see the accompanying README file.
11
*
12
* This file contains a fast, not so accurate integer implementation of the
13
* forward DCT (Discrete Cosine Transform).
14
*
15
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
16
* on each column. Direct algorithms are also available, but they are
17
* much more complex and seem not to be any faster when reduced to code.
18
*
19
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
20
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
21
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
22
* JPEG textbook (see REFERENCES section in file README). The following code
23
* is based directly on figure 4-8 in P&M.
24
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
25
* possible to arrange the computation so that many of the multiplies are
26
* simple scalings of the final outputs. These multiplies can then be
27
* folded into the multiplications or divisions by the JPEG quantization
28
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
29
* to be done in the DCT itself.
30
* The primary disadvantage of this method is that with fixed-point math,
31
* accuracy is lost due to imprecise representation of the scaled
32
* quantization values. The smaller the quantization table entry, the less
33
* precise the scaled value, so this implementation does worse with high-
34
* quality-setting files than with low-quality ones.
35
*/
36
37
#define JPEG_INTERNALS
38
#include "jinclude.h"
39
#include "jpeglib.h"
40
#include "jdct.h" /* Private declarations for DCT subsystem */
41
42
#ifdef DCT_IFAST_SUPPORTED
43
44
45
/*
46
* This module is specialized to the case DCTSIZE = 8.
47
*/
48
49
#if DCTSIZE != 8
50
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
51
#endif
52
53
54
/* Scaling decisions are generally the same as in the LL&M algorithm;
55
* see jfdctint.c for more details. However, we choose to descale
56
* (right shift) multiplication products as soon as they are formed,
57
* rather than carrying additional fractional bits into subsequent additions.
58
* This compromises accuracy slightly, but it lets us save a few shifts.
59
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
60
* everywhere except in the multiplications proper; this saves a good deal
61
* of work on 16-bit-int machines.
62
*
63
* Again to save a few shifts, the intermediate results between pass 1 and
64
* pass 2 are not upscaled, but are represented only to integral precision.
65
*
66
* A final compromise is to represent the multiplicative constants to only
67
* 8 fractional bits, rather than 13. This saves some shifting work on some
68
* machines, and may also reduce the cost of multiplication (since there
69
* are fewer one-bits in the constants).
70
*/
71
72
#define CONST_BITS 8
73
74
75
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
76
* causing a lot of useless floating-point operations at run time.
77
* To get around this we use the following pre-calculated constants.
78
* If you change CONST_BITS you may want to add appropriate values.
79
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
80
*/
81
82
#if CONST_BITS == 8
83
#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */
84
#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */
85
#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */
86
#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */
87
#else
88
#define FIX_0_382683433 FIX(0.382683433)
89
#define FIX_0_541196100 FIX(0.541196100)
90
#define FIX_0_707106781 FIX(0.707106781)
91
#define FIX_1_306562965 FIX(1.306562965)
92
#endif
93
94
95
/* We can gain a little more speed, with a further compromise in accuracy,
96
* by omitting the addition in a descaling shift. This yields an incorrectly
97
* rounded result half the time...
98
*/
99
100
#ifndef USE_ACCURATE_ROUNDING
101
#undef DESCALE
102
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
103
#endif
104
105
106
/* Multiply a DCTELEM variable by an INT32 constant, and immediately
107
* descale to yield a DCTELEM result.
108
*/
109
110
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
111
112
113
/*
114
* Perform the forward DCT on one block of samples.
115
*/
116
117
GLOBAL(void)
118
jpeg_fdct_ifast (DCTELEM * data)
119
{
120
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
121
DCTELEM tmp10, tmp11, tmp12, tmp13;
122
DCTELEM z1, z2, z3, z4, z5, z11, z13;
123
DCTELEM *dataptr;
124
int ctr;
125
SHIFT_TEMPS
126
127
/* Pass 1: process rows. */
128
129
dataptr = data;
130
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
131
tmp0 = dataptr[0] + dataptr[7];
132
tmp7 = dataptr[0] - dataptr[7];
133
tmp1 = dataptr[1] + dataptr[6];
134
tmp6 = dataptr[1] - dataptr[6];
135
tmp2 = dataptr[2] + dataptr[5];
136
tmp5 = dataptr[2] - dataptr[5];
137
tmp3 = dataptr[3] + dataptr[4];
138
tmp4 = dataptr[3] - dataptr[4];
139
140
/* Even part */
141
142
tmp10 = tmp0 + tmp3; /* phase 2 */
143
tmp13 = tmp0 - tmp3;
144
tmp11 = tmp1 + tmp2;
145
tmp12 = tmp1 - tmp2;
146
147
dataptr[0] = tmp10 + tmp11; /* phase 3 */
148
dataptr[4] = tmp10 - tmp11;
149
150
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
151
dataptr[2] = tmp13 + z1; /* phase 5 */
152
dataptr[6] = tmp13 - z1;
153
154
/* Odd part */
155
156
tmp10 = tmp4 + tmp5; /* phase 2 */
157
tmp11 = tmp5 + tmp6;
158
tmp12 = tmp6 + tmp7;
159
160
/* The rotator is modified from fig 4-8 to avoid extra negations. */
161
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
162
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
163
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
164
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
165
166
z11 = tmp7 + z3; /* phase 5 */
167
z13 = tmp7 - z3;
168
169
dataptr[5] = z13 + z2; /* phase 6 */
170
dataptr[3] = z13 - z2;
171
dataptr[1] = z11 + z4;
172
dataptr[7] = z11 - z4;
173
174
dataptr += DCTSIZE; /* advance pointer to next row */
175
}
176
177
/* Pass 2: process columns. */
178
179
dataptr = data;
180
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
181
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
182
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
183
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
184
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
185
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
186
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
187
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
188
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
189
190
/* Even part */
191
192
tmp10 = tmp0 + tmp3; /* phase 2 */
193
tmp13 = tmp0 - tmp3;
194
tmp11 = tmp1 + tmp2;
195
tmp12 = tmp1 - tmp2;
196
197
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
198
dataptr[DCTSIZE*4] = tmp10 - tmp11;
199
200
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
201
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
202
dataptr[DCTSIZE*6] = tmp13 - z1;
203
204
/* Odd part */
205
206
tmp10 = tmp4 + tmp5; /* phase 2 */
207
tmp11 = tmp5 + tmp6;
208
tmp12 = tmp6 + tmp7;
209
210
/* The rotator is modified from fig 4-8 to avoid extra negations. */
211
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
212
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
213
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
214
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
215
216
z11 = tmp7 + z3; /* phase 5 */
217
z13 = tmp7 - z3;
218
219
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
220
dataptr[DCTSIZE*3] = z13 - z2;
221
dataptr[DCTSIZE*1] = z11 + z4;
222
dataptr[DCTSIZE*7] = z11 - z4;
223
224
dataptr++; /* advance pointer to next column */
225
}
226
}
227
228
#endif /* DCT_IFAST_SUPPORTED */
229
230