Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/liblcms/cmsgmt.c
41149 views
1
/*
2
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3
*
4
* This code is free software; you can redistribute it and/or modify it
5
* under the terms of the GNU General Public License version 2 only, as
6
* published by the Free Software Foundation. Oracle designates this
7
* particular file as subject to the "Classpath" exception as provided
8
* by Oracle in the LICENSE file that accompanied this code.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*/
24
25
// This file is available under and governed by the GNU General Public
26
// License version 2 only, as published by the Free Software Foundation.
27
// However, the following notice accompanied the original version of this
28
// file:
29
//
30
//---------------------------------------------------------------------------------
31
//
32
// Little Color Management System
33
// Copyright (c) 1998-2020 Marti Maria Saguer
34
//
35
// Permission is hereby granted, free of charge, to any person obtaining
36
// a copy of this software and associated documentation files (the "Software"),
37
// to deal in the Software without restriction, including without limitation
38
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
39
// and/or sell copies of the Software, and to permit persons to whom the Software
40
// is furnished to do so, subject to the following conditions:
41
//
42
// The above copyright notice and this permission notice shall be included in
43
// all copies or substantial portions of the Software.
44
//
45
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
46
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
47
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
48
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
49
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
50
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
51
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
52
//
53
//---------------------------------------------------------------------------------
54
//
55
56
#include "lcms2_internal.h"
57
58
59
// Auxiliary: append a Lab identity after the given sequence of profiles
60
// and return the transform. Lab profile is closed, rest of profiles are kept open.
61
cmsHTRANSFORM _cmsChain2Lab(cmsContext ContextID,
62
cmsUInt32Number nProfiles,
63
cmsUInt32Number InputFormat,
64
cmsUInt32Number OutputFormat,
65
const cmsUInt32Number Intents[],
66
const cmsHPROFILE hProfiles[],
67
const cmsBool BPC[],
68
const cmsFloat64Number AdaptationStates[],
69
cmsUInt32Number dwFlags)
70
{
71
cmsHTRANSFORM xform;
72
cmsHPROFILE hLab;
73
cmsHPROFILE ProfileList[256];
74
cmsBool BPCList[256];
75
cmsFloat64Number AdaptationList[256];
76
cmsUInt32Number IntentList[256];
77
cmsUInt32Number i;
78
79
// This is a rather big number and there is no need of dynamic memory
80
// since we are adding a profile, 254 + 1 = 255 and this is the limit
81
if (nProfiles > 254) return NULL;
82
83
// The output space
84
hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
85
if (hLab == NULL) return NULL;
86
87
// Create a copy of parameters
88
for (i=0; i < nProfiles; i++) {
89
90
ProfileList[i] = hProfiles[i];
91
BPCList[i] = BPC[i];
92
AdaptationList[i] = AdaptationStates[i];
93
IntentList[i] = Intents[i];
94
}
95
96
// Place Lab identity at chain's end.
97
ProfileList[nProfiles] = hLab;
98
BPCList[nProfiles] = 0;
99
AdaptationList[nProfiles] = 1.0;
100
IntentList[nProfiles] = INTENT_RELATIVE_COLORIMETRIC;
101
102
// Create the transform
103
xform = cmsCreateExtendedTransform(ContextID, nProfiles + 1, ProfileList,
104
BPCList,
105
IntentList,
106
AdaptationList,
107
NULL, 0,
108
InputFormat,
109
OutputFormat,
110
dwFlags);
111
112
cmsCloseProfile(hLab);
113
114
return xform;
115
}
116
117
118
// Compute K -> L* relationship. Flags may include black point compensation. In this case,
119
// the relationship is assumed from the profile with BPC to a black point zero.
120
static
121
cmsToneCurve* ComputeKToLstar(cmsContext ContextID,
122
cmsUInt32Number nPoints,
123
cmsUInt32Number nProfiles,
124
const cmsUInt32Number Intents[],
125
const cmsHPROFILE hProfiles[],
126
const cmsBool BPC[],
127
const cmsFloat64Number AdaptationStates[],
128
cmsUInt32Number dwFlags)
129
{
130
cmsToneCurve* out = NULL;
131
cmsUInt32Number i;
132
cmsHTRANSFORM xform;
133
cmsCIELab Lab;
134
cmsFloat32Number cmyk[4];
135
cmsFloat32Number* SampledPoints;
136
137
xform = _cmsChain2Lab(ContextID, nProfiles, TYPE_CMYK_FLT, TYPE_Lab_DBL, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
138
if (xform == NULL) return NULL;
139
140
SampledPoints = (cmsFloat32Number*) _cmsCalloc(ContextID, nPoints, sizeof(cmsFloat32Number));
141
if (SampledPoints == NULL) goto Error;
142
143
for (i=0; i < nPoints; i++) {
144
145
cmyk[0] = 0;
146
cmyk[1] = 0;
147
cmyk[2] = 0;
148
cmyk[3] = (cmsFloat32Number) ((i * 100.0) / (nPoints-1));
149
150
cmsDoTransform(xform, cmyk, &Lab, 1);
151
SampledPoints[i]= (cmsFloat32Number) (1.0 - Lab.L / 100.0); // Negate K for easier operation
152
}
153
154
out = cmsBuildTabulatedToneCurveFloat(ContextID, nPoints, SampledPoints);
155
156
Error:
157
158
cmsDeleteTransform(xform);
159
if (SampledPoints) _cmsFree(ContextID, SampledPoints);
160
161
return out;
162
}
163
164
165
// Compute Black tone curve on a CMYK -> CMYK transform. This is done by
166
// using the proof direction on both profiles to find K->L* relationship
167
// then joining both curves. dwFlags may include black point compensation.
168
cmsToneCurve* _cmsBuildKToneCurve(cmsContext ContextID,
169
cmsUInt32Number nPoints,
170
cmsUInt32Number nProfiles,
171
const cmsUInt32Number Intents[],
172
const cmsHPROFILE hProfiles[],
173
const cmsBool BPC[],
174
const cmsFloat64Number AdaptationStates[],
175
cmsUInt32Number dwFlags)
176
{
177
cmsToneCurve *in, *out, *KTone;
178
179
// Make sure CMYK -> CMYK
180
if (cmsGetColorSpace(hProfiles[0]) != cmsSigCmykData ||
181
cmsGetColorSpace(hProfiles[nProfiles-1])!= cmsSigCmykData) return NULL;
182
183
184
// Make sure last is an output profile
185
if (cmsGetDeviceClass(hProfiles[nProfiles - 1]) != cmsSigOutputClass) return NULL;
186
187
// Create individual curves. BPC works also as each K to L* is
188
// computed as a BPC to zero black point in case of L*
189
in = ComputeKToLstar(ContextID, nPoints, nProfiles - 1, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
190
if (in == NULL) return NULL;
191
192
out = ComputeKToLstar(ContextID, nPoints, 1,
193
Intents + (nProfiles - 1),
194
&hProfiles [nProfiles - 1],
195
BPC + (nProfiles - 1),
196
AdaptationStates + (nProfiles - 1),
197
dwFlags);
198
if (out == NULL) {
199
cmsFreeToneCurve(in);
200
return NULL;
201
}
202
203
// Build the relationship. This effectively limits the maximum accuracy to 16 bits, but
204
// since this is used on black-preserving LUTs, we are not losing accuracy in any case
205
KTone = cmsJoinToneCurve(ContextID, in, out, nPoints);
206
207
// Get rid of components
208
cmsFreeToneCurve(in); cmsFreeToneCurve(out);
209
210
// Something went wrong...
211
if (KTone == NULL) return NULL;
212
213
// Make sure it is monotonic
214
if (!cmsIsToneCurveMonotonic(KTone)) {
215
cmsFreeToneCurve(KTone);
216
return NULL;
217
}
218
219
return KTone;
220
}
221
222
223
// Gamut LUT Creation -----------------------------------------------------------------------------------------
224
225
// Used by gamut & softproofing
226
227
typedef struct {
228
229
cmsHTRANSFORM hInput; // From whatever input color space. 16 bits to DBL
230
cmsHTRANSFORM hForward, hReverse; // Transforms going from Lab to colorant and back
231
cmsFloat64Number Thereshold; // The thereshold after which is considered out of gamut
232
233
} GAMUTCHAIN;
234
235
// This sampler does compute gamut boundaries by comparing original
236
// values with a transform going back and forth. Values above ERR_THERESHOLD
237
// of maximum are considered out of gamut.
238
239
#define ERR_THERESHOLD 5
240
241
242
static
243
int GamutSampler(CMSREGISTER const cmsUInt16Number In[], CMSREGISTER cmsUInt16Number Out[], CMSREGISTER void* Cargo)
244
{
245
GAMUTCHAIN* t = (GAMUTCHAIN* ) Cargo;
246
cmsCIELab LabIn1, LabOut1;
247
cmsCIELab LabIn2, LabOut2;
248
cmsUInt16Number Proof[cmsMAXCHANNELS], Proof2[cmsMAXCHANNELS];
249
cmsFloat64Number dE1, dE2, ErrorRatio;
250
251
// Assume in-gamut by default.
252
ErrorRatio = 1.0;
253
254
// Convert input to Lab
255
cmsDoTransform(t -> hInput, In, &LabIn1, 1);
256
257
// converts from PCS to colorant. This always
258
// does return in-gamut values,
259
cmsDoTransform(t -> hForward, &LabIn1, Proof, 1);
260
261
// Now, do the inverse, from colorant to PCS.
262
cmsDoTransform(t -> hReverse, Proof, &LabOut1, 1);
263
264
memmove(&LabIn2, &LabOut1, sizeof(cmsCIELab));
265
266
// Try again, but this time taking Check as input
267
cmsDoTransform(t -> hForward, &LabOut1, Proof2, 1);
268
cmsDoTransform(t -> hReverse, Proof2, &LabOut2, 1);
269
270
// Take difference of direct value
271
dE1 = cmsDeltaE(&LabIn1, &LabOut1);
272
273
// Take difference of converted value
274
dE2 = cmsDeltaE(&LabIn2, &LabOut2);
275
276
277
// if dE1 is small and dE2 is small, value is likely to be in gamut
278
if (dE1 < t->Thereshold && dE2 < t->Thereshold)
279
Out[0] = 0;
280
else {
281
282
// if dE1 is small and dE2 is big, undefined. Assume in gamut
283
if (dE1 < t->Thereshold && dE2 > t->Thereshold)
284
Out[0] = 0;
285
else
286
// dE1 is big and dE2 is small, clearly out of gamut
287
if (dE1 > t->Thereshold && dE2 < t->Thereshold)
288
Out[0] = (cmsUInt16Number) _cmsQuickFloor((dE1 - t->Thereshold) + .5);
289
else {
290
291
// dE1 is big and dE2 is also big, could be due to perceptual mapping
292
// so take error ratio
293
if (dE2 == 0.0)
294
ErrorRatio = dE1;
295
else
296
ErrorRatio = dE1 / dE2;
297
298
if (ErrorRatio > t->Thereshold)
299
Out[0] = (cmsUInt16Number) _cmsQuickFloor((ErrorRatio - t->Thereshold) + .5);
300
else
301
Out[0] = 0;
302
}
303
}
304
305
306
return TRUE;
307
}
308
309
// Does compute a gamut LUT going back and forth across pcs -> relativ. colorimetric intent -> pcs
310
// the dE obtained is then annotated on the LUT. Values truly out of gamut are clipped to dE = 0xFFFE
311
// and values changed are supposed to be handled by any gamut remapping, so, are out of gamut as well.
312
//
313
// **WARNING: This algorithm does assume that gamut remapping algorithms does NOT move in-gamut colors,
314
// of course, many perceptual and saturation intents does not work in such way, but relativ. ones should.
315
316
cmsPipeline* _cmsCreateGamutCheckPipeline(cmsContext ContextID,
317
cmsHPROFILE hProfiles[],
318
cmsBool BPC[],
319
cmsUInt32Number Intents[],
320
cmsFloat64Number AdaptationStates[],
321
cmsUInt32Number nGamutPCSposition,
322
cmsHPROFILE hGamut)
323
{
324
cmsHPROFILE hLab;
325
cmsPipeline* Gamut;
326
cmsStage* CLUT;
327
cmsUInt32Number dwFormat;
328
GAMUTCHAIN Chain;
329
cmsUInt32Number nChannels, nGridpoints;
330
cmsColorSpaceSignature ColorSpace;
331
cmsUInt32Number i;
332
cmsHPROFILE ProfileList[256];
333
cmsBool BPCList[256];
334
cmsFloat64Number AdaptationList[256];
335
cmsUInt32Number IntentList[256];
336
337
memset(&Chain, 0, sizeof(GAMUTCHAIN));
338
339
340
if (nGamutPCSposition <= 0 || nGamutPCSposition > 255) {
341
cmsSignalError(ContextID, cmsERROR_RANGE, "Wrong position of PCS. 1..255 expected, %d found.", nGamutPCSposition);
342
return NULL;
343
}
344
345
hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
346
if (hLab == NULL) return NULL;
347
348
349
// The figure of merit. On matrix-shaper profiles, should be almost zero as
350
// the conversion is pretty exact. On LUT based profiles, different resolutions
351
// of input and output CLUT may result in differences.
352
353
if (cmsIsMatrixShaper(hGamut)) {
354
355
Chain.Thereshold = 1.0;
356
}
357
else {
358
Chain.Thereshold = ERR_THERESHOLD;
359
}
360
361
362
// Create a copy of parameters
363
for (i=0; i < nGamutPCSposition; i++) {
364
ProfileList[i] = hProfiles[i];
365
BPCList[i] = BPC[i];
366
AdaptationList[i] = AdaptationStates[i];
367
IntentList[i] = Intents[i];
368
}
369
370
// Fill Lab identity
371
ProfileList[nGamutPCSposition] = hLab;
372
BPCList[nGamutPCSposition] = 0;
373
AdaptationList[nGamutPCSposition] = 1.0;
374
IntentList[nGamutPCSposition] = INTENT_RELATIVE_COLORIMETRIC;
375
376
377
ColorSpace = cmsGetColorSpace(hGamut);
378
379
nChannels = cmsChannelsOf(ColorSpace);
380
nGridpoints = _cmsReasonableGridpointsByColorspace(ColorSpace, cmsFLAGS_HIGHRESPRECALC);
381
dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2));
382
383
// 16 bits to Lab double
384
Chain.hInput = cmsCreateExtendedTransform(ContextID,
385
nGamutPCSposition + 1,
386
ProfileList,
387
BPCList,
388
IntentList,
389
AdaptationList,
390
NULL, 0,
391
dwFormat, TYPE_Lab_DBL,
392
cmsFLAGS_NOCACHE);
393
394
395
// Does create the forward step. Lab double to device
396
dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2));
397
Chain.hForward = cmsCreateTransformTHR(ContextID,
398
hLab, TYPE_Lab_DBL,
399
hGamut, dwFormat,
400
INTENT_RELATIVE_COLORIMETRIC,
401
cmsFLAGS_NOCACHE);
402
403
// Does create the backwards step
404
Chain.hReverse = cmsCreateTransformTHR(ContextID, hGamut, dwFormat,
405
hLab, TYPE_Lab_DBL,
406
INTENT_RELATIVE_COLORIMETRIC,
407
cmsFLAGS_NOCACHE);
408
409
410
// All ok?
411
if (Chain.hInput && Chain.hForward && Chain.hReverse) {
412
413
// Go on, try to compute gamut LUT from PCS. This consist on a single channel containing
414
// dE when doing a transform back and forth on the colorimetric intent.
415
416
Gamut = cmsPipelineAlloc(ContextID, 3, 1);
417
if (Gamut != NULL) {
418
419
CLUT = cmsStageAllocCLut16bit(ContextID, nGridpoints, nChannels, 1, NULL);
420
if (!cmsPipelineInsertStage(Gamut, cmsAT_BEGIN, CLUT)) {
421
cmsPipelineFree(Gamut);
422
Gamut = NULL;
423
}
424
else {
425
cmsStageSampleCLut16bit(CLUT, GamutSampler, (void*) &Chain, 0);
426
}
427
}
428
}
429
else
430
Gamut = NULL; // Didn't work...
431
432
// Free all needed stuff.
433
if (Chain.hInput) cmsDeleteTransform(Chain.hInput);
434
if (Chain.hForward) cmsDeleteTransform(Chain.hForward);
435
if (Chain.hReverse) cmsDeleteTransform(Chain.hReverse);
436
if (hLab) cmsCloseProfile(hLab);
437
438
// And return computed hull
439
return Gamut;
440
}
441
442
// Total Area Coverage estimation ----------------------------------------------------------------
443
444
typedef struct {
445
cmsUInt32Number nOutputChans;
446
cmsHTRANSFORM hRoundTrip;
447
cmsFloat32Number MaxTAC;
448
cmsFloat32Number MaxInput[cmsMAXCHANNELS];
449
450
} cmsTACestimator;
451
452
453
// This callback just accounts the maximum ink dropped in the given node. It does not populate any
454
// memory, as the destination table is NULL. Its only purpose it to know the global maximum.
455
static
456
int EstimateTAC(CMSREGISTER const cmsUInt16Number In[], CMSREGISTER cmsUInt16Number Out[], CMSREGISTER void * Cargo)
457
{
458
cmsTACestimator* bp = (cmsTACestimator*) Cargo;
459
cmsFloat32Number RoundTrip[cmsMAXCHANNELS];
460
cmsUInt32Number i;
461
cmsFloat32Number Sum;
462
463
464
// Evaluate the xform
465
cmsDoTransform(bp->hRoundTrip, In, RoundTrip, 1);
466
467
// All all amounts of ink
468
for (Sum=0, i=0; i < bp ->nOutputChans; i++)
469
Sum += RoundTrip[i];
470
471
// If above maximum, keep track of input values
472
if (Sum > bp ->MaxTAC) {
473
474
bp ->MaxTAC = Sum;
475
476
for (i=0; i < bp ->nOutputChans; i++) {
477
bp ->MaxInput[i] = In[i];
478
}
479
}
480
481
return TRUE;
482
483
cmsUNUSED_PARAMETER(Out);
484
}
485
486
487
// Detect Total area coverage of the profile
488
cmsFloat64Number CMSEXPORT cmsDetectTAC(cmsHPROFILE hProfile)
489
{
490
cmsTACestimator bp;
491
cmsUInt32Number dwFormatter;
492
cmsUInt32Number GridPoints[MAX_INPUT_DIMENSIONS];
493
cmsHPROFILE hLab;
494
cmsContext ContextID = cmsGetProfileContextID(hProfile);
495
496
// TAC only works on output profiles
497
if (cmsGetDeviceClass(hProfile) != cmsSigOutputClass) {
498
return 0;
499
}
500
501
// Create a fake formatter for result
502
dwFormatter = cmsFormatterForColorspaceOfProfile(hProfile, 4, TRUE);
503
504
bp.nOutputChans = T_CHANNELS(dwFormatter);
505
bp.MaxTAC = 0; // Initial TAC is 0
506
507
// for safety
508
if (bp.nOutputChans >= cmsMAXCHANNELS) return 0;
509
510
hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
511
if (hLab == NULL) return 0;
512
// Setup a roundtrip on perceptual intent in output profile for TAC estimation
513
bp.hRoundTrip = cmsCreateTransformTHR(ContextID, hLab, TYPE_Lab_16,
514
hProfile, dwFormatter, INTENT_PERCEPTUAL, cmsFLAGS_NOOPTIMIZE|cmsFLAGS_NOCACHE);
515
516
cmsCloseProfile(hLab);
517
if (bp.hRoundTrip == NULL) return 0;
518
519
// For L* we only need black and white. For C* we need many points
520
GridPoints[0] = 6;
521
GridPoints[1] = 74;
522
GridPoints[2] = 74;
523
524
525
if (!cmsSliceSpace16(3, GridPoints, EstimateTAC, &bp)) {
526
bp.MaxTAC = 0;
527
}
528
529
cmsDeleteTransform(bp.hRoundTrip);
530
531
// Results in %
532
return bp.MaxTAC;
533
}
534
535
536
// Carefully, clamp on CIELab space.
537
538
cmsBool CMSEXPORT cmsDesaturateLab(cmsCIELab* Lab,
539
double amax, double amin,
540
double bmax, double bmin)
541
{
542
543
// Whole Luma surface to zero
544
545
if (Lab -> L < 0) {
546
547
Lab-> L = Lab->a = Lab-> b = 0.0;
548
return FALSE;
549
}
550
551
// Clamp white, DISCARD HIGHLIGHTS. This is done
552
// in such way because icc spec doesn't allow the
553
// use of L>100 as a highlight means.
554
555
if (Lab->L > 100)
556
Lab -> L = 100;
557
558
// Check out gamut prism, on a, b faces
559
560
if (Lab -> a < amin || Lab->a > amax||
561
Lab -> b < bmin || Lab->b > bmax) {
562
563
cmsCIELCh LCh;
564
double h, slope;
565
566
// Falls outside a, b limits. Transports to LCh space,
567
// and then do the clipping
568
569
570
if (Lab -> a == 0.0) { // Is hue exactly 90?
571
572
// atan will not work, so clamp here
573
Lab -> b = Lab->b < 0 ? bmin : bmax;
574
return TRUE;
575
}
576
577
cmsLab2LCh(&LCh, Lab);
578
579
slope = Lab -> b / Lab -> a;
580
h = LCh.h;
581
582
// There are 4 zones
583
584
if ((h >= 0. && h < 45.) ||
585
(h >= 315 && h <= 360.)) {
586
587
// clip by amax
588
Lab -> a = amax;
589
Lab -> b = amax * slope;
590
}
591
else
592
if (h >= 45. && h < 135.)
593
{
594
// clip by bmax
595
Lab -> b = bmax;
596
Lab -> a = bmax / slope;
597
}
598
else
599
if (h >= 135. && h < 225.) {
600
// clip by amin
601
Lab -> a = amin;
602
Lab -> b = amin * slope;
603
604
}
605
else
606
if (h >= 225. && h < 315.) {
607
// clip by bmin
608
Lab -> b = bmin;
609
Lab -> a = bmin / slope;
610
}
611
else {
612
cmsSignalError(0, cmsERROR_RANGE, "Invalid angle");
613
return FALSE;
614
}
615
616
}
617
618
return TRUE;
619
}
620
621