Path: blob/master/src/java.desktop/share/native/libjavajpeg/jfdctint.c
41149 views
/*1* reserved comment block2* DO NOT REMOVE OR ALTER!3*/4/*5* jfdctint.c6*7* Copyright (C) 1991-1996, Thomas G. Lane.8* This file is part of the Independent JPEG Group's software.9* For conditions of distribution and use, see the accompanying README file.10*11* This file contains a slow-but-accurate integer implementation of the12* forward DCT (Discrete Cosine Transform).13*14* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT15* on each column. Direct algorithms are also available, but they are16* much more complex and seem not to be any faster when reduced to code.17*18* This implementation is based on an algorithm described in19* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT20* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,21* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.22* The primary algorithm described there uses 11 multiplies and 29 adds.23* We use their alternate method with 12 multiplies and 32 adds.24* The advantage of this method is that no data path contains more than one25* multiplication; this allows a very simple and accurate implementation in26* scaled fixed-point arithmetic, with a minimal number of shifts.27*/2829#define JPEG_INTERNALS30#include "jinclude.h"31#include "jpeglib.h"32#include "jdct.h" /* Private declarations for DCT subsystem */3334#ifdef DCT_ISLOW_SUPPORTED353637/*38* This module is specialized to the case DCTSIZE = 8.39*/4041#if DCTSIZE != 842Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */43#endif444546/*47* The poop on this scaling stuff is as follows:48*49* Each 1-D DCT step produces outputs which are a factor of sqrt(N)50* larger than the true DCT outputs. The final outputs are therefore51* a factor of N larger than desired; since N=8 this can be cured by52* a simple right shift at the end of the algorithm. The advantage of53* this arrangement is that we save two multiplications per 1-D DCT,54* because the y0 and y4 outputs need not be divided by sqrt(N).55* In the IJG code, this factor of 8 is removed by the quantization step56* (in jcdctmgr.c), NOT in this module.57*58* We have to do addition and subtraction of the integer inputs, which59* is no problem, and multiplication by fractional constants, which is60* a problem to do in integer arithmetic. We multiply all the constants61* by CONST_SCALE and convert them to integer constants (thus retaining62* CONST_BITS bits of precision in the constants). After doing a63* multiplication we have to divide the product by CONST_SCALE, with proper64* rounding, to produce the correct output. This division can be done65* cheaply as a right shift of CONST_BITS bits. We postpone shifting66* as long as possible so that partial sums can be added together with67* full fractional precision.68*69* The outputs of the first pass are scaled up by PASS1_BITS bits so that70* they are represented to better-than-integral precision. These outputs71* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word72* with the recommended scaling. (For 12-bit sample data, the intermediate73* array is INT32 anyway.)74*75* To avoid overflow of the 32-bit intermediate results in pass 2, we must76* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis77* shows that the values given below are the most effective.78*/7980#if BITS_IN_JSAMPLE == 881#define CONST_BITS 1382#define PASS1_BITS 283#else84#define CONST_BITS 1385#define PASS1_BITS 1 /* lose a little precision to avoid overflow */86#endif8788/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus89* causing a lot of useless floating-point operations at run time.90* To get around this we use the following pre-calculated constants.91* If you change CONST_BITS you may want to add appropriate values.92* (With a reasonable C compiler, you can just rely on the FIX() macro...)93*/9495#if CONST_BITS == 1396#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */97#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */98#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */99#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */100#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */101#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */102#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */103#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */104#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */105#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */106#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */107#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */108#else109#define FIX_0_298631336 FIX(0.298631336)110#define FIX_0_390180644 FIX(0.390180644)111#define FIX_0_541196100 FIX(0.541196100)112#define FIX_0_765366865 FIX(0.765366865)113#define FIX_0_899976223 FIX(0.899976223)114#define FIX_1_175875602 FIX(1.175875602)115#define FIX_1_501321110 FIX(1.501321110)116#define FIX_1_847759065 FIX(1.847759065)117#define FIX_1_961570560 FIX(1.961570560)118#define FIX_2_053119869 FIX(2.053119869)119#define FIX_2_562915447 FIX(2.562915447)120#define FIX_3_072711026 FIX(3.072711026)121#endif122123124/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.125* For 8-bit samples with the recommended scaling, all the variable126* and constant values involved are no more than 16 bits wide, so a127* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.128* For 12-bit samples, a full 32-bit multiplication will be needed.129*/130131#if BITS_IN_JSAMPLE == 8132#define MULTIPLY(var,const) MULTIPLY16C16(var,const)133#else134#define MULTIPLY(var,const) ((var) * (const))135#endif136137138/*139* Perform the forward DCT on one block of samples.140*/141142GLOBAL(void)143jpeg_fdct_islow (DCTELEM * data)144{145INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;146INT32 tmp10, tmp11, tmp12, tmp13;147INT32 z1, z2, z3, z4, z5;148DCTELEM *dataptr;149int ctr;150SHIFT_TEMPS151152/* Pass 1: process rows. */153/* Note results are scaled up by sqrt(8) compared to a true DCT; */154/* furthermore, we scale the results by 2**PASS1_BITS. */155156dataptr = data;157for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {158tmp0 = dataptr[0] + dataptr[7];159tmp7 = dataptr[0] - dataptr[7];160tmp1 = dataptr[1] + dataptr[6];161tmp6 = dataptr[1] - dataptr[6];162tmp2 = dataptr[2] + dataptr[5];163tmp5 = dataptr[2] - dataptr[5];164tmp3 = dataptr[3] + dataptr[4];165tmp4 = dataptr[3] - dataptr[4];166167/* Even part per LL&M figure 1 --- note that published figure is faulty;168* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".169*/170171tmp10 = tmp0 + tmp3;172tmp13 = tmp0 - tmp3;173tmp11 = tmp1 + tmp2;174tmp12 = tmp1 - tmp2;175176dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);177dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);178179z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);180dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),181CONST_BITS-PASS1_BITS);182dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),183CONST_BITS-PASS1_BITS);184185/* Odd part per figure 8 --- note paper omits factor of sqrt(2).186* cK represents cos(K*pi/16).187* i0..i3 in the paper are tmp4..tmp7 here.188*/189190z1 = tmp4 + tmp7;191z2 = tmp5 + tmp6;192z3 = tmp4 + tmp6;193z4 = tmp5 + tmp7;194z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */195196tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */197tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */198tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */199tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */200z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */201z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */202z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */203z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */204205z3 += z5;206z4 += z5;207208dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);209dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);210dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);211dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);212213dataptr += DCTSIZE; /* advance pointer to next row */214}215216/* Pass 2: process columns.217* We remove the PASS1_BITS scaling, but leave the results scaled up218* by an overall factor of 8.219*/220221dataptr = data;222for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {223tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];224tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];225tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];226tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];227tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];228tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];229tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];230tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];231232/* Even part per LL&M figure 1 --- note that published figure is faulty;233* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".234*/235236tmp10 = tmp0 + tmp3;237tmp13 = tmp0 - tmp3;238tmp11 = tmp1 + tmp2;239tmp12 = tmp1 - tmp2;240241dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);242dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);243244z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);245dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),246CONST_BITS+PASS1_BITS);247dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),248CONST_BITS+PASS1_BITS);249250/* Odd part per figure 8 --- note paper omits factor of sqrt(2).251* cK represents cos(K*pi/16).252* i0..i3 in the paper are tmp4..tmp7 here.253*/254255z1 = tmp4 + tmp7;256z2 = tmp5 + tmp6;257z3 = tmp4 + tmp6;258z4 = tmp5 + tmp7;259z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */260261tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */262tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */263tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */264tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */265z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */266z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */267z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */268z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */269270z3 += z5;271z4 += z5;272273dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,274CONST_BITS+PASS1_BITS);275dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,276CONST_BITS+PASS1_BITS);277dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,278CONST_BITS+PASS1_BITS);279dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,280CONST_BITS+PASS1_BITS);281282dataptr++; /* advance pointer to next column */283}284}285286#endif /* DCT_ISLOW_SUPPORTED */287288289