Path: blob/master/src/java.desktop/share/native/libjavajpeg/jidctint.c
41149 views
/*1* reserved comment block2* DO NOT REMOVE OR ALTER!3*/4/*5* jidctint.c6*7* Copyright (C) 1991-1998, Thomas G. Lane.8* This file is part of the Independent JPEG Group's software.9* For conditions of distribution and use, see the accompanying README file.10*11* This file contains a slow-but-accurate integer implementation of the12* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine13* must also perform dequantization of the input coefficients.14*15* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT16* on each row (or vice versa, but it's more convenient to emit a row at17* a time). Direct algorithms are also available, but they are much more18* complex and seem not to be any faster when reduced to code.19*20* This implementation is based on an algorithm described in21* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT22* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,23* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.24* The primary algorithm described there uses 11 multiplies and 29 adds.25* We use their alternate method with 12 multiplies and 32 adds.26* The advantage of this method is that no data path contains more than one27* multiplication; this allows a very simple and accurate implementation in28* scaled fixed-point arithmetic, with a minimal number of shifts.29*/3031#define JPEG_INTERNALS32#include "jinclude.h"33#include "jpeglib.h"34#include "jdct.h" /* Private declarations for DCT subsystem */3536#ifdef DCT_ISLOW_SUPPORTED373839/*40* This module is specialized to the case DCTSIZE = 8.41*/4243#if DCTSIZE != 844Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */45#endif464748/*49* The poop on this scaling stuff is as follows:50*51* Each 1-D IDCT step produces outputs which are a factor of sqrt(N)52* larger than the true IDCT outputs. The final outputs are therefore53* a factor of N larger than desired; since N=8 this can be cured by54* a simple right shift at the end of the algorithm. The advantage of55* this arrangement is that we save two multiplications per 1-D IDCT,56* because the y0 and y4 inputs need not be divided by sqrt(N).57*58* We have to do addition and subtraction of the integer inputs, which59* is no problem, and multiplication by fractional constants, which is60* a problem to do in integer arithmetic. We multiply all the constants61* by CONST_SCALE and convert them to integer constants (thus retaining62* CONST_BITS bits of precision in the constants). After doing a63* multiplication we have to divide the product by CONST_SCALE, with proper64* rounding, to produce the correct output. This division can be done65* cheaply as a right shift of CONST_BITS bits. We postpone shifting66* as long as possible so that partial sums can be added together with67* full fractional precision.68*69* The outputs of the first pass are scaled up by PASS1_BITS bits so that70* they are represented to better-than-integral precision. These outputs71* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word72* with the recommended scaling. (To scale up 12-bit sample data further, an73* intermediate INT32 array would be needed.)74*75* To avoid overflow of the 32-bit intermediate results in pass 2, we must76* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis77* shows that the values given below are the most effective.78*/7980#if BITS_IN_JSAMPLE == 881#define CONST_BITS 1382#define PASS1_BITS 283#else84#define CONST_BITS 1385#define PASS1_BITS 1 /* lose a little precision to avoid overflow */86#endif8788/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus89* causing a lot of useless floating-point operations at run time.90* To get around this we use the following pre-calculated constants.91* If you change CONST_BITS you may want to add appropriate values.92* (With a reasonable C compiler, you can just rely on the FIX() macro...)93*/9495#if CONST_BITS == 1396#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */97#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */98#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */99#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */100#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */101#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */102#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */103#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */104#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */105#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */106#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */107#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */108#else109#define FIX_0_298631336 FIX(0.298631336)110#define FIX_0_390180644 FIX(0.390180644)111#define FIX_0_541196100 FIX(0.541196100)112#define FIX_0_765366865 FIX(0.765366865)113#define FIX_0_899976223 FIX(0.899976223)114#define FIX_1_175875602 FIX(1.175875602)115#define FIX_1_501321110 FIX(1.501321110)116#define FIX_1_847759065 FIX(1.847759065)117#define FIX_1_961570560 FIX(1.961570560)118#define FIX_2_053119869 FIX(2.053119869)119#define FIX_2_562915447 FIX(2.562915447)120#define FIX_3_072711026 FIX(3.072711026)121#endif122123124/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.125* For 8-bit samples with the recommended scaling, all the variable126* and constant values involved are no more than 16 bits wide, so a127* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.128* For 12-bit samples, a full 32-bit multiplication will be needed.129*/130131#if BITS_IN_JSAMPLE == 8132#define MULTIPLY(var,const) MULTIPLY16C16(var,const)133#else134#define MULTIPLY(var,const) ((var) * (const))135#endif136137138/* Dequantize a coefficient by multiplying it by the multiplier-table139* entry; produce an int result. In this module, both inputs and result140* are 16 bits or less, so either int or short multiply will work.141*/142143#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))144145146/*147* Perform dequantization and inverse DCT on one block of coefficients.148*/149150GLOBAL(void)151jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,152JCOEFPTR coef_block,153JSAMPARRAY output_buf, JDIMENSION output_col)154{155INT32 tmp0, tmp1, tmp2, tmp3;156INT32 tmp10, tmp11, tmp12, tmp13;157INT32 z1, z2, z3, z4, z5;158JCOEFPTR inptr;159ISLOW_MULT_TYPE * quantptr;160int * wsptr;161JSAMPROW outptr;162JSAMPLE *range_limit = IDCT_range_limit(cinfo);163int ctr;164int workspace[DCTSIZE2]; /* buffers data between passes */165SHIFT_TEMPS166167/* Pass 1: process columns from input, store into work array. */168/* Note results are scaled up by sqrt(8) compared to a true IDCT; */169/* furthermore, we scale the results by 2**PASS1_BITS. */170171inptr = coef_block;172quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;173wsptr = workspace;174for (ctr = DCTSIZE; ctr > 0; ctr--) {175/* Due to quantization, we will usually find that many of the input176* coefficients are zero, especially the AC terms. We can exploit this177* by short-circuiting the IDCT calculation for any column in which all178* the AC terms are zero. In that case each output is equal to the179* DC coefficient (with scale factor as needed).180* With typical images and quantization tables, half or more of the181* column DCT calculations can be simplified this way.182*/183184if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&185inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&186inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&187inptr[DCTSIZE*7] == 0) {188/* AC terms all zero */189int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;190191wsptr[DCTSIZE*0] = dcval;192wsptr[DCTSIZE*1] = dcval;193wsptr[DCTSIZE*2] = dcval;194wsptr[DCTSIZE*3] = dcval;195wsptr[DCTSIZE*4] = dcval;196wsptr[DCTSIZE*5] = dcval;197wsptr[DCTSIZE*6] = dcval;198wsptr[DCTSIZE*7] = dcval;199200inptr++; /* advance pointers to next column */201quantptr++;202wsptr++;203continue;204}205206/* Even part: reverse the even part of the forward DCT. */207/* The rotator is sqrt(2)*c(-6). */208209z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);210z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);211212z1 = MULTIPLY(z2 + z3, FIX_0_541196100);213tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);214tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);215216z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);217z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);218219tmp0 = (z2 + z3) << CONST_BITS;220tmp1 = (z2 - z3) << CONST_BITS;221222tmp10 = tmp0 + tmp3;223tmp13 = tmp0 - tmp3;224tmp11 = tmp1 + tmp2;225tmp12 = tmp1 - tmp2;226227/* Odd part per figure 8; the matrix is unitary and hence its228* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.229*/230231tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);232tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);233tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);234tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);235236z1 = tmp0 + tmp3;237z2 = tmp1 + tmp2;238z3 = tmp0 + tmp2;239z4 = tmp1 + tmp3;240z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */241242tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */243tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */244tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */245tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */246z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */247z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */248z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */249z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */250251z3 += z5;252z4 += z5;253254tmp0 += z1 + z3;255tmp1 += z2 + z4;256tmp2 += z2 + z3;257tmp3 += z1 + z4;258259/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */260261wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);262wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);263wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);264wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);265wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);266wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);267wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);268wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);269270inptr++; /* advance pointers to next column */271quantptr++;272wsptr++;273}274275/* Pass 2: process rows from work array, store into output array. */276/* Note that we must descale the results by a factor of 8 == 2**3, */277/* and also undo the PASS1_BITS scaling. */278279wsptr = workspace;280for (ctr = 0; ctr < DCTSIZE; ctr++) {281outptr = output_buf[ctr] + output_col;282/* Rows of zeroes can be exploited in the same way as we did with columns.283* However, the column calculation has created many nonzero AC terms, so284* the simplification applies less often (typically 5% to 10% of the time).285* On machines with very fast multiplication, it's possible that the286* test takes more time than it's worth. In that case this section287* may be commented out.288*/289290#ifndef NO_ZERO_ROW_TEST291if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&292wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {293/* AC terms all zero */294JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)295& RANGE_MASK];296297outptr[0] = dcval;298outptr[1] = dcval;299outptr[2] = dcval;300outptr[3] = dcval;301outptr[4] = dcval;302outptr[5] = dcval;303outptr[6] = dcval;304outptr[7] = dcval;305306wsptr += DCTSIZE; /* advance pointer to next row */307continue;308}309#endif310311/* Even part: reverse the even part of the forward DCT. */312/* The rotator is sqrt(2)*c(-6). */313314z2 = (INT32) wsptr[2];315z3 = (INT32) wsptr[6];316317z1 = MULTIPLY(z2 + z3, FIX_0_541196100);318tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);319tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);320321tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;322tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;323324tmp10 = tmp0 + tmp3;325tmp13 = tmp0 - tmp3;326tmp11 = tmp1 + tmp2;327tmp12 = tmp1 - tmp2;328329/* Odd part per figure 8; the matrix is unitary and hence its330* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.331*/332333tmp0 = (INT32) wsptr[7];334tmp1 = (INT32) wsptr[5];335tmp2 = (INT32) wsptr[3];336tmp3 = (INT32) wsptr[1];337338z1 = tmp0 + tmp3;339z2 = tmp1 + tmp2;340z3 = tmp0 + tmp2;341z4 = tmp1 + tmp3;342z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */343344tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */345tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */346tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */347tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */348z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */349z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */350z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */351z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */352353z3 += z5;354z4 += z5;355356tmp0 += z1 + z3;357tmp1 += z2 + z4;358tmp2 += z2 + z3;359tmp3 += z1 + z4;360361/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */362363outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,364CONST_BITS+PASS1_BITS+3)365& RANGE_MASK];366outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,367CONST_BITS+PASS1_BITS+3)368& RANGE_MASK];369outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,370CONST_BITS+PASS1_BITS+3)371& RANGE_MASK];372outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,373CONST_BITS+PASS1_BITS+3)374& RANGE_MASK];375outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,376CONST_BITS+PASS1_BITS+3)377& RANGE_MASK];378outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,379CONST_BITS+PASS1_BITS+3)380& RANGE_MASK];381outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,382CONST_BITS+PASS1_BITS+3)383& RANGE_MASK];384outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,385CONST_BITS+PASS1_BITS+3)386& RANGE_MASK];387388wsptr += DCTSIZE; /* advance pointer to next row */389}390}391392#endif /* DCT_ISLOW_SUPPORTED */393394395