Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/libjavajpeg/jmemmgr.c
41149 views
1
/*
2
* reserved comment block
3
* DO NOT REMOVE OR ALTER!
4
*/
5
/*
6
* jmemmgr.c
7
*
8
* Copyright (C) 1991-1997, Thomas G. Lane.
9
* This file is part of the Independent JPEG Group's software.
10
* For conditions of distribution and use, see the accompanying README file.
11
*
12
* This file contains the JPEG system-independent memory management
13
* routines. This code is usable across a wide variety of machines; most
14
* of the system dependencies have been isolated in a separate file.
15
* The major functions provided here are:
16
* * pool-based allocation and freeing of memory;
17
* * policy decisions about how to divide available memory among the
18
* virtual arrays;
19
* * control logic for swapping virtual arrays between main memory and
20
* backing storage.
21
* The separate system-dependent file provides the actual backing-storage
22
* access code, and it contains the policy decision about how much total
23
* main memory to use.
24
* This file is system-dependent in the sense that some of its functions
25
* are unnecessary in some systems. For example, if there is enough virtual
26
* memory so that backing storage will never be used, much of the virtual
27
* array control logic could be removed. (Of course, if you have that much
28
* memory then you shouldn't care about a little bit of unused code...)
29
*/
30
31
#define JPEG_INTERNALS
32
#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
33
#include "jinclude.h"
34
#include "jpeglib.h"
35
#include "jmemsys.h" /* import the system-dependent declarations */
36
37
#ifndef NO_GETENV
38
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
39
extern char * getenv JPP((const char * name));
40
#endif
41
#endif
42
43
44
/*
45
* Some important notes:
46
* The allocation routines provided here must never return NULL.
47
* They should exit to error_exit if unsuccessful.
48
*
49
* It's not a good idea to try to merge the sarray and barray routines,
50
* even though they are textually almost the same, because samples are
51
* usually stored as bytes while coefficients are shorts or ints. Thus,
52
* in machines where byte pointers have a different representation from
53
* word pointers, the resulting machine code could not be the same.
54
*/
55
56
57
/*
58
* Many machines require storage alignment: longs must start on 4-byte
59
* boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
60
* always returns pointers that are multiples of the worst-case alignment
61
* requirement, and we had better do so too.
62
* There isn't any really portable way to determine the worst-case alignment
63
* requirement. This module assumes that the alignment requirement is
64
* multiples of sizeof(ALIGN_TYPE).
65
* By default, we define ALIGN_TYPE as double. This is necessary on some
66
* workstations (where doubles really do need 8-byte alignment) and will work
67
* fine on nearly everything. If your machine has lesser alignment needs,
68
* you can save a few bytes by making ALIGN_TYPE smaller.
69
* The only place I know of where this will NOT work is certain Macintosh
70
* 680x0 compilers that define double as a 10-byte IEEE extended float.
71
* Doing 10-byte alignment is counterproductive because longwords won't be
72
* aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
73
* such a compiler.
74
*/
75
76
#ifndef ALIGN_TYPE /* so can override from jconfig.h */
77
#define ALIGN_TYPE double
78
#endif
79
80
81
/*
82
* We allocate objects from "pools", where each pool is gotten with a single
83
* request to jpeg_get_small() or jpeg_get_large(). There is no per-object
84
* overhead within a pool, except for alignment padding. Each pool has a
85
* header with a link to the next pool of the same class.
86
* Small and large pool headers are identical except that the latter's
87
* link pointer must be FAR on 80x86 machines.
88
* Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
89
* field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
90
* of the alignment requirement of ALIGN_TYPE.
91
*/
92
93
typedef union small_pool_struct * small_pool_ptr;
94
95
typedef union small_pool_struct {
96
struct {
97
small_pool_ptr next; /* next in list of pools */
98
size_t bytes_used; /* how many bytes already used within pool */
99
size_t bytes_left; /* bytes still available in this pool */
100
} hdr;
101
ALIGN_TYPE dummy; /* included in union to ensure alignment */
102
} small_pool_hdr;
103
104
typedef union large_pool_struct FAR * large_pool_ptr;
105
106
typedef union large_pool_struct {
107
struct {
108
large_pool_ptr next; /* next in list of pools */
109
size_t bytes_used; /* how many bytes already used within pool */
110
size_t bytes_left; /* bytes still available in this pool */
111
} hdr;
112
ALIGN_TYPE dummy; /* included in union to ensure alignment */
113
} large_pool_hdr;
114
115
116
/*
117
* Here is the full definition of a memory manager object.
118
*/
119
120
typedef struct {
121
struct jpeg_memory_mgr pub; /* public fields */
122
123
/* Each pool identifier (lifetime class) names a linked list of pools. */
124
small_pool_ptr small_list[JPOOL_NUMPOOLS];
125
large_pool_ptr large_list[JPOOL_NUMPOOLS];
126
127
/* Since we only have one lifetime class of virtual arrays, only one
128
* linked list is necessary (for each datatype). Note that the virtual
129
* array control blocks being linked together are actually stored somewhere
130
* in the small-pool list.
131
*/
132
jvirt_sarray_ptr virt_sarray_list;
133
jvirt_barray_ptr virt_barray_list;
134
135
/* This counts total space obtained from jpeg_get_small/large */
136
size_t total_space_allocated;
137
138
/* alloc_sarray and alloc_barray set this value for use by virtual
139
* array routines.
140
*/
141
JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
142
} my_memory_mgr;
143
144
typedef my_memory_mgr * my_mem_ptr;
145
146
147
/*
148
* The control blocks for virtual arrays.
149
* Note that these blocks are allocated in the "small" pool area.
150
* System-dependent info for the associated backing store (if any) is hidden
151
* inside the backing_store_info struct.
152
*/
153
154
struct jvirt_sarray_control {
155
JSAMPARRAY mem_buffer; /* => the in-memory buffer */
156
JDIMENSION rows_in_array; /* total virtual array height */
157
JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
158
JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
159
JDIMENSION rows_in_mem; /* height of memory buffer */
160
JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
161
JDIMENSION cur_start_row; /* first logical row # in the buffer */
162
JDIMENSION first_undef_row; /* row # of first uninitialized row */
163
boolean pre_zero; /* pre-zero mode requested? */
164
boolean dirty; /* do current buffer contents need written? */
165
boolean b_s_open; /* is backing-store data valid? */
166
jvirt_sarray_ptr next; /* link to next virtual sarray control block */
167
backing_store_info b_s_info; /* System-dependent control info */
168
};
169
170
struct jvirt_barray_control {
171
JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
172
JDIMENSION rows_in_array; /* total virtual array height */
173
JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
174
JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
175
JDIMENSION rows_in_mem; /* height of memory buffer */
176
JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
177
JDIMENSION cur_start_row; /* first logical row # in the buffer */
178
JDIMENSION first_undef_row; /* row # of first uninitialized row */
179
boolean pre_zero; /* pre-zero mode requested? */
180
boolean dirty; /* do current buffer contents need written? */
181
boolean b_s_open; /* is backing-store data valid? */
182
jvirt_barray_ptr next; /* link to next virtual barray control block */
183
backing_store_info b_s_info; /* System-dependent control info */
184
};
185
186
187
#ifdef MEM_STATS /* optional extra stuff for statistics */
188
189
LOCAL(void)
190
print_mem_stats (j_common_ptr cinfo, int pool_id)
191
{
192
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
193
small_pool_ptr shdr_ptr;
194
large_pool_ptr lhdr_ptr;
195
196
/* Since this is only a debugging stub, we can cheat a little by using
197
* fprintf directly rather than going through the trace message code.
198
* This is helpful because message parm array can't handle longs.
199
*/
200
fprintf(stderr, "Freeing pool %d, total space = %ld\n",
201
pool_id, mem->total_space_allocated);
202
203
for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
204
lhdr_ptr = lhdr_ptr->hdr.next) {
205
fprintf(stderr, " Large chunk used %ld\n",
206
(long) lhdr_ptr->hdr.bytes_used);
207
}
208
209
for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
210
shdr_ptr = shdr_ptr->hdr.next) {
211
fprintf(stderr, " Small chunk used %ld free %ld\n",
212
(long) shdr_ptr->hdr.bytes_used,
213
(long) shdr_ptr->hdr.bytes_left);
214
}
215
}
216
217
#endif /* MEM_STATS */
218
219
220
LOCAL(void)
221
out_of_memory (j_common_ptr cinfo, int which)
222
/* Report an out-of-memory error and stop execution */
223
/* If we compiled MEM_STATS support, report alloc requests before dying */
224
{
225
#ifdef MEM_STATS
226
cinfo->err->trace_level = 2; /* force self_destruct to report stats */
227
#endif
228
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
229
}
230
231
232
/*
233
* Allocation of "small" objects.
234
*
235
* For these, we use pooled storage. When a new pool must be created,
236
* we try to get enough space for the current request plus a "slop" factor,
237
* where the slop will be the amount of leftover space in the new pool.
238
* The speed vs. space tradeoff is largely determined by the slop values.
239
* A different slop value is provided for each pool class (lifetime),
240
* and we also distinguish the first pool of a class from later ones.
241
* NOTE: the values given work fairly well on both 16- and 32-bit-int
242
* machines, but may be too small if longs are 64 bits or more.
243
*/
244
245
static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
246
{
247
1600, /* first PERMANENT pool */
248
16000 /* first IMAGE pool */
249
};
250
251
static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
252
{
253
0, /* additional PERMANENT pools */
254
5000 /* additional IMAGE pools */
255
};
256
257
#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
258
259
260
METHODDEF(void *)
261
alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
262
/* Allocate a "small" object */
263
{
264
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
265
small_pool_ptr hdr_ptr, prev_hdr_ptr;
266
char * data_ptr;
267
size_t odd_bytes, min_request, slop;
268
269
/* Check for unsatisfiable request (do now to ensure no overflow below) */
270
if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
271
out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
272
273
/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
274
odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
275
if (odd_bytes > 0)
276
sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
277
278
/* See if space is available in any existing pool */
279
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
280
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
281
prev_hdr_ptr = NULL;
282
hdr_ptr = mem->small_list[pool_id];
283
while (hdr_ptr != NULL) {
284
if (hdr_ptr->hdr.bytes_left >= sizeofobject)
285
break; /* found pool with enough space */
286
prev_hdr_ptr = hdr_ptr;
287
hdr_ptr = hdr_ptr->hdr.next;
288
}
289
290
/* Time to make a new pool? */
291
if (hdr_ptr == NULL) {
292
/* min_request is what we need now, slop is what will be leftover */
293
min_request = sizeofobject + SIZEOF(small_pool_hdr);
294
if (prev_hdr_ptr == NULL) /* first pool in class? */
295
slop = first_pool_slop[pool_id];
296
else
297
slop = extra_pool_slop[pool_id];
298
/* Don't ask for more than MAX_ALLOC_CHUNK */
299
if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
300
slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
301
/* Try to get space, if fail reduce slop and try again */
302
for (;;) {
303
hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
304
if (hdr_ptr != NULL)
305
break;
306
slop /= 2;
307
if (slop < MIN_SLOP) /* give up when it gets real small */
308
out_of_memory(cinfo, 2); /* jpeg_get_small failed */
309
}
310
mem->total_space_allocated += min_request + slop;
311
/* Success, initialize the new pool header and add to end of list */
312
hdr_ptr->hdr.next = NULL;
313
hdr_ptr->hdr.bytes_used = 0;
314
hdr_ptr->hdr.bytes_left = sizeofobject + slop;
315
if (prev_hdr_ptr == NULL) /* first pool in class? */
316
mem->small_list[pool_id] = hdr_ptr;
317
else
318
prev_hdr_ptr->hdr.next = hdr_ptr;
319
}
320
321
/* OK, allocate the object from the current pool */
322
data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
323
data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
324
hdr_ptr->hdr.bytes_used += sizeofobject;
325
hdr_ptr->hdr.bytes_left -= sizeofobject;
326
327
return (void *) data_ptr;
328
}
329
330
331
/*
332
* Allocation of "large" objects.
333
*
334
* The external semantics of these are the same as "small" objects,
335
* except that FAR pointers are used on 80x86. However the pool
336
* management heuristics are quite different. We assume that each
337
* request is large enough that it may as well be passed directly to
338
* jpeg_get_large; the pool management just links everything together
339
* so that we can free it all on demand.
340
* Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
341
* structures. The routines that create these structures (see below)
342
* deliberately bunch rows together to ensure a large request size.
343
*/
344
345
METHODDEF(void FAR *)
346
alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
347
/* Allocate a "large" object */
348
{
349
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
350
large_pool_ptr hdr_ptr;
351
size_t odd_bytes;
352
353
/* Check for unsatisfiable request (do now to ensure no overflow below) */
354
if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
355
out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
356
357
/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
358
odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
359
if (odd_bytes > 0)
360
sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
361
362
/* Always make a new pool */
363
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
364
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
365
366
hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
367
SIZEOF(large_pool_hdr));
368
if (hdr_ptr == NULL)
369
out_of_memory(cinfo, 4); /* jpeg_get_large failed */
370
mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
371
372
/* Success, initialize the new pool header and add to list */
373
hdr_ptr->hdr.next = mem->large_list[pool_id];
374
/* We maintain space counts in each pool header for statistical purposes,
375
* even though they are not needed for allocation.
376
*/
377
hdr_ptr->hdr.bytes_used = sizeofobject;
378
hdr_ptr->hdr.bytes_left = 0;
379
mem->large_list[pool_id] = hdr_ptr;
380
381
return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
382
}
383
384
385
/*
386
* Creation of 2-D sample arrays.
387
* The pointers are in near heap, the samples themselves in FAR heap.
388
*
389
* To minimize allocation overhead and to allow I/O of large contiguous
390
* blocks, we allocate the sample rows in groups of as many rows as possible
391
* without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
392
* NB: the virtual array control routines, later in this file, know about
393
* this chunking of rows. The rowsperchunk value is left in the mem manager
394
* object so that it can be saved away if this sarray is the workspace for
395
* a virtual array.
396
*/
397
398
METHODDEF(JSAMPARRAY)
399
alloc_sarray (j_common_ptr cinfo, int pool_id,
400
JDIMENSION samplesperrow, JDIMENSION numrows)
401
/* Allocate a 2-D sample array */
402
{
403
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
404
JSAMPARRAY result;
405
JSAMPROW workspace;
406
JDIMENSION rowsperchunk, currow, i;
407
long ltemp;
408
409
if (samplesperrow == 0) {
410
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
411
}
412
/* Calculate max # of rows allowed in one allocation chunk */
413
ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
414
((long) samplesperrow * SIZEOF(JSAMPLE));
415
if (ltemp <= 0)
416
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
417
if (ltemp < (long) numrows)
418
rowsperchunk = (JDIMENSION) ltemp;
419
else
420
rowsperchunk = numrows;
421
mem->last_rowsperchunk = rowsperchunk;
422
423
/* Get space for row pointers (small object) */
424
result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
425
(size_t) (numrows * SIZEOF(JSAMPROW)));
426
427
/* Get the rows themselves (large objects) */
428
currow = 0;
429
while (currow < numrows) {
430
rowsperchunk = MIN(rowsperchunk, numrows - currow);
431
workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
432
(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
433
* SIZEOF(JSAMPLE)));
434
for (i = rowsperchunk; i > 0; i--) {
435
result[currow++] = workspace;
436
workspace += samplesperrow;
437
}
438
}
439
440
return result;
441
}
442
443
444
/*
445
* Creation of 2-D coefficient-block arrays.
446
* This is essentially the same as the code for sample arrays, above.
447
*/
448
449
METHODDEF(JBLOCKARRAY)
450
alloc_barray (j_common_ptr cinfo, int pool_id,
451
JDIMENSION blocksperrow, JDIMENSION numrows)
452
/* Allocate a 2-D coefficient-block array */
453
{
454
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
455
JBLOCKARRAY result;
456
JBLOCKROW workspace;
457
JDIMENSION rowsperchunk, currow, i;
458
long ltemp;
459
460
if (blocksperrow == 0) {
461
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
462
}
463
464
/* Calculate max # of rows allowed in one allocation chunk */
465
ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
466
((long) blocksperrow * SIZEOF(JBLOCK));
467
if (ltemp <= 0)
468
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
469
if (ltemp < (long) numrows)
470
rowsperchunk = (JDIMENSION) ltemp;
471
else
472
rowsperchunk = numrows;
473
mem->last_rowsperchunk = rowsperchunk;
474
475
/* Get space for row pointers (small object) */
476
result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
477
(size_t) (numrows * SIZEOF(JBLOCKROW)));
478
479
/* Get the rows themselves (large objects) */
480
currow = 0;
481
while (currow < numrows) {
482
rowsperchunk = MIN(rowsperchunk, numrows - currow);
483
workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
484
(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
485
* SIZEOF(JBLOCK)));
486
for (i = rowsperchunk; i > 0; i--) {
487
result[currow++] = workspace;
488
workspace += blocksperrow;
489
}
490
}
491
492
return result;
493
}
494
495
496
/*
497
* About virtual array management:
498
*
499
* The above "normal" array routines are only used to allocate strip buffers
500
* (as wide as the image, but just a few rows high). Full-image-sized buffers
501
* are handled as "virtual" arrays. The array is still accessed a strip at a
502
* time, but the memory manager must save the whole array for repeated
503
* accesses. The intended implementation is that there is a strip buffer in
504
* memory (as high as is possible given the desired memory limit), plus a
505
* backing file that holds the rest of the array.
506
*
507
* The request_virt_array routines are told the total size of the image and
508
* the maximum number of rows that will be accessed at once. The in-memory
509
* buffer must be at least as large as the maxaccess value.
510
*
511
* The request routines create control blocks but not the in-memory buffers.
512
* That is postponed until realize_virt_arrays is called. At that time the
513
* total amount of space needed is known (approximately, anyway), so free
514
* memory can be divided up fairly.
515
*
516
* The access_virt_array routines are responsible for making a specific strip
517
* area accessible (after reading or writing the backing file, if necessary).
518
* Note that the access routines are told whether the caller intends to modify
519
* the accessed strip; during a read-only pass this saves having to rewrite
520
* data to disk. The access routines are also responsible for pre-zeroing
521
* any newly accessed rows, if pre-zeroing was requested.
522
*
523
* In current usage, the access requests are usually for nonoverlapping
524
* strips; that is, successive access start_row numbers differ by exactly
525
* num_rows = maxaccess. This means we can get good performance with simple
526
* buffer dump/reload logic, by making the in-memory buffer be a multiple
527
* of the access height; then there will never be accesses across bufferload
528
* boundaries. The code will still work with overlapping access requests,
529
* but it doesn't handle bufferload overlaps very efficiently.
530
*/
531
532
533
METHODDEF(jvirt_sarray_ptr)
534
request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
535
JDIMENSION samplesperrow, JDIMENSION numrows,
536
JDIMENSION maxaccess)
537
/* Request a virtual 2-D sample array */
538
{
539
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
540
jvirt_sarray_ptr result;
541
542
/* Only IMAGE-lifetime virtual arrays are currently supported */
543
if (pool_id != JPOOL_IMAGE)
544
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
545
546
/* get control block */
547
result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
548
SIZEOF(struct jvirt_sarray_control));
549
550
result->mem_buffer = NULL; /* marks array not yet realized */
551
result->rows_in_array = numrows;
552
result->samplesperrow = samplesperrow;
553
result->maxaccess = maxaccess;
554
result->pre_zero = pre_zero;
555
result->b_s_open = FALSE; /* no associated backing-store object */
556
result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
557
mem->virt_sarray_list = result;
558
559
return result;
560
}
561
562
563
METHODDEF(jvirt_barray_ptr)
564
request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
565
JDIMENSION blocksperrow, JDIMENSION numrows,
566
JDIMENSION maxaccess)
567
/* Request a virtual 2-D coefficient-block array */
568
{
569
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
570
jvirt_barray_ptr result;
571
572
/* Only IMAGE-lifetime virtual arrays are currently supported */
573
if (pool_id != JPOOL_IMAGE)
574
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
575
576
/* get control block */
577
result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
578
SIZEOF(struct jvirt_barray_control));
579
580
result->mem_buffer = NULL; /* marks array not yet realized */
581
result->rows_in_array = numrows;
582
result->blocksperrow = blocksperrow;
583
result->maxaccess = maxaccess;
584
result->pre_zero = pre_zero;
585
result->b_s_open = FALSE; /* no associated backing-store object */
586
result->next = mem->virt_barray_list; /* add to list of virtual arrays */
587
mem->virt_barray_list = result;
588
589
return result;
590
}
591
592
593
METHODDEF(void)
594
realize_virt_arrays (j_common_ptr cinfo)
595
/* Allocate the in-memory buffers for any unrealized virtual arrays */
596
{
597
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
598
size_t space_per_minheight, maximum_space, avail_mem;
599
size_t minheights, max_minheights;
600
jvirt_sarray_ptr sptr;
601
jvirt_barray_ptr bptr;
602
603
/* Compute the minimum space needed (maxaccess rows in each buffer)
604
* and the maximum space needed (full image height in each buffer).
605
* These may be of use to the system-dependent jpeg_mem_available routine.
606
*/
607
space_per_minheight = 0;
608
maximum_space = 0;
609
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
610
if (sptr->mem_buffer == NULL) { /* if not realized yet */
611
space_per_minheight += (long) sptr->maxaccess *
612
(long) sptr->samplesperrow * SIZEOF(JSAMPLE);
613
maximum_space += (long) sptr->rows_in_array *
614
(long) sptr->samplesperrow * SIZEOF(JSAMPLE);
615
}
616
}
617
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
618
if (bptr->mem_buffer == NULL) { /* if not realized yet */
619
space_per_minheight += (long) bptr->maxaccess *
620
(long) bptr->blocksperrow * SIZEOF(JBLOCK);
621
maximum_space += (long) bptr->rows_in_array *
622
(long) bptr->blocksperrow * SIZEOF(JBLOCK);
623
}
624
}
625
626
if (space_per_minheight <= 0)
627
return; /* no unrealized arrays, no work */
628
629
/* Determine amount of memory to actually use; this is system-dependent. */
630
avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
631
mem->total_space_allocated);
632
633
/* If the maximum space needed is available, make all the buffers full
634
* height; otherwise parcel it out with the same number of minheights
635
* in each buffer.
636
*/
637
if (avail_mem >= maximum_space)
638
max_minheights = 1000000000L;
639
else {
640
max_minheights = avail_mem / space_per_minheight;
641
/* If there doesn't seem to be enough space, try to get the minimum
642
* anyway. This allows a "stub" implementation of jpeg_mem_available().
643
*/
644
if (max_minheights <= 0)
645
max_minheights = 1;
646
}
647
648
/* Allocate the in-memory buffers and initialize backing store as needed. */
649
650
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
651
if (sptr->mem_buffer == NULL) { /* if not realized yet */
652
minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
653
if (minheights <= max_minheights) {
654
/* This buffer fits in memory */
655
sptr->rows_in_mem = sptr->rows_in_array;
656
} else {
657
/* It doesn't fit in memory, create backing store. */
658
sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
659
jpeg_open_backing_store(cinfo, & sptr->b_s_info,
660
(long) sptr->rows_in_array *
661
(long) sptr->samplesperrow *
662
(long) SIZEOF(JSAMPLE));
663
sptr->b_s_open = TRUE;
664
}
665
sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
666
sptr->samplesperrow, sptr->rows_in_mem);
667
sptr->rowsperchunk = mem->last_rowsperchunk;
668
sptr->cur_start_row = 0;
669
sptr->first_undef_row = 0;
670
sptr->dirty = FALSE;
671
}
672
}
673
674
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
675
if (bptr->mem_buffer == NULL) { /* if not realized yet */
676
minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
677
if (minheights <= max_minheights) {
678
/* This buffer fits in memory */
679
bptr->rows_in_mem = bptr->rows_in_array;
680
} else {
681
/* It doesn't fit in memory, create backing store. */
682
bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
683
jpeg_open_backing_store(cinfo, & bptr->b_s_info,
684
(long) bptr->rows_in_array *
685
(long) bptr->blocksperrow *
686
(long) SIZEOF(JBLOCK));
687
bptr->b_s_open = TRUE;
688
}
689
bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
690
bptr->blocksperrow, bptr->rows_in_mem);
691
bptr->rowsperchunk = mem->last_rowsperchunk;
692
bptr->cur_start_row = 0;
693
bptr->first_undef_row = 0;
694
bptr->dirty = FALSE;
695
}
696
}
697
}
698
699
700
LOCAL(void)
701
do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
702
/* Do backing store read or write of a virtual sample array */
703
{
704
long bytesperrow, file_offset, byte_count, rows, thisrow, i;
705
706
bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
707
file_offset = ptr->cur_start_row * bytesperrow;
708
/* Loop to read or write each allocation chunk in mem_buffer */
709
for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
710
/* One chunk, but check for short chunk at end of buffer */
711
rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
712
/* Transfer no more than is currently defined */
713
thisrow = (long) ptr->cur_start_row + i;
714
rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
715
/* Transfer no more than fits in file */
716
rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
717
if (rows <= 0) /* this chunk might be past end of file! */
718
break;
719
byte_count = rows * bytesperrow;
720
if (writing)
721
(*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
722
(void FAR *) ptr->mem_buffer[i],
723
file_offset, byte_count);
724
else
725
(*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
726
(void FAR *) ptr->mem_buffer[i],
727
file_offset, byte_count);
728
file_offset += byte_count;
729
}
730
}
731
732
733
LOCAL(void)
734
do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
735
/* Do backing store read or write of a virtual coefficient-block array */
736
{
737
long bytesperrow, file_offset, byte_count, rows, thisrow, i;
738
739
bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
740
file_offset = ptr->cur_start_row * bytesperrow;
741
/* Loop to read or write each allocation chunk in mem_buffer */
742
for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
743
/* One chunk, but check for short chunk at end of buffer */
744
rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
745
/* Transfer no more than is currently defined */
746
thisrow = (long) ptr->cur_start_row + i;
747
rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
748
/* Transfer no more than fits in file */
749
rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
750
if (rows <= 0) /* this chunk might be past end of file! */
751
break;
752
byte_count = rows * bytesperrow;
753
if (writing)
754
(*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
755
(void FAR *) ptr->mem_buffer[i],
756
file_offset, byte_count);
757
else
758
(*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
759
(void FAR *) ptr->mem_buffer[i],
760
file_offset, byte_count);
761
file_offset += byte_count;
762
}
763
}
764
765
766
METHODDEF(JSAMPARRAY)
767
access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
768
JDIMENSION start_row, JDIMENSION num_rows,
769
boolean writable)
770
/* Access the part of a virtual sample array starting at start_row */
771
/* and extending for num_rows rows. writable is true if */
772
/* caller intends to modify the accessed area. */
773
{
774
JDIMENSION end_row = start_row + num_rows;
775
JDIMENSION undef_row;
776
777
/* debugging check */
778
if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
779
ptr->mem_buffer == NULL)
780
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
781
782
/* Make the desired part of the virtual array accessible */
783
if (start_row < ptr->cur_start_row ||
784
end_row > ptr->cur_start_row+ptr->rows_in_mem) {
785
if (! ptr->b_s_open)
786
ERREXIT(cinfo, JERR_VIRTUAL_BUG);
787
/* Flush old buffer contents if necessary */
788
if (ptr->dirty) {
789
do_sarray_io(cinfo, ptr, TRUE);
790
ptr->dirty = FALSE;
791
}
792
/* Decide what part of virtual array to access.
793
* Algorithm: if target address > current window, assume forward scan,
794
* load starting at target address. If target address < current window,
795
* assume backward scan, load so that target area is top of window.
796
* Note that when switching from forward write to forward read, will have
797
* start_row = 0, so the limiting case applies and we load from 0 anyway.
798
*/
799
if (start_row > ptr->cur_start_row) {
800
ptr->cur_start_row = start_row;
801
} else {
802
/* use long arithmetic here to avoid overflow & unsigned problems */
803
long ltemp;
804
805
ltemp = (long) end_row - (long) ptr->rows_in_mem;
806
if (ltemp < 0)
807
ltemp = 0; /* don't fall off front end of file */
808
ptr->cur_start_row = (JDIMENSION) ltemp;
809
}
810
/* Read in the selected part of the array.
811
* During the initial write pass, we will do no actual read
812
* because the selected part is all undefined.
813
*/
814
do_sarray_io(cinfo, ptr, FALSE);
815
}
816
/* Ensure the accessed part of the array is defined; prezero if needed.
817
* To improve locality of access, we only prezero the part of the array
818
* that the caller is about to access, not the entire in-memory array.
819
*/
820
if (ptr->first_undef_row < end_row) {
821
if (ptr->first_undef_row < start_row) {
822
if (writable) /* writer skipped over a section of array */
823
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
824
undef_row = start_row; /* but reader is allowed to read ahead */
825
} else {
826
undef_row = ptr->first_undef_row;
827
}
828
if (writable)
829
ptr->first_undef_row = end_row;
830
if (ptr->pre_zero) {
831
size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
832
undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
833
end_row -= ptr->cur_start_row;
834
while (undef_row < end_row) {
835
jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
836
undef_row++;
837
}
838
} else {
839
if (! writable) /* reader looking at undefined data */
840
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
841
}
842
}
843
/* Flag the buffer dirty if caller will write in it */
844
if (writable)
845
ptr->dirty = TRUE;
846
/* Return address of proper part of the buffer */
847
return ptr->mem_buffer + (start_row - ptr->cur_start_row);
848
}
849
850
851
METHODDEF(JBLOCKARRAY)
852
access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
853
JDIMENSION start_row, JDIMENSION num_rows,
854
boolean writable)
855
/* Access the part of a virtual block array starting at start_row */
856
/* and extending for num_rows rows. writable is true if */
857
/* caller intends to modify the accessed area. */
858
{
859
JDIMENSION end_row = start_row + num_rows;
860
JDIMENSION undef_row;
861
862
/* debugging check */
863
if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
864
ptr->mem_buffer == NULL)
865
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
866
867
/* Make the desired part of the virtual array accessible */
868
if (start_row < ptr->cur_start_row ||
869
end_row > ptr->cur_start_row+ptr->rows_in_mem) {
870
if (! ptr->b_s_open)
871
ERREXIT(cinfo, JERR_VIRTUAL_BUG);
872
/* Flush old buffer contents if necessary */
873
if (ptr->dirty) {
874
do_barray_io(cinfo, ptr, TRUE);
875
ptr->dirty = FALSE;
876
}
877
/* Decide what part of virtual array to access.
878
* Algorithm: if target address > current window, assume forward scan,
879
* load starting at target address. If target address < current window,
880
* assume backward scan, load so that target area is top of window.
881
* Note that when switching from forward write to forward read, will have
882
* start_row = 0, so the limiting case applies and we load from 0 anyway.
883
*/
884
if (start_row > ptr->cur_start_row) {
885
ptr->cur_start_row = start_row;
886
} else {
887
/* use long arithmetic here to avoid overflow & unsigned problems */
888
long ltemp;
889
890
ltemp = (long) end_row - (long) ptr->rows_in_mem;
891
if (ltemp < 0)
892
ltemp = 0; /* don't fall off front end of file */
893
ptr->cur_start_row = (JDIMENSION) ltemp;
894
}
895
/* Read in the selected part of the array.
896
* During the initial write pass, we will do no actual read
897
* because the selected part is all undefined.
898
*/
899
do_barray_io(cinfo, ptr, FALSE);
900
}
901
/* Ensure the accessed part of the array is defined; prezero if needed.
902
* To improve locality of access, we only prezero the part of the array
903
* that the caller is about to access, not the entire in-memory array.
904
*/
905
if (ptr->first_undef_row < end_row) {
906
if (ptr->first_undef_row < start_row) {
907
if (writable) /* writer skipped over a section of array */
908
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
909
undef_row = start_row; /* but reader is allowed to read ahead */
910
} else {
911
undef_row = ptr->first_undef_row;
912
}
913
if (writable)
914
ptr->first_undef_row = end_row;
915
if (ptr->pre_zero) {
916
size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
917
undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
918
end_row -= ptr->cur_start_row;
919
while (undef_row < end_row) {
920
jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
921
undef_row++;
922
}
923
} else {
924
if (! writable) /* reader looking at undefined data */
925
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
926
}
927
}
928
/* Flag the buffer dirty if caller will write in it */
929
if (writable)
930
ptr->dirty = TRUE;
931
/* Return address of proper part of the buffer */
932
return ptr->mem_buffer + (start_row - ptr->cur_start_row);
933
}
934
935
936
/*
937
* Release all objects belonging to a specified pool.
938
*/
939
940
METHODDEF(void)
941
free_pool (j_common_ptr cinfo, int pool_id)
942
{
943
my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
944
small_pool_ptr shdr_ptr;
945
large_pool_ptr lhdr_ptr;
946
size_t space_freed;
947
948
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
949
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
950
951
#ifdef MEM_STATS
952
if (cinfo->err->trace_level > 1)
953
print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
954
#endif
955
956
/* If freeing IMAGE pool, close any virtual arrays first */
957
if (pool_id == JPOOL_IMAGE) {
958
jvirt_sarray_ptr sptr;
959
jvirt_barray_ptr bptr;
960
961
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
962
if (sptr->b_s_open) { /* there may be no backing store */
963
sptr->b_s_open = FALSE; /* prevent recursive close if error */
964
(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
965
}
966
}
967
mem->virt_sarray_list = NULL;
968
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
969
if (bptr->b_s_open) { /* there may be no backing store */
970
bptr->b_s_open = FALSE; /* prevent recursive close if error */
971
(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
972
}
973
}
974
mem->virt_barray_list = NULL;
975
}
976
977
/* Release large objects */
978
lhdr_ptr = mem->large_list[pool_id];
979
mem->large_list[pool_id] = NULL;
980
981
while (lhdr_ptr != NULL) {
982
large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
983
space_freed = lhdr_ptr->hdr.bytes_used +
984
lhdr_ptr->hdr.bytes_left +
985
SIZEOF(large_pool_hdr);
986
jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
987
mem->total_space_allocated -= space_freed;
988
lhdr_ptr = next_lhdr_ptr;
989
}
990
991
/* Release small objects */
992
shdr_ptr = mem->small_list[pool_id];
993
mem->small_list[pool_id] = NULL;
994
995
while (shdr_ptr != NULL) {
996
small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
997
space_freed = shdr_ptr->hdr.bytes_used +
998
shdr_ptr->hdr.bytes_left +
999
SIZEOF(small_pool_hdr);
1000
jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
1001
mem->total_space_allocated -= space_freed;
1002
shdr_ptr = next_shdr_ptr;
1003
}
1004
}
1005
1006
1007
/*
1008
* Close up shop entirely.
1009
* Note that this cannot be called unless cinfo->mem is non-NULL.
1010
*/
1011
1012
METHODDEF(void)
1013
self_destruct (j_common_ptr cinfo)
1014
{
1015
int pool;
1016
1017
/* Close all backing store, release all memory.
1018
* Releasing pools in reverse order might help avoid fragmentation
1019
* with some (brain-damaged) malloc libraries.
1020
*/
1021
for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1022
free_pool(cinfo, pool);
1023
}
1024
1025
/* Release the memory manager control block too. */
1026
jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1027
cinfo->mem = NULL; /* ensures I will be called only once */
1028
1029
jpeg_mem_term(cinfo); /* system-dependent cleanup */
1030
}
1031
1032
1033
/*
1034
* Memory manager initialization.
1035
* When this is called, only the error manager pointer is valid in cinfo!
1036
*/
1037
1038
GLOBAL(void)
1039
jinit_memory_mgr (j_common_ptr cinfo)
1040
{
1041
my_mem_ptr mem;
1042
size_t max_to_use;
1043
int pool;
1044
size_t test_mac;
1045
1046
cinfo->mem = NULL; /* for safety if init fails */
1047
1048
/* Check for configuration errors.
1049
* SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1050
* doesn't reflect any real hardware alignment requirement.
1051
* The test is a little tricky: for X>0, X and X-1 have no one-bits
1052
* in common if and only if X is a power of 2, ie has only one one-bit.
1053
* Some compilers may give an "unreachable code" warning here; ignore it.
1054
*/
1055
if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1056
ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1057
/* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1058
* a multiple of SIZEOF(ALIGN_TYPE).
1059
* Again, an "unreachable code" warning may be ignored here.
1060
* But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1061
*/
1062
test_mac = (size_t) MAX_ALLOC_CHUNK;
1063
if ((long) test_mac != MAX_ALLOC_CHUNK ||
1064
(MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1065
ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1066
1067
max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1068
1069
/* Attempt to allocate memory manager's control block */
1070
mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1071
1072
if (mem == NULL) {
1073
jpeg_mem_term(cinfo); /* system-dependent cleanup */
1074
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1075
}
1076
1077
/* OK, fill in the method pointers */
1078
mem->pub.alloc_small = alloc_small;
1079
mem->pub.alloc_large = alloc_large;
1080
mem->pub.alloc_sarray = alloc_sarray;
1081
mem->pub.alloc_barray = alloc_barray;
1082
mem->pub.request_virt_sarray = request_virt_sarray;
1083
mem->pub.request_virt_barray = request_virt_barray;
1084
mem->pub.realize_virt_arrays = realize_virt_arrays;
1085
mem->pub.access_virt_sarray = access_virt_sarray;
1086
mem->pub.access_virt_barray = access_virt_barray;
1087
mem->pub.free_pool = free_pool;
1088
mem->pub.self_destruct = self_destruct;
1089
1090
/* Make MAX_ALLOC_CHUNK accessible to other modules */
1091
mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1092
1093
/* Initialize working state */
1094
mem->pub.max_memory_to_use = max_to_use;
1095
1096
for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1097
mem->small_list[pool] = NULL;
1098
mem->large_list[pool] = NULL;
1099
}
1100
mem->virt_sarray_list = NULL;
1101
mem->virt_barray_list = NULL;
1102
1103
mem->total_space_allocated = SIZEOF(my_memory_mgr);
1104
1105
/* Declare ourselves open for business */
1106
cinfo->mem = & mem->pub;
1107
1108
/* Check for an environment variable JPEGMEM; if found, override the
1109
* default max_memory setting from jpeg_mem_init. Note that the
1110
* surrounding application may again override this value.
1111
* If your system doesn't support getenv(), define NO_GETENV to disable
1112
* this feature.
1113
*/
1114
#ifndef NO_GETENV
1115
{ char * memenv;
1116
1117
if ((memenv = getenv("JPEGMEM")) != NULL) {
1118
char ch = 'x';
1119
unsigned int mem_max = 0u;
1120
1121
if (sscanf(memenv, "%u%c", &mem_max, &ch) > 0) {
1122
max_to_use = (size_t)mem_max;
1123
if (ch == 'm' || ch == 'M')
1124
max_to_use *= 1000L;
1125
mem->pub.max_memory_to_use = max_to_use * 1000L;
1126
}
1127
}
1128
}
1129
#endif
1130
1131
}
1132
1133