Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/libjavajpeg/jidctflt.c
41152 views
1
/*
2
* reserved comment block
3
* DO NOT REMOVE OR ALTER!
4
*/
5
/*
6
* jidctflt.c
7
*
8
* Copyright (C) 1994-1998, Thomas G. Lane.
9
* This file is part of the Independent JPEG Group's software.
10
* For conditions of distribution and use, see the accompanying README file.
11
*
12
* This file contains a floating-point implementation of the
13
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
14
* must also perform dequantization of the input coefficients.
15
*
16
* This implementation should be more accurate than either of the integer
17
* IDCT implementations. However, it may not give the same results on all
18
* machines because of differences in roundoff behavior. Speed will depend
19
* on the hardware's floating point capacity.
20
*
21
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
22
* on each row (or vice versa, but it's more convenient to emit a row at
23
* a time). Direct algorithms are also available, but they are much more
24
* complex and seem not to be any faster when reduced to code.
25
*
26
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
27
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
28
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
29
* JPEG textbook (see REFERENCES section in file README). The following code
30
* is based directly on figure 4-8 in P&M.
31
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
32
* possible to arrange the computation so that many of the multiplies are
33
* simple scalings of the final outputs. These multiplies can then be
34
* folded into the multiplications or divisions by the JPEG quantization
35
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
36
* to be done in the DCT itself.
37
* The primary disadvantage of this method is that with a fixed-point
38
* implementation, accuracy is lost due to imprecise representation of the
39
* scaled quantization values. However, that problem does not arise if
40
* we use floating point arithmetic.
41
*/
42
43
#define JPEG_INTERNALS
44
#include "jinclude.h"
45
#include "jpeglib.h"
46
#include "jdct.h" /* Private declarations for DCT subsystem */
47
48
#ifdef DCT_FLOAT_SUPPORTED
49
50
51
/*
52
* This module is specialized to the case DCTSIZE = 8.
53
*/
54
55
#if DCTSIZE != 8
56
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
57
#endif
58
59
60
/* Dequantize a coefficient by multiplying it by the multiplier-table
61
* entry; produce a float result.
62
*/
63
64
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
65
66
67
/*
68
* Perform dequantization and inverse DCT on one block of coefficients.
69
*/
70
71
GLOBAL(void)
72
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
73
JCOEFPTR coef_block,
74
JSAMPARRAY output_buf, JDIMENSION output_col)
75
{
76
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
77
FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
78
FAST_FLOAT z5, z10, z11, z12, z13;
79
JCOEFPTR inptr;
80
FLOAT_MULT_TYPE * quantptr;
81
FAST_FLOAT * wsptr;
82
JSAMPROW outptr;
83
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
84
int ctr;
85
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
86
SHIFT_TEMPS
87
88
/* Pass 1: process columns from input, store into work array. */
89
90
inptr = coef_block;
91
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
92
wsptr = workspace;
93
for (ctr = DCTSIZE; ctr > 0; ctr--) {
94
/* Due to quantization, we will usually find that many of the input
95
* coefficients are zero, especially the AC terms. We can exploit this
96
* by short-circuiting the IDCT calculation for any column in which all
97
* the AC terms are zero. In that case each output is equal to the
98
* DC coefficient (with scale factor as needed).
99
* With typical images and quantization tables, half or more of the
100
* column DCT calculations can be simplified this way.
101
*/
102
103
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
104
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
105
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
106
inptr[DCTSIZE*7] == 0) {
107
/* AC terms all zero */
108
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
109
110
wsptr[DCTSIZE*0] = dcval;
111
wsptr[DCTSIZE*1] = dcval;
112
wsptr[DCTSIZE*2] = dcval;
113
wsptr[DCTSIZE*3] = dcval;
114
wsptr[DCTSIZE*4] = dcval;
115
wsptr[DCTSIZE*5] = dcval;
116
wsptr[DCTSIZE*6] = dcval;
117
wsptr[DCTSIZE*7] = dcval;
118
119
inptr++; /* advance pointers to next column */
120
quantptr++;
121
wsptr++;
122
continue;
123
}
124
125
/* Even part */
126
127
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
128
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
129
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
130
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
131
132
tmp10 = tmp0 + tmp2; /* phase 3 */
133
tmp11 = tmp0 - tmp2;
134
135
tmp13 = tmp1 + tmp3; /* phases 5-3 */
136
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
137
138
tmp0 = tmp10 + tmp13; /* phase 2 */
139
tmp3 = tmp10 - tmp13;
140
tmp1 = tmp11 + tmp12;
141
tmp2 = tmp11 - tmp12;
142
143
/* Odd part */
144
145
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
146
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
147
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
148
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
149
150
z13 = tmp6 + tmp5; /* phase 6 */
151
z10 = tmp6 - tmp5;
152
z11 = tmp4 + tmp7;
153
z12 = tmp4 - tmp7;
154
155
tmp7 = z11 + z13; /* phase 5 */
156
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
157
158
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
159
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
160
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
161
162
tmp6 = tmp12 - tmp7; /* phase 2 */
163
tmp5 = tmp11 - tmp6;
164
tmp4 = tmp10 + tmp5;
165
166
wsptr[DCTSIZE*0] = tmp0 + tmp7;
167
wsptr[DCTSIZE*7] = tmp0 - tmp7;
168
wsptr[DCTSIZE*1] = tmp1 + tmp6;
169
wsptr[DCTSIZE*6] = tmp1 - tmp6;
170
wsptr[DCTSIZE*2] = tmp2 + tmp5;
171
wsptr[DCTSIZE*5] = tmp2 - tmp5;
172
wsptr[DCTSIZE*4] = tmp3 + tmp4;
173
wsptr[DCTSIZE*3] = tmp3 - tmp4;
174
175
inptr++; /* advance pointers to next column */
176
quantptr++;
177
wsptr++;
178
}
179
180
/* Pass 2: process rows from work array, store into output array. */
181
/* Note that we must descale the results by a factor of 8 == 2**3. */
182
183
wsptr = workspace;
184
for (ctr = 0; ctr < DCTSIZE; ctr++) {
185
outptr = output_buf[ctr] + output_col;
186
/* Rows of zeroes can be exploited in the same way as we did with columns.
187
* However, the column calculation has created many nonzero AC terms, so
188
* the simplification applies less often (typically 5% to 10% of the time).
189
* And testing floats for zero is relatively expensive, so we don't bother.
190
*/
191
192
/* Even part */
193
194
tmp10 = wsptr[0] + wsptr[4];
195
tmp11 = wsptr[0] - wsptr[4];
196
197
tmp13 = wsptr[2] + wsptr[6];
198
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
199
200
tmp0 = tmp10 + tmp13;
201
tmp3 = tmp10 - tmp13;
202
tmp1 = tmp11 + tmp12;
203
tmp2 = tmp11 - tmp12;
204
205
/* Odd part */
206
207
z13 = wsptr[5] + wsptr[3];
208
z10 = wsptr[5] - wsptr[3];
209
z11 = wsptr[1] + wsptr[7];
210
z12 = wsptr[1] - wsptr[7];
211
212
tmp7 = z11 + z13;
213
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
214
215
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
216
tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
217
tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
218
219
tmp6 = tmp12 - tmp7;
220
tmp5 = tmp11 - tmp6;
221
tmp4 = tmp10 + tmp5;
222
223
/* Final output stage: scale down by a factor of 8 and range-limit */
224
225
outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
226
& RANGE_MASK];
227
outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
228
& RANGE_MASK];
229
outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
230
& RANGE_MASK];
231
outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
232
& RANGE_MASK];
233
outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
234
& RANGE_MASK];
235
outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
236
& RANGE_MASK];
237
outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
238
& RANGE_MASK];
239
outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
240
& RANGE_MASK];
241
242
wsptr += DCTSIZE; /* advance pointer to next row */
243
}
244
}
245
246
#endif /* DCT_FLOAT_SUPPORTED */
247
248