Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/libjavajpeg/jidctint.c
41149 views
1
/*
2
* reserved comment block
3
* DO NOT REMOVE OR ALTER!
4
*/
5
/*
6
* jidctint.c
7
*
8
* Copyright (C) 1991-1998, Thomas G. Lane.
9
* This file is part of the Independent JPEG Group's software.
10
* For conditions of distribution and use, see the accompanying README file.
11
*
12
* This file contains a slow-but-accurate integer implementation of the
13
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
14
* must also perform dequantization of the input coefficients.
15
*
16
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
17
* on each row (or vice versa, but it's more convenient to emit a row at
18
* a time). Direct algorithms are also available, but they are much more
19
* complex and seem not to be any faster when reduced to code.
20
*
21
* This implementation is based on an algorithm described in
22
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
23
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
24
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
25
* The primary algorithm described there uses 11 multiplies and 29 adds.
26
* We use their alternate method with 12 multiplies and 32 adds.
27
* The advantage of this method is that no data path contains more than one
28
* multiplication; this allows a very simple and accurate implementation in
29
* scaled fixed-point arithmetic, with a minimal number of shifts.
30
*/
31
32
#define JPEG_INTERNALS
33
#include "jinclude.h"
34
#include "jpeglib.h"
35
#include "jdct.h" /* Private declarations for DCT subsystem */
36
37
#ifdef DCT_ISLOW_SUPPORTED
38
39
40
/*
41
* This module is specialized to the case DCTSIZE = 8.
42
*/
43
44
#if DCTSIZE != 8
45
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
46
#endif
47
48
49
/*
50
* The poop on this scaling stuff is as follows:
51
*
52
* Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
53
* larger than the true IDCT outputs. The final outputs are therefore
54
* a factor of N larger than desired; since N=8 this can be cured by
55
* a simple right shift at the end of the algorithm. The advantage of
56
* this arrangement is that we save two multiplications per 1-D IDCT,
57
* because the y0 and y4 inputs need not be divided by sqrt(N).
58
*
59
* We have to do addition and subtraction of the integer inputs, which
60
* is no problem, and multiplication by fractional constants, which is
61
* a problem to do in integer arithmetic. We multiply all the constants
62
* by CONST_SCALE and convert them to integer constants (thus retaining
63
* CONST_BITS bits of precision in the constants). After doing a
64
* multiplication we have to divide the product by CONST_SCALE, with proper
65
* rounding, to produce the correct output. This division can be done
66
* cheaply as a right shift of CONST_BITS bits. We postpone shifting
67
* as long as possible so that partial sums can be added together with
68
* full fractional precision.
69
*
70
* The outputs of the first pass are scaled up by PASS1_BITS bits so that
71
* they are represented to better-than-integral precision. These outputs
72
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
73
* with the recommended scaling. (To scale up 12-bit sample data further, an
74
* intermediate INT32 array would be needed.)
75
*
76
* To avoid overflow of the 32-bit intermediate results in pass 2, we must
77
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
78
* shows that the values given below are the most effective.
79
*/
80
81
#if BITS_IN_JSAMPLE == 8
82
#define CONST_BITS 13
83
#define PASS1_BITS 2
84
#else
85
#define CONST_BITS 13
86
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */
87
#endif
88
89
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
90
* causing a lot of useless floating-point operations at run time.
91
* To get around this we use the following pre-calculated constants.
92
* If you change CONST_BITS you may want to add appropriate values.
93
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
94
*/
95
96
#if CONST_BITS == 13
97
#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
98
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
99
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
100
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
101
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
102
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
103
#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
104
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
105
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
106
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
107
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
108
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
109
#else
110
#define FIX_0_298631336 FIX(0.298631336)
111
#define FIX_0_390180644 FIX(0.390180644)
112
#define FIX_0_541196100 FIX(0.541196100)
113
#define FIX_0_765366865 FIX(0.765366865)
114
#define FIX_0_899976223 FIX(0.899976223)
115
#define FIX_1_175875602 FIX(1.175875602)
116
#define FIX_1_501321110 FIX(1.501321110)
117
#define FIX_1_847759065 FIX(1.847759065)
118
#define FIX_1_961570560 FIX(1.961570560)
119
#define FIX_2_053119869 FIX(2.053119869)
120
#define FIX_2_562915447 FIX(2.562915447)
121
#define FIX_3_072711026 FIX(3.072711026)
122
#endif
123
124
125
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
126
* For 8-bit samples with the recommended scaling, all the variable
127
* and constant values involved are no more than 16 bits wide, so a
128
* 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
129
* For 12-bit samples, a full 32-bit multiplication will be needed.
130
*/
131
132
#if BITS_IN_JSAMPLE == 8
133
#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
134
#else
135
#define MULTIPLY(var,const) ((var) * (const))
136
#endif
137
138
139
/* Dequantize a coefficient by multiplying it by the multiplier-table
140
* entry; produce an int result. In this module, both inputs and result
141
* are 16 bits or less, so either int or short multiply will work.
142
*/
143
144
#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
145
146
147
/*
148
* Perform dequantization and inverse DCT on one block of coefficients.
149
*/
150
151
GLOBAL(void)
152
jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr,
153
JCOEFPTR coef_block,
154
JSAMPARRAY output_buf, JDIMENSION output_col)
155
{
156
INT32 tmp0, tmp1, tmp2, tmp3;
157
INT32 tmp10, tmp11, tmp12, tmp13;
158
INT32 z1, z2, z3, z4, z5;
159
JCOEFPTR inptr;
160
ISLOW_MULT_TYPE * quantptr;
161
int * wsptr;
162
JSAMPROW outptr;
163
JSAMPLE *range_limit = IDCT_range_limit(cinfo);
164
int ctr;
165
int workspace[DCTSIZE2]; /* buffers data between passes */
166
SHIFT_TEMPS
167
168
/* Pass 1: process columns from input, store into work array. */
169
/* Note results are scaled up by sqrt(8) compared to a true IDCT; */
170
/* furthermore, we scale the results by 2**PASS1_BITS. */
171
172
inptr = coef_block;
173
quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
174
wsptr = workspace;
175
for (ctr = DCTSIZE; ctr > 0; ctr--) {
176
/* Due to quantization, we will usually find that many of the input
177
* coefficients are zero, especially the AC terms. We can exploit this
178
* by short-circuiting the IDCT calculation for any column in which all
179
* the AC terms are zero. In that case each output is equal to the
180
* DC coefficient (with scale factor as needed).
181
* With typical images and quantization tables, half or more of the
182
* column DCT calculations can be simplified this way.
183
*/
184
185
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
186
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
187
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
188
inptr[DCTSIZE*7] == 0) {
189
/* AC terms all zero */
190
int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
191
192
wsptr[DCTSIZE*0] = dcval;
193
wsptr[DCTSIZE*1] = dcval;
194
wsptr[DCTSIZE*2] = dcval;
195
wsptr[DCTSIZE*3] = dcval;
196
wsptr[DCTSIZE*4] = dcval;
197
wsptr[DCTSIZE*5] = dcval;
198
wsptr[DCTSIZE*6] = dcval;
199
wsptr[DCTSIZE*7] = dcval;
200
201
inptr++; /* advance pointers to next column */
202
quantptr++;
203
wsptr++;
204
continue;
205
}
206
207
/* Even part: reverse the even part of the forward DCT. */
208
/* The rotator is sqrt(2)*c(-6). */
209
210
z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
211
z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
212
213
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
214
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
215
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
216
217
z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
218
z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
219
220
tmp0 = (z2 + z3) << CONST_BITS;
221
tmp1 = (z2 - z3) << CONST_BITS;
222
223
tmp10 = tmp0 + tmp3;
224
tmp13 = tmp0 - tmp3;
225
tmp11 = tmp1 + tmp2;
226
tmp12 = tmp1 - tmp2;
227
228
/* Odd part per figure 8; the matrix is unitary and hence its
229
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
230
*/
231
232
tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
233
tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
234
tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
235
tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
236
237
z1 = tmp0 + tmp3;
238
z2 = tmp1 + tmp2;
239
z3 = tmp0 + tmp2;
240
z4 = tmp1 + tmp3;
241
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
242
243
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
244
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
245
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
246
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
247
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
248
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
249
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
250
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
251
252
z3 += z5;
253
z4 += z5;
254
255
tmp0 += z1 + z3;
256
tmp1 += z2 + z4;
257
tmp2 += z2 + z3;
258
tmp3 += z1 + z4;
259
260
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
261
262
wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
263
wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
264
wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
265
wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
266
wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
267
wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
268
wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
269
wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
270
271
inptr++; /* advance pointers to next column */
272
quantptr++;
273
wsptr++;
274
}
275
276
/* Pass 2: process rows from work array, store into output array. */
277
/* Note that we must descale the results by a factor of 8 == 2**3, */
278
/* and also undo the PASS1_BITS scaling. */
279
280
wsptr = workspace;
281
for (ctr = 0; ctr < DCTSIZE; ctr++) {
282
outptr = output_buf[ctr] + output_col;
283
/* Rows of zeroes can be exploited in the same way as we did with columns.
284
* However, the column calculation has created many nonzero AC terms, so
285
* the simplification applies less often (typically 5% to 10% of the time).
286
* On machines with very fast multiplication, it's possible that the
287
* test takes more time than it's worth. In that case this section
288
* may be commented out.
289
*/
290
291
#ifndef NO_ZERO_ROW_TEST
292
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
293
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
294
/* AC terms all zero */
295
JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
296
& RANGE_MASK];
297
298
outptr[0] = dcval;
299
outptr[1] = dcval;
300
outptr[2] = dcval;
301
outptr[3] = dcval;
302
outptr[4] = dcval;
303
outptr[5] = dcval;
304
outptr[6] = dcval;
305
outptr[7] = dcval;
306
307
wsptr += DCTSIZE; /* advance pointer to next row */
308
continue;
309
}
310
#endif
311
312
/* Even part: reverse the even part of the forward DCT. */
313
/* The rotator is sqrt(2)*c(-6). */
314
315
z2 = (INT32) wsptr[2];
316
z3 = (INT32) wsptr[6];
317
318
z1 = MULTIPLY(z2 + z3, FIX_0_541196100);
319
tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065);
320
tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865);
321
322
tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS;
323
tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS;
324
325
tmp10 = tmp0 + tmp3;
326
tmp13 = tmp0 - tmp3;
327
tmp11 = tmp1 + tmp2;
328
tmp12 = tmp1 - tmp2;
329
330
/* Odd part per figure 8; the matrix is unitary and hence its
331
* transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
332
*/
333
334
tmp0 = (INT32) wsptr[7];
335
tmp1 = (INT32) wsptr[5];
336
tmp2 = (INT32) wsptr[3];
337
tmp3 = (INT32) wsptr[1];
338
339
z1 = tmp0 + tmp3;
340
z2 = tmp1 + tmp2;
341
z3 = tmp0 + tmp2;
342
z4 = tmp1 + tmp3;
343
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
344
345
tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
346
tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
347
tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
348
tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
349
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
350
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
351
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
352
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
353
354
z3 += z5;
355
z4 += z5;
356
357
tmp0 += z1 + z3;
358
tmp1 += z2 + z4;
359
tmp2 += z2 + z3;
360
tmp3 += z1 + z4;
361
362
/* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
363
364
outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3,
365
CONST_BITS+PASS1_BITS+3)
366
& RANGE_MASK];
367
outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3,
368
CONST_BITS+PASS1_BITS+3)
369
& RANGE_MASK];
370
outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2,
371
CONST_BITS+PASS1_BITS+3)
372
& RANGE_MASK];
373
outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2,
374
CONST_BITS+PASS1_BITS+3)
375
& RANGE_MASK];
376
outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1,
377
CONST_BITS+PASS1_BITS+3)
378
& RANGE_MASK];
379
outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1,
380
CONST_BITS+PASS1_BITS+3)
381
& RANGE_MASK];
382
outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0,
383
CONST_BITS+PASS1_BITS+3)
384
& RANGE_MASK];
385
outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0,
386
CONST_BITS+PASS1_BITS+3)
387
& RANGE_MASK];
388
389
wsptr += DCTSIZE; /* advance pointer to next row */
390
}
391
}
392
393
#endif /* DCT_ISLOW_SUPPORTED */
394
395