Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mobile
Path: blob/master/src/java.desktop/share/native/liblcms/cmslut.c
41149 views
1
/*
2
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3
*
4
* This code is free software; you can redistribute it and/or modify it
5
* under the terms of the GNU General Public License version 2 only, as
6
* published by the Free Software Foundation. Oracle designates this
7
* particular file as subject to the "Classpath" exception as provided
8
* by Oracle in the LICENSE file that accompanied this code.
9
*
10
* This code is distributed in the hope that it will be useful, but WITHOUT
11
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13
* version 2 for more details (a copy is included in the LICENSE file that
14
* accompanied this code).
15
*
16
* You should have received a copy of the GNU General Public License version
17
* 2 along with this work; if not, write to the Free Software Foundation,
18
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19
*
20
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21
* or visit www.oracle.com if you need additional information or have any
22
* questions.
23
*/
24
25
// This file is available under and governed by the GNU General Public
26
// License version 2 only, as published by the Free Software Foundation.
27
// However, the following notice accompanied the original version of this
28
// file:
29
//
30
//---------------------------------------------------------------------------------
31
//
32
// Little Color Management System
33
// Copyright (c) 1998-2020 Marti Maria Saguer
34
//
35
// Permission is hereby granted, free of charge, to any person obtaining
36
// a copy of this software and associated documentation files (the "Software"),
37
// to deal in the Software without restriction, including without limitation
38
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
39
// and/or sell copies of the Software, and to permit persons to whom the Software
40
// is furnished to do so, subject to the following conditions:
41
//
42
// The above copyright notice and this permission notice shall be included in
43
// all copies or substantial portions of the Software.
44
//
45
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
46
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
47
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
48
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
49
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
50
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
51
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
52
//
53
//---------------------------------------------------------------------------------
54
//
55
56
#include "lcms2_internal.h"
57
58
59
// Allocates an empty multi profile element
60
cmsStage* CMSEXPORT _cmsStageAllocPlaceholder(cmsContext ContextID,
61
cmsStageSignature Type,
62
cmsUInt32Number InputChannels,
63
cmsUInt32Number OutputChannels,
64
_cmsStageEvalFn EvalPtr,
65
_cmsStageDupElemFn DupElemPtr,
66
_cmsStageFreeElemFn FreePtr,
67
void* Data)
68
{
69
cmsStage* ph = (cmsStage*) _cmsMallocZero(ContextID, sizeof(cmsStage));
70
71
if (ph == NULL) return NULL;
72
73
74
ph ->ContextID = ContextID;
75
76
ph ->Type = Type;
77
ph ->Implements = Type; // By default, no clue on what is implementing
78
79
ph ->InputChannels = InputChannels;
80
ph ->OutputChannels = OutputChannels;
81
ph ->EvalPtr = EvalPtr;
82
ph ->DupElemPtr = DupElemPtr;
83
ph ->FreePtr = FreePtr;
84
ph ->Data = Data;
85
86
return ph;
87
}
88
89
90
static
91
void EvaluateIdentity(const cmsFloat32Number In[],
92
cmsFloat32Number Out[],
93
const cmsStage *mpe)
94
{
95
memmove(Out, In, mpe ->InputChannels * sizeof(cmsFloat32Number));
96
}
97
98
99
cmsStage* CMSEXPORT cmsStageAllocIdentity(cmsContext ContextID, cmsUInt32Number nChannels)
100
{
101
return _cmsStageAllocPlaceholder(ContextID,
102
cmsSigIdentityElemType,
103
nChannels, nChannels,
104
EvaluateIdentity,
105
NULL,
106
NULL,
107
NULL);
108
}
109
110
// Conversion functions. From floating point to 16 bits
111
static
112
void FromFloatTo16(const cmsFloat32Number In[], cmsUInt16Number Out[], cmsUInt32Number n)
113
{
114
cmsUInt32Number i;
115
116
for (i=0; i < n; i++) {
117
Out[i] = _cmsQuickSaturateWord(In[i] * 65535.0);
118
}
119
}
120
121
// From 16 bits to floating point
122
static
123
void From16ToFloat(const cmsUInt16Number In[], cmsFloat32Number Out[], cmsUInt32Number n)
124
{
125
cmsUInt32Number i;
126
127
for (i=0; i < n; i++) {
128
Out[i] = (cmsFloat32Number) In[i] / 65535.0F;
129
}
130
}
131
132
133
// This function is quite useful to analyze the structure of a LUT and retrieve the MPE elements
134
// that conform the LUT. It should be called with the LUT, the number of expected elements and
135
// then a list of expected types followed with a list of cmsFloat64Number pointers to MPE elements. If
136
// the function founds a match with current pipeline, it fills the pointers and returns TRUE
137
// if not, returns FALSE without touching anything. Setting pointers to NULL does bypass
138
// the storage process.
139
cmsBool CMSEXPORT cmsPipelineCheckAndRetreiveStages(const cmsPipeline* Lut, cmsUInt32Number n, ...)
140
{
141
va_list args;
142
cmsUInt32Number i;
143
cmsStage* mpe;
144
cmsStageSignature Type;
145
void** ElemPtr;
146
147
// Make sure same number of elements
148
if (cmsPipelineStageCount(Lut) != n) return FALSE;
149
150
va_start(args, n);
151
152
// Iterate across asked types
153
mpe = Lut ->Elements;
154
for (i=0; i < n; i++) {
155
156
// Get asked type. cmsStageSignature is promoted to int by compiler
157
Type = (cmsStageSignature)va_arg(args, int);
158
if (mpe ->Type != Type) {
159
160
va_end(args); // Mismatch. We are done.
161
return FALSE;
162
}
163
mpe = mpe ->Next;
164
}
165
166
// Found a combination, fill pointers if not NULL
167
mpe = Lut ->Elements;
168
for (i=0; i < n; i++) {
169
170
ElemPtr = va_arg(args, void**);
171
if (ElemPtr != NULL)
172
*ElemPtr = mpe;
173
174
mpe = mpe ->Next;
175
}
176
177
va_end(args);
178
return TRUE;
179
}
180
181
// Below there are implementations for several types of elements. Each type may be implemented by a
182
// evaluation function, a duplication function, a function to free resources and a constructor.
183
184
// *************************************************************************************************
185
// Type cmsSigCurveSetElemType (curves)
186
// *************************************************************************************************
187
188
cmsToneCurve** _cmsStageGetPtrToCurveSet(const cmsStage* mpe)
189
{
190
_cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
191
192
return Data ->TheCurves;
193
}
194
195
static
196
void EvaluateCurves(const cmsFloat32Number In[],
197
cmsFloat32Number Out[],
198
const cmsStage *mpe)
199
{
200
_cmsStageToneCurvesData* Data;
201
cmsUInt32Number i;
202
203
_cmsAssert(mpe != NULL);
204
205
Data = (_cmsStageToneCurvesData*) mpe ->Data;
206
if (Data == NULL) return;
207
208
if (Data ->TheCurves == NULL) return;
209
210
for (i=0; i < Data ->nCurves; i++) {
211
Out[i] = cmsEvalToneCurveFloat(Data ->TheCurves[i], In[i]);
212
}
213
}
214
215
static
216
void CurveSetElemTypeFree(cmsStage* mpe)
217
{
218
_cmsStageToneCurvesData* Data;
219
cmsUInt32Number i;
220
221
_cmsAssert(mpe != NULL);
222
223
Data = (_cmsStageToneCurvesData*) mpe ->Data;
224
if (Data == NULL) return;
225
226
if (Data ->TheCurves != NULL) {
227
for (i=0; i < Data ->nCurves; i++) {
228
if (Data ->TheCurves[i] != NULL)
229
cmsFreeToneCurve(Data ->TheCurves[i]);
230
}
231
}
232
_cmsFree(mpe ->ContextID, Data ->TheCurves);
233
_cmsFree(mpe ->ContextID, Data);
234
}
235
236
237
static
238
void* CurveSetDup(cmsStage* mpe)
239
{
240
_cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
241
_cmsStageToneCurvesData* NewElem;
242
cmsUInt32Number i;
243
244
NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageToneCurvesData));
245
if (NewElem == NULL) return NULL;
246
247
NewElem ->nCurves = Data ->nCurves;
248
NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(mpe ->ContextID, NewElem ->nCurves, sizeof(cmsToneCurve*));
249
250
if (NewElem ->TheCurves == NULL) goto Error;
251
252
for (i=0; i < NewElem ->nCurves; i++) {
253
254
// Duplicate each curve. It may fail.
255
NewElem ->TheCurves[i] = cmsDupToneCurve(Data ->TheCurves[i]);
256
if (NewElem ->TheCurves[i] == NULL) goto Error;
257
258
259
}
260
return (void*) NewElem;
261
262
Error:
263
264
if (NewElem ->TheCurves != NULL) {
265
for (i=0; i < NewElem ->nCurves; i++) {
266
if (NewElem ->TheCurves[i])
267
cmsFreeToneCurve(NewElem ->TheCurves[i]);
268
}
269
}
270
_cmsFree(mpe ->ContextID, NewElem ->TheCurves);
271
_cmsFree(mpe ->ContextID, NewElem);
272
return NULL;
273
}
274
275
276
// Curves == NULL forces identity curves
277
cmsStage* CMSEXPORT cmsStageAllocToneCurves(cmsContext ContextID, cmsUInt32Number nChannels, cmsToneCurve* const Curves[])
278
{
279
cmsUInt32Number i;
280
_cmsStageToneCurvesData* NewElem;
281
cmsStage* NewMPE;
282
283
284
NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCurveSetElemType, nChannels, nChannels,
285
EvaluateCurves, CurveSetDup, CurveSetElemTypeFree, NULL );
286
if (NewMPE == NULL) return NULL;
287
288
NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(ContextID, sizeof(_cmsStageToneCurvesData));
289
if (NewElem == NULL) {
290
cmsStageFree(NewMPE);
291
return NULL;
292
}
293
294
NewMPE ->Data = (void*) NewElem;
295
296
NewElem ->nCurves = nChannels;
297
NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(ContextID, nChannels, sizeof(cmsToneCurve*));
298
if (NewElem ->TheCurves == NULL) {
299
cmsStageFree(NewMPE);
300
return NULL;
301
}
302
303
for (i=0; i < nChannels; i++) {
304
305
if (Curves == NULL) {
306
NewElem ->TheCurves[i] = cmsBuildGamma(ContextID, 1.0);
307
}
308
else {
309
NewElem ->TheCurves[i] = cmsDupToneCurve(Curves[i]);
310
}
311
312
if (NewElem ->TheCurves[i] == NULL) {
313
cmsStageFree(NewMPE);
314
return NULL;
315
}
316
317
}
318
319
return NewMPE;
320
}
321
322
323
// Create a bunch of identity curves
324
cmsStage* CMSEXPORT _cmsStageAllocIdentityCurves(cmsContext ContextID, cmsUInt32Number nChannels)
325
{
326
cmsStage* mpe = cmsStageAllocToneCurves(ContextID, nChannels, NULL);
327
328
if (mpe == NULL) return NULL;
329
mpe ->Implements = cmsSigIdentityElemType;
330
return mpe;
331
}
332
333
334
// *************************************************************************************************
335
// Type cmsSigMatrixElemType (Matrices)
336
// *************************************************************************************************
337
338
339
// Special care should be taken here because precision loss. A temporary cmsFloat64Number buffer is being used
340
static
341
void EvaluateMatrix(const cmsFloat32Number In[],
342
cmsFloat32Number Out[],
343
const cmsStage *mpe)
344
{
345
cmsUInt32Number i, j;
346
_cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
347
cmsFloat64Number Tmp;
348
349
// Input is already in 0..1.0 notation
350
for (i=0; i < mpe ->OutputChannels; i++) {
351
352
Tmp = 0;
353
for (j=0; j < mpe->InputChannels; j++) {
354
Tmp += In[j] * Data->Double[i*mpe->InputChannels + j];
355
}
356
357
if (Data ->Offset != NULL)
358
Tmp += Data->Offset[i];
359
360
Out[i] = (cmsFloat32Number) Tmp;
361
}
362
363
364
// Output in 0..1.0 domain
365
}
366
367
368
// Duplicate a yet-existing matrix element
369
static
370
void* MatrixElemDup(cmsStage* mpe)
371
{
372
_cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
373
_cmsStageMatrixData* NewElem;
374
cmsUInt32Number sz;
375
376
NewElem = (_cmsStageMatrixData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageMatrixData));
377
if (NewElem == NULL) return NULL;
378
379
sz = mpe ->InputChannels * mpe ->OutputChannels;
380
381
NewElem ->Double = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, Data ->Double, sz * sizeof(cmsFloat64Number)) ;
382
383
if (Data ->Offset)
384
NewElem ->Offset = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID,
385
Data ->Offset, mpe -> OutputChannels * sizeof(cmsFloat64Number)) ;
386
387
return (void*) NewElem;
388
}
389
390
391
static
392
void MatrixElemTypeFree(cmsStage* mpe)
393
{
394
_cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
395
if (Data == NULL)
396
return;
397
if (Data ->Double)
398
_cmsFree(mpe ->ContextID, Data ->Double);
399
400
if (Data ->Offset)
401
_cmsFree(mpe ->ContextID, Data ->Offset);
402
403
_cmsFree(mpe ->ContextID, mpe ->Data);
404
}
405
406
407
408
cmsStage* CMSEXPORT cmsStageAllocMatrix(cmsContext ContextID, cmsUInt32Number Rows, cmsUInt32Number Cols,
409
const cmsFloat64Number* Matrix, const cmsFloat64Number* Offset)
410
{
411
cmsUInt32Number i, n;
412
_cmsStageMatrixData* NewElem;
413
cmsStage* NewMPE;
414
415
n = Rows * Cols;
416
417
// Check for overflow
418
if (n == 0) return NULL;
419
if (n >= UINT_MAX / Cols) return NULL;
420
if (n >= UINT_MAX / Rows) return NULL;
421
if (n < Rows || n < Cols) return NULL;
422
423
NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigMatrixElemType, Cols, Rows,
424
EvaluateMatrix, MatrixElemDup, MatrixElemTypeFree, NULL );
425
if (NewMPE == NULL) return NULL;
426
427
428
NewElem = (_cmsStageMatrixData*) _cmsMallocZero(ContextID, sizeof(_cmsStageMatrixData));
429
if (NewElem == NULL) goto Error;
430
NewMPE->Data = (void*)NewElem;
431
432
NewElem ->Double = (cmsFloat64Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat64Number));
433
if (NewElem->Double == NULL) goto Error;
434
435
for (i=0; i < n; i++) {
436
NewElem ->Double[i] = Matrix[i];
437
}
438
439
if (Offset != NULL) {
440
441
NewElem ->Offset = (cmsFloat64Number*) _cmsCalloc(ContextID, Rows, sizeof(cmsFloat64Number));
442
if (NewElem->Offset == NULL) goto Error;
443
444
for (i=0; i < Rows; i++) {
445
NewElem ->Offset[i] = Offset[i];
446
}
447
}
448
449
return NewMPE;
450
451
Error:
452
cmsStageFree(NewMPE);
453
return NULL;
454
}
455
456
457
// *************************************************************************************************
458
// Type cmsSigCLutElemType
459
// *************************************************************************************************
460
461
462
// Evaluate in true floating point
463
static
464
void EvaluateCLUTfloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
465
{
466
_cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
467
468
Data -> Params ->Interpolation.LerpFloat(In, Out, Data->Params);
469
}
470
471
472
// Convert to 16 bits, evaluate, and back to floating point
473
static
474
void EvaluateCLUTfloatIn16(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
475
{
476
_cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
477
cmsUInt16Number In16[MAX_STAGE_CHANNELS], Out16[MAX_STAGE_CHANNELS];
478
479
_cmsAssert(mpe ->InputChannels <= MAX_STAGE_CHANNELS);
480
_cmsAssert(mpe ->OutputChannels <= MAX_STAGE_CHANNELS);
481
482
FromFloatTo16(In, In16, mpe ->InputChannels);
483
Data -> Params ->Interpolation.Lerp16(In16, Out16, Data->Params);
484
From16ToFloat(Out16, Out, mpe ->OutputChannels);
485
}
486
487
488
// Given an hypercube of b dimensions, with Dims[] number of nodes by dimension, calculate the total amount of nodes
489
static
490
cmsUInt32Number CubeSize(const cmsUInt32Number Dims[], cmsUInt32Number b)
491
{
492
cmsUInt32Number rv, dim;
493
494
_cmsAssert(Dims != NULL);
495
496
for (rv = 1; b > 0; b--) {
497
498
dim = Dims[b-1];
499
if (dim == 0) return 0; // Error
500
501
rv *= dim;
502
503
// Check for overflow
504
if (rv > UINT_MAX / dim) return 0;
505
}
506
507
return rv;
508
}
509
510
static
511
void* CLUTElemDup(cmsStage* mpe)
512
{
513
_cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
514
_cmsStageCLutData* NewElem;
515
516
517
NewElem = (_cmsStageCLutData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageCLutData));
518
if (NewElem == NULL) return NULL;
519
520
NewElem ->nEntries = Data ->nEntries;
521
NewElem ->HasFloatValues = Data ->HasFloatValues;
522
523
if (Data ->Tab.T) {
524
525
if (Data ->HasFloatValues) {
526
NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.TFloat, Data ->nEntries * sizeof (cmsFloat32Number));
527
if (NewElem ->Tab.TFloat == NULL)
528
goto Error;
529
} else {
530
NewElem ->Tab.T = (cmsUInt16Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.T, Data ->nEntries * sizeof (cmsUInt16Number));
531
if (NewElem ->Tab.T == NULL)
532
goto Error;
533
}
534
}
535
536
NewElem ->Params = _cmsComputeInterpParamsEx(mpe ->ContextID,
537
Data ->Params ->nSamples,
538
Data ->Params ->nInputs,
539
Data ->Params ->nOutputs,
540
NewElem ->Tab.T,
541
Data ->Params ->dwFlags);
542
if (NewElem->Params != NULL)
543
return (void*) NewElem;
544
Error:
545
if (NewElem->Tab.T)
546
// This works for both types
547
_cmsFree(mpe ->ContextID, NewElem -> Tab.T);
548
_cmsFree(mpe ->ContextID, NewElem);
549
return NULL;
550
}
551
552
553
static
554
void CLutElemTypeFree(cmsStage* mpe)
555
{
556
557
_cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
558
559
// Already empty
560
if (Data == NULL) return;
561
562
// This works for both types
563
if (Data -> Tab.T)
564
_cmsFree(mpe ->ContextID, Data -> Tab.T);
565
566
_cmsFreeInterpParams(Data ->Params);
567
_cmsFree(mpe ->ContextID, mpe ->Data);
568
}
569
570
571
// Allocates a 16-bit multidimensional CLUT. This is evaluated at 16-bit precision. Table may have different
572
// granularity on each dimension.
573
cmsStage* CMSEXPORT cmsStageAllocCLut16bitGranular(cmsContext ContextID,
574
const cmsUInt32Number clutPoints[],
575
cmsUInt32Number inputChan,
576
cmsUInt32Number outputChan,
577
const cmsUInt16Number* Table)
578
{
579
cmsUInt32Number i, n;
580
_cmsStageCLutData* NewElem;
581
cmsStage* NewMPE;
582
583
_cmsAssert(clutPoints != NULL);
584
585
if (inputChan > MAX_INPUT_DIMENSIONS) {
586
cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
587
return NULL;
588
}
589
590
NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
591
EvaluateCLUTfloatIn16, CLUTElemDup, CLutElemTypeFree, NULL );
592
593
if (NewMPE == NULL) return NULL;
594
595
NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
596
if (NewElem == NULL) {
597
cmsStageFree(NewMPE);
598
return NULL;
599
}
600
601
NewMPE ->Data = (void*) NewElem;
602
603
NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
604
NewElem -> HasFloatValues = FALSE;
605
606
if (n == 0) {
607
cmsStageFree(NewMPE);
608
return NULL;
609
}
610
611
612
NewElem ->Tab.T = (cmsUInt16Number*) _cmsCalloc(ContextID, n, sizeof(cmsUInt16Number));
613
if (NewElem ->Tab.T == NULL) {
614
cmsStageFree(NewMPE);
615
return NULL;
616
}
617
618
if (Table != NULL) {
619
for (i=0; i < n; i++) {
620
NewElem ->Tab.T[i] = Table[i];
621
}
622
}
623
624
NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.T, CMS_LERP_FLAGS_16BITS);
625
if (NewElem ->Params == NULL) {
626
cmsStageFree(NewMPE);
627
return NULL;
628
}
629
630
return NewMPE;
631
}
632
633
cmsStage* CMSEXPORT cmsStageAllocCLut16bit(cmsContext ContextID,
634
cmsUInt32Number nGridPoints,
635
cmsUInt32Number inputChan,
636
cmsUInt32Number outputChan,
637
const cmsUInt16Number* Table)
638
{
639
cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
640
int i;
641
642
// Our resulting LUT would be same gridpoints on all dimensions
643
for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
644
Dimensions[i] = nGridPoints;
645
646
return cmsStageAllocCLut16bitGranular(ContextID, Dimensions, inputChan, outputChan, Table);
647
}
648
649
650
cmsStage* CMSEXPORT cmsStageAllocCLutFloat(cmsContext ContextID,
651
cmsUInt32Number nGridPoints,
652
cmsUInt32Number inputChan,
653
cmsUInt32Number outputChan,
654
const cmsFloat32Number* Table)
655
{
656
cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
657
int i;
658
659
// Our resulting LUT would be same gridpoints on all dimensions
660
for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
661
Dimensions[i] = nGridPoints;
662
663
return cmsStageAllocCLutFloatGranular(ContextID, Dimensions, inputChan, outputChan, Table);
664
}
665
666
667
668
cmsStage* CMSEXPORT cmsStageAllocCLutFloatGranular(cmsContext ContextID, const cmsUInt32Number clutPoints[], cmsUInt32Number inputChan, cmsUInt32Number outputChan, const cmsFloat32Number* Table)
669
{
670
cmsUInt32Number i, n;
671
_cmsStageCLutData* NewElem;
672
cmsStage* NewMPE;
673
674
_cmsAssert(clutPoints != NULL);
675
676
if (inputChan > MAX_INPUT_DIMENSIONS) {
677
cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
678
return NULL;
679
}
680
681
NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
682
EvaluateCLUTfloat, CLUTElemDup, CLutElemTypeFree, NULL);
683
if (NewMPE == NULL) return NULL;
684
685
686
NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
687
if (NewElem == NULL) {
688
cmsStageFree(NewMPE);
689
return NULL;
690
}
691
692
NewMPE ->Data = (void*) NewElem;
693
694
// There is a potential integer overflow on conputing n and nEntries.
695
NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
696
NewElem -> HasFloatValues = TRUE;
697
698
if (n == 0) {
699
cmsStageFree(NewMPE);
700
return NULL;
701
}
702
703
NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat32Number));
704
if (NewElem ->Tab.TFloat == NULL) {
705
cmsStageFree(NewMPE);
706
return NULL;
707
}
708
709
if (Table != NULL) {
710
for (i=0; i < n; i++) {
711
NewElem ->Tab.TFloat[i] = Table[i];
712
}
713
}
714
715
NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.TFloat, CMS_LERP_FLAGS_FLOAT);
716
if (NewElem ->Params == NULL) {
717
cmsStageFree(NewMPE);
718
return NULL;
719
}
720
721
return NewMPE;
722
}
723
724
725
static
726
int IdentitySampler(CMSREGISTER const cmsUInt16Number In[], CMSREGISTER cmsUInt16Number Out[], CMSREGISTER void * Cargo)
727
{
728
int nChan = *(int*) Cargo;
729
int i;
730
731
for (i=0; i < nChan; i++)
732
Out[i] = In[i];
733
734
return 1;
735
}
736
737
// Creates an MPE that just copies input to output
738
cmsStage* CMSEXPORT _cmsStageAllocIdentityCLut(cmsContext ContextID, cmsUInt32Number nChan)
739
{
740
cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
741
cmsStage* mpe ;
742
int i;
743
744
for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
745
Dimensions[i] = 2;
746
747
mpe = cmsStageAllocCLut16bitGranular(ContextID, Dimensions, nChan, nChan, NULL);
748
if (mpe == NULL) return NULL;
749
750
if (!cmsStageSampleCLut16bit(mpe, IdentitySampler, &nChan, 0)) {
751
cmsStageFree(mpe);
752
return NULL;
753
}
754
755
mpe ->Implements = cmsSigIdentityElemType;
756
return mpe;
757
}
758
759
760
761
// Quantize a value 0 <= i < MaxSamples to 0..0xffff
762
cmsUInt16Number CMSEXPORT _cmsQuantizeVal(cmsFloat64Number i, cmsUInt32Number MaxSamples)
763
{
764
cmsFloat64Number x;
765
766
x = ((cmsFloat64Number) i * 65535.) / (cmsFloat64Number) (MaxSamples - 1);
767
return _cmsQuickSaturateWord(x);
768
}
769
770
771
// This routine does a sweep on whole input space, and calls its callback
772
// function on knots. returns TRUE if all ok, FALSE otherwise.
773
cmsBool CMSEXPORT cmsStageSampleCLut16bit(cmsStage* mpe, cmsSAMPLER16 Sampler, void * Cargo, cmsUInt32Number dwFlags)
774
{
775
int i, t, index, rest;
776
cmsUInt32Number nTotalPoints;
777
cmsUInt32Number nInputs, nOutputs;
778
cmsUInt32Number* nSamples;
779
cmsUInt16Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
780
_cmsStageCLutData* clut;
781
782
if (mpe == NULL) return FALSE;
783
784
clut = (_cmsStageCLutData*) mpe->Data;
785
786
if (clut == NULL) return FALSE;
787
788
nSamples = clut->Params ->nSamples;
789
nInputs = clut->Params ->nInputs;
790
nOutputs = clut->Params ->nOutputs;
791
792
if (nInputs <= 0) return FALSE;
793
if (nOutputs <= 0) return FALSE;
794
if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE;
795
if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
796
797
memset(In, 0, sizeof(In));
798
memset(Out, 0, sizeof(Out));
799
800
nTotalPoints = CubeSize(nSamples, nInputs);
801
if (nTotalPoints == 0) return FALSE;
802
803
index = 0;
804
for (i = 0; i < (int) nTotalPoints; i++) {
805
806
rest = i;
807
for (t = (int)nInputs - 1; t >= 0; --t) {
808
809
cmsUInt32Number Colorant = rest % nSamples[t];
810
811
rest /= nSamples[t];
812
813
In[t] = _cmsQuantizeVal(Colorant, nSamples[t]);
814
}
815
816
if (clut ->Tab.T != NULL) {
817
for (t = 0; t < (int)nOutputs; t++)
818
Out[t] = clut->Tab.T[index + t];
819
}
820
821
if (!Sampler(In, Out, Cargo))
822
return FALSE;
823
824
if (!(dwFlags & SAMPLER_INSPECT)) {
825
826
if (clut ->Tab.T != NULL) {
827
for (t=0; t < (int) nOutputs; t++)
828
clut->Tab.T[index + t] = Out[t];
829
}
830
}
831
832
index += nOutputs;
833
}
834
835
return TRUE;
836
}
837
838
// Same as anterior, but for floating point
839
cmsBool CMSEXPORT cmsStageSampleCLutFloat(cmsStage* mpe, cmsSAMPLERFLOAT Sampler, void * Cargo, cmsUInt32Number dwFlags)
840
{
841
int i, t, index, rest;
842
cmsUInt32Number nTotalPoints;
843
cmsUInt32Number nInputs, nOutputs;
844
cmsUInt32Number* nSamples;
845
cmsFloat32Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
846
_cmsStageCLutData* clut = (_cmsStageCLutData*) mpe->Data;
847
848
nSamples = clut->Params ->nSamples;
849
nInputs = clut->Params ->nInputs;
850
nOutputs = clut->Params ->nOutputs;
851
852
if (nInputs <= 0) return FALSE;
853
if (nOutputs <= 0) return FALSE;
854
if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE;
855
if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
856
857
nTotalPoints = CubeSize(nSamples, nInputs);
858
if (nTotalPoints == 0) return FALSE;
859
860
index = 0;
861
for (i = 0; i < (int)nTotalPoints; i++) {
862
863
rest = i;
864
for (t = (int) nInputs-1; t >=0; --t) {
865
866
cmsUInt32Number Colorant = rest % nSamples[t];
867
868
rest /= nSamples[t];
869
870
In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, nSamples[t]) / 65535.0);
871
}
872
873
if (clut ->Tab.TFloat != NULL) {
874
for (t=0; t < (int) nOutputs; t++)
875
Out[t] = clut->Tab.TFloat[index + t];
876
}
877
878
if (!Sampler(In, Out, Cargo))
879
return FALSE;
880
881
if (!(dwFlags & SAMPLER_INSPECT)) {
882
883
if (clut ->Tab.TFloat != NULL) {
884
for (t=0; t < (int) nOutputs; t++)
885
clut->Tab.TFloat[index + t] = Out[t];
886
}
887
}
888
889
index += nOutputs;
890
}
891
892
return TRUE;
893
}
894
895
896
897
// This routine does a sweep on whole input space, and calls its callback
898
// function on knots. returns TRUE if all ok, FALSE otherwise.
899
cmsBool CMSEXPORT cmsSliceSpace16(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
900
cmsSAMPLER16 Sampler, void * Cargo)
901
{
902
int i, t, rest;
903
cmsUInt32Number nTotalPoints;
904
cmsUInt16Number In[cmsMAXCHANNELS];
905
906
if (nInputs >= cmsMAXCHANNELS) return FALSE;
907
908
nTotalPoints = CubeSize(clutPoints, nInputs);
909
if (nTotalPoints == 0) return FALSE;
910
911
for (i = 0; i < (int) nTotalPoints; i++) {
912
913
rest = i;
914
for (t = (int) nInputs-1; t >=0; --t) {
915
916
cmsUInt32Number Colorant = rest % clutPoints[t];
917
918
rest /= clutPoints[t];
919
In[t] = _cmsQuantizeVal(Colorant, clutPoints[t]);
920
921
}
922
923
if (!Sampler(In, NULL, Cargo))
924
return FALSE;
925
}
926
927
return TRUE;
928
}
929
930
cmsInt32Number CMSEXPORT cmsSliceSpaceFloat(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
931
cmsSAMPLERFLOAT Sampler, void * Cargo)
932
{
933
int i, t, rest;
934
cmsUInt32Number nTotalPoints;
935
cmsFloat32Number In[cmsMAXCHANNELS];
936
937
if (nInputs >= cmsMAXCHANNELS) return FALSE;
938
939
nTotalPoints = CubeSize(clutPoints, nInputs);
940
if (nTotalPoints == 0) return FALSE;
941
942
for (i = 0; i < (int) nTotalPoints; i++) {
943
944
rest = i;
945
for (t = (int) nInputs-1; t >=0; --t) {
946
947
cmsUInt32Number Colorant = rest % clutPoints[t];
948
949
rest /= clutPoints[t];
950
In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, clutPoints[t]) / 65535.0);
951
952
}
953
954
if (!Sampler(In, NULL, Cargo))
955
return FALSE;
956
}
957
958
return TRUE;
959
}
960
961
// ********************************************************************************
962
// Type cmsSigLab2XYZElemType
963
// ********************************************************************************
964
965
966
static
967
void EvaluateLab2XYZ(const cmsFloat32Number In[],
968
cmsFloat32Number Out[],
969
const cmsStage *mpe)
970
{
971
cmsCIELab Lab;
972
cmsCIEXYZ XYZ;
973
const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
974
975
// V4 rules
976
Lab.L = In[0] * 100.0;
977
Lab.a = In[1] * 255.0 - 128.0;
978
Lab.b = In[2] * 255.0 - 128.0;
979
980
cmsLab2XYZ(NULL, &XYZ, &Lab);
981
982
// From XYZ, range 0..19997 to 0..1.0, note that 1.99997 comes from 0xffff
983
// encoded as 1.15 fixed point, so 1 + (32767.0 / 32768.0)
984
985
Out[0] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.X / XYZadj);
986
Out[1] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Y / XYZadj);
987
Out[2] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Z / XYZadj);
988
return;
989
990
cmsUNUSED_PARAMETER(mpe);
991
}
992
993
994
// No dup or free routines needed, as the structure has no pointers in it.
995
cmsStage* CMSEXPORT _cmsStageAllocLab2XYZ(cmsContext ContextID)
996
{
997
return _cmsStageAllocPlaceholder(ContextID, cmsSigLab2XYZElemType, 3, 3, EvaluateLab2XYZ, NULL, NULL, NULL);
998
}
999
1000
// ********************************************************************************
1001
1002
// v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable
1003
// number of gridpoints that would make exact match. However, a prelinearization
1004
// of 258 entries, would map 0xFF00 exactly on entry 257, and this is good to avoid scum dot.
1005
// Almost all what we need but unfortunately, the rest of entries should be scaled by
1006
// (255*257/256) and this is not exact.
1007
1008
cmsStage* _cmsStageAllocLabV2ToV4curves(cmsContext ContextID)
1009
{
1010
cmsStage* mpe;
1011
cmsToneCurve* LabTable[3];
1012
int i, j;
1013
1014
LabTable[0] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
1015
LabTable[1] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
1016
LabTable[2] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
1017
1018
for (j=0; j < 3; j++) {
1019
1020
if (LabTable[j] == NULL) {
1021
cmsFreeToneCurveTriple(LabTable);
1022
return NULL;
1023
}
1024
1025
// We need to map * (0xffff / 0xff00), that's same as (257 / 256)
1026
// So we can use 258-entry tables to do the trick (i / 257) * (255 * 257) * (257 / 256);
1027
for (i=0; i < 257; i++) {
1028
1029
LabTable[j]->Table16[i] = (cmsUInt16Number) ((i * 0xffff + 0x80) >> 8);
1030
}
1031
1032
LabTable[j] ->Table16[257] = 0xffff;
1033
}
1034
1035
mpe = cmsStageAllocToneCurves(ContextID, 3, LabTable);
1036
cmsFreeToneCurveTriple(LabTable);
1037
1038
if (mpe == NULL) return NULL;
1039
mpe ->Implements = cmsSigLabV2toV4;
1040
return mpe;
1041
}
1042
1043
// ********************************************************************************
1044
1045
// Matrix-based conversion, which is more accurate, but slower and cannot properly be saved in devicelink profiles
1046
cmsStage* CMSEXPORT _cmsStageAllocLabV2ToV4(cmsContext ContextID)
1047
{
1048
static const cmsFloat64Number V2ToV4[] = { 65535.0/65280.0, 0, 0,
1049
0, 65535.0/65280.0, 0,
1050
0, 0, 65535.0/65280.0
1051
};
1052
1053
cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V2ToV4, NULL);
1054
1055
if (mpe == NULL) return mpe;
1056
mpe ->Implements = cmsSigLabV2toV4;
1057
return mpe;
1058
}
1059
1060
1061
// Reverse direction
1062
cmsStage* CMSEXPORT _cmsStageAllocLabV4ToV2(cmsContext ContextID)
1063
{
1064
static const cmsFloat64Number V4ToV2[] = { 65280.0/65535.0, 0, 0,
1065
0, 65280.0/65535.0, 0,
1066
0, 0, 65280.0/65535.0
1067
};
1068
1069
cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V4ToV2, NULL);
1070
1071
if (mpe == NULL) return mpe;
1072
mpe ->Implements = cmsSigLabV4toV2;
1073
return mpe;
1074
}
1075
1076
1077
// To Lab to float. Note that the MPE gives numbers in normal Lab range
1078
// and we need 0..1.0 range for the formatters
1079
// L* : 0...100 => 0...1.0 (L* / 100)
1080
// ab* : -128..+127 to 0..1 ((ab* + 128) / 255)
1081
1082
cmsStage* _cmsStageNormalizeFromLabFloat(cmsContext ContextID)
1083
{
1084
static const cmsFloat64Number a1[] = {
1085
1.0/100.0, 0, 0,
1086
0, 1.0/255.0, 0,
1087
0, 0, 1.0/255.0
1088
};
1089
1090
static const cmsFloat64Number o1[] = {
1091
0,
1092
128.0/255.0,
1093
128.0/255.0
1094
};
1095
1096
cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
1097
1098
if (mpe == NULL) return mpe;
1099
mpe ->Implements = cmsSigLab2FloatPCS;
1100
return mpe;
1101
}
1102
1103
// Fom XYZ to floating point PCS
1104
cmsStage* _cmsStageNormalizeFromXyzFloat(cmsContext ContextID)
1105
{
1106
#define n (32768.0/65535.0)
1107
static const cmsFloat64Number a1[] = {
1108
n, 0, 0,
1109
0, n, 0,
1110
0, 0, n
1111
};
1112
#undef n
1113
1114
cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
1115
1116
if (mpe == NULL) return mpe;
1117
mpe ->Implements = cmsSigXYZ2FloatPCS;
1118
return mpe;
1119
}
1120
1121
cmsStage* _cmsStageNormalizeToLabFloat(cmsContext ContextID)
1122
{
1123
static const cmsFloat64Number a1[] = {
1124
100.0, 0, 0,
1125
0, 255.0, 0,
1126
0, 0, 255.0
1127
};
1128
1129
static const cmsFloat64Number o1[] = {
1130
0,
1131
-128.0,
1132
-128.0
1133
};
1134
1135
cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
1136
if (mpe == NULL) return mpe;
1137
mpe ->Implements = cmsSigFloatPCS2Lab;
1138
return mpe;
1139
}
1140
1141
cmsStage* _cmsStageNormalizeToXyzFloat(cmsContext ContextID)
1142
{
1143
#define n (65535.0/32768.0)
1144
1145
static const cmsFloat64Number a1[] = {
1146
n, 0, 0,
1147
0, n, 0,
1148
0, 0, n
1149
};
1150
#undef n
1151
1152
cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
1153
if (mpe == NULL) return mpe;
1154
mpe ->Implements = cmsSigFloatPCS2XYZ;
1155
return mpe;
1156
}
1157
1158
// Clips values smaller than zero
1159
static
1160
void Clipper(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
1161
{
1162
cmsUInt32Number i;
1163
for (i = 0; i < mpe->InputChannels; i++) {
1164
1165
cmsFloat32Number n = In[i];
1166
Out[i] = n < 0 ? 0 : n;
1167
}
1168
}
1169
1170
cmsStage* _cmsStageClipNegatives(cmsContext ContextID, cmsUInt32Number nChannels)
1171
{
1172
return _cmsStageAllocPlaceholder(ContextID, cmsSigClipNegativesElemType,
1173
nChannels, nChannels, Clipper, NULL, NULL, NULL);
1174
}
1175
1176
// ********************************************************************************
1177
// Type cmsSigXYZ2LabElemType
1178
// ********************************************************************************
1179
1180
static
1181
void EvaluateXYZ2Lab(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
1182
{
1183
cmsCIELab Lab;
1184
cmsCIEXYZ XYZ;
1185
const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
1186
1187
// From 0..1.0 to XYZ
1188
1189
XYZ.X = In[0] * XYZadj;
1190
XYZ.Y = In[1] * XYZadj;
1191
XYZ.Z = In[2] * XYZadj;
1192
1193
cmsXYZ2Lab(NULL, &Lab, &XYZ);
1194
1195
// From V4 Lab to 0..1.0
1196
1197
Out[0] = (cmsFloat32Number) (Lab.L / 100.0);
1198
Out[1] = (cmsFloat32Number) ((Lab.a + 128.0) / 255.0);
1199
Out[2] = (cmsFloat32Number) ((Lab.b + 128.0) / 255.0);
1200
return;
1201
1202
cmsUNUSED_PARAMETER(mpe);
1203
}
1204
1205
cmsStage* CMSEXPORT _cmsStageAllocXYZ2Lab(cmsContext ContextID)
1206
{
1207
return _cmsStageAllocPlaceholder(ContextID, cmsSigXYZ2LabElemType, 3, 3, EvaluateXYZ2Lab, NULL, NULL, NULL);
1208
1209
}
1210
1211
// ********************************************************************************
1212
1213
// For v4, S-Shaped curves are placed in a/b axis to increase resolution near gray
1214
1215
cmsStage* _cmsStageAllocLabPrelin(cmsContext ContextID)
1216
{
1217
cmsToneCurve* LabTable[3];
1218
cmsFloat64Number Params[1] = {2.4} ;
1219
1220
LabTable[0] = cmsBuildGamma(ContextID, 1.0);
1221
LabTable[1] = cmsBuildParametricToneCurve(ContextID, 108, Params);
1222
LabTable[2] = cmsBuildParametricToneCurve(ContextID, 108, Params);
1223
1224
return cmsStageAllocToneCurves(ContextID, 3, LabTable);
1225
}
1226
1227
1228
// Free a single MPE
1229
void CMSEXPORT cmsStageFree(cmsStage* mpe)
1230
{
1231
if (mpe ->FreePtr)
1232
mpe ->FreePtr(mpe);
1233
1234
_cmsFree(mpe ->ContextID, mpe);
1235
}
1236
1237
1238
cmsUInt32Number CMSEXPORT cmsStageInputChannels(const cmsStage* mpe)
1239
{
1240
return mpe ->InputChannels;
1241
}
1242
1243
cmsUInt32Number CMSEXPORT cmsStageOutputChannels(const cmsStage* mpe)
1244
{
1245
return mpe ->OutputChannels;
1246
}
1247
1248
cmsStageSignature CMSEXPORT cmsStageType(const cmsStage* mpe)
1249
{
1250
return mpe -> Type;
1251
}
1252
1253
void* CMSEXPORT cmsStageData(const cmsStage* mpe)
1254
{
1255
return mpe -> Data;
1256
}
1257
1258
cmsStage* CMSEXPORT cmsStageNext(const cmsStage* mpe)
1259
{
1260
return mpe -> Next;
1261
}
1262
1263
1264
// Duplicates an MPE
1265
cmsStage* CMSEXPORT cmsStageDup(cmsStage* mpe)
1266
{
1267
cmsStage* NewMPE;
1268
1269
if (mpe == NULL) return NULL;
1270
NewMPE = _cmsStageAllocPlaceholder(mpe ->ContextID,
1271
mpe ->Type,
1272
mpe ->InputChannels,
1273
mpe ->OutputChannels,
1274
mpe ->EvalPtr,
1275
mpe ->DupElemPtr,
1276
mpe ->FreePtr,
1277
NULL);
1278
if (NewMPE == NULL) return NULL;
1279
1280
NewMPE ->Implements = mpe ->Implements;
1281
1282
if (mpe ->DupElemPtr) {
1283
1284
NewMPE ->Data = mpe ->DupElemPtr(mpe);
1285
1286
if (NewMPE->Data == NULL) {
1287
1288
cmsStageFree(NewMPE);
1289
return NULL;
1290
}
1291
1292
} else {
1293
1294
NewMPE ->Data = NULL;
1295
}
1296
1297
return NewMPE;
1298
}
1299
1300
1301
// ***********************************************************************************************************
1302
1303
// This function sets up the channel count
1304
static
1305
cmsBool BlessLUT(cmsPipeline* lut)
1306
{
1307
// We can set the input/output channels only if we have elements.
1308
if (lut ->Elements != NULL) {
1309
1310
cmsStage* prev;
1311
cmsStage* next;
1312
cmsStage* First;
1313
cmsStage* Last;
1314
1315
First = cmsPipelineGetPtrToFirstStage(lut);
1316
Last = cmsPipelineGetPtrToLastStage(lut);
1317
1318
if (First == NULL || Last == NULL) return FALSE;
1319
1320
lut->InputChannels = First->InputChannels;
1321
lut->OutputChannels = Last->OutputChannels;
1322
1323
// Check chain consistency
1324
prev = First;
1325
next = prev->Next;
1326
1327
while (next != NULL)
1328
{
1329
if (next->InputChannels != prev->OutputChannels)
1330
return FALSE;
1331
1332
next = next->Next;
1333
prev = prev->Next;
1334
}
1335
}
1336
1337
return TRUE;
1338
}
1339
1340
1341
// Default to evaluate the LUT on 16 bit-basis. Precision is retained.
1342
static
1343
void _LUTeval16(CMSREGISTER const cmsUInt16Number In[], CMSREGISTER cmsUInt16Number Out[], CMSREGISTER const void* D)
1344
{
1345
cmsPipeline* lut = (cmsPipeline*) D;
1346
cmsStage *mpe;
1347
cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS];
1348
int Phase = 0, NextPhase;
1349
1350
From16ToFloat(In, &Storage[Phase][0], lut ->InputChannels);
1351
1352
for (mpe = lut ->Elements;
1353
mpe != NULL;
1354
mpe = mpe ->Next) {
1355
1356
NextPhase = Phase ^ 1;
1357
mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
1358
Phase = NextPhase;
1359
}
1360
1361
1362
FromFloatTo16(&Storage[Phase][0], Out, lut ->OutputChannels);
1363
}
1364
1365
1366
1367
// Does evaluate the LUT on cmsFloat32Number-basis.
1368
static
1369
void _LUTevalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const void* D)
1370
{
1371
cmsPipeline* lut = (cmsPipeline*) D;
1372
cmsStage *mpe;
1373
cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS];
1374
int Phase = 0, NextPhase;
1375
1376
memmove(&Storage[Phase][0], In, lut ->InputChannels * sizeof(cmsFloat32Number));
1377
1378
for (mpe = lut ->Elements;
1379
mpe != NULL;
1380
mpe = mpe ->Next) {
1381
1382
NextPhase = Phase ^ 1;
1383
mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
1384
Phase = NextPhase;
1385
}
1386
1387
memmove(Out, &Storage[Phase][0], lut ->OutputChannels * sizeof(cmsFloat32Number));
1388
}
1389
1390
1391
// LUT Creation & Destruction
1392
cmsPipeline* CMSEXPORT cmsPipelineAlloc(cmsContext ContextID, cmsUInt32Number InputChannels, cmsUInt32Number OutputChannels)
1393
{
1394
cmsPipeline* NewLUT;
1395
1396
// A value of zero in channels is allowed as placeholder
1397
if (InputChannels >= cmsMAXCHANNELS ||
1398
OutputChannels >= cmsMAXCHANNELS) return NULL;
1399
1400
NewLUT = (cmsPipeline*) _cmsMallocZero(ContextID, sizeof(cmsPipeline));
1401
if (NewLUT == NULL) return NULL;
1402
1403
NewLUT -> InputChannels = InputChannels;
1404
NewLUT -> OutputChannels = OutputChannels;
1405
1406
NewLUT ->Eval16Fn = _LUTeval16;
1407
NewLUT ->EvalFloatFn = _LUTevalFloat;
1408
NewLUT ->DupDataFn = NULL;
1409
NewLUT ->FreeDataFn = NULL;
1410
NewLUT ->Data = NewLUT;
1411
NewLUT ->ContextID = ContextID;
1412
1413
if (!BlessLUT(NewLUT))
1414
{
1415
_cmsFree(ContextID, NewLUT);
1416
return NULL;
1417
}
1418
1419
return NewLUT;
1420
}
1421
1422
cmsContext CMSEXPORT cmsGetPipelineContextID(const cmsPipeline* lut)
1423
{
1424
_cmsAssert(lut != NULL);
1425
return lut ->ContextID;
1426
}
1427
1428
cmsUInt32Number CMSEXPORT cmsPipelineInputChannels(const cmsPipeline* lut)
1429
{
1430
_cmsAssert(lut != NULL);
1431
return lut ->InputChannels;
1432
}
1433
1434
cmsUInt32Number CMSEXPORT cmsPipelineOutputChannels(const cmsPipeline* lut)
1435
{
1436
_cmsAssert(lut != NULL);
1437
return lut ->OutputChannels;
1438
}
1439
1440
// Free a profile elements LUT
1441
void CMSEXPORT cmsPipelineFree(cmsPipeline* lut)
1442
{
1443
cmsStage *mpe, *Next;
1444
1445
if (lut == NULL) return;
1446
1447
for (mpe = lut ->Elements;
1448
mpe != NULL;
1449
mpe = Next) {
1450
1451
Next = mpe ->Next;
1452
cmsStageFree(mpe);
1453
}
1454
1455
if (lut ->FreeDataFn) lut ->FreeDataFn(lut ->ContextID, lut ->Data);
1456
1457
_cmsFree(lut ->ContextID, lut);
1458
}
1459
1460
1461
// Default to evaluate the LUT on 16 bit-basis.
1462
void CMSEXPORT cmsPipelineEval16(const cmsUInt16Number In[], cmsUInt16Number Out[], const cmsPipeline* lut)
1463
{
1464
_cmsAssert(lut != NULL);
1465
lut ->Eval16Fn(In, Out, lut->Data);
1466
}
1467
1468
1469
// Does evaluate the LUT on cmsFloat32Number-basis.
1470
void CMSEXPORT cmsPipelineEvalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsPipeline* lut)
1471
{
1472
_cmsAssert(lut != NULL);
1473
lut ->EvalFloatFn(In, Out, lut);
1474
}
1475
1476
1477
1478
// Duplicates a LUT
1479
cmsPipeline* CMSEXPORT cmsPipelineDup(const cmsPipeline* lut)
1480
{
1481
cmsPipeline* NewLUT;
1482
cmsStage *NewMPE, *Anterior = NULL, *mpe;
1483
cmsBool First = TRUE;
1484
1485
if (lut == NULL) return NULL;
1486
1487
NewLUT = cmsPipelineAlloc(lut ->ContextID, lut ->InputChannels, lut ->OutputChannels);
1488
if (NewLUT == NULL) return NULL;
1489
1490
for (mpe = lut ->Elements;
1491
mpe != NULL;
1492
mpe = mpe ->Next) {
1493
1494
NewMPE = cmsStageDup(mpe);
1495
1496
if (NewMPE == NULL) {
1497
cmsPipelineFree(NewLUT);
1498
return NULL;
1499
}
1500
1501
if (First) {
1502
NewLUT ->Elements = NewMPE;
1503
First = FALSE;
1504
}
1505
else {
1506
if (Anterior != NULL)
1507
Anterior ->Next = NewMPE;
1508
}
1509
1510
Anterior = NewMPE;
1511
}
1512
1513
NewLUT ->Eval16Fn = lut ->Eval16Fn;
1514
NewLUT ->EvalFloatFn = lut ->EvalFloatFn;
1515
NewLUT ->DupDataFn = lut ->DupDataFn;
1516
NewLUT ->FreeDataFn = lut ->FreeDataFn;
1517
1518
if (NewLUT ->DupDataFn != NULL)
1519
NewLUT ->Data = NewLUT ->DupDataFn(lut ->ContextID, lut->Data);
1520
1521
1522
NewLUT ->SaveAs8Bits = lut ->SaveAs8Bits;
1523
1524
if (!BlessLUT(NewLUT))
1525
{
1526
_cmsFree(lut->ContextID, NewLUT);
1527
return NULL;
1528
}
1529
1530
return NewLUT;
1531
}
1532
1533
1534
int CMSEXPORT cmsPipelineInsertStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage* mpe)
1535
{
1536
cmsStage* Anterior = NULL, *pt;
1537
1538
if (lut == NULL || mpe == NULL)
1539
return FALSE;
1540
1541
switch (loc) {
1542
1543
case cmsAT_BEGIN:
1544
mpe ->Next = lut ->Elements;
1545
lut ->Elements = mpe;
1546
break;
1547
1548
case cmsAT_END:
1549
1550
if (lut ->Elements == NULL)
1551
lut ->Elements = mpe;
1552
else {
1553
1554
for (pt = lut ->Elements;
1555
pt != NULL;
1556
pt = pt -> Next) Anterior = pt;
1557
1558
Anterior ->Next = mpe;
1559
mpe ->Next = NULL;
1560
}
1561
break;
1562
default:;
1563
return FALSE;
1564
}
1565
1566
return BlessLUT(lut);
1567
}
1568
1569
// Unlink an element and return the pointer to it
1570
void CMSEXPORT cmsPipelineUnlinkStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage** mpe)
1571
{
1572
cmsStage *Anterior, *pt, *Last;
1573
cmsStage *Unlinked = NULL;
1574
1575
1576
// If empty LUT, there is nothing to remove
1577
if (lut ->Elements == NULL) {
1578
if (mpe) *mpe = NULL;
1579
return;
1580
}
1581
1582
// On depending on the strategy...
1583
switch (loc) {
1584
1585
case cmsAT_BEGIN:
1586
{
1587
cmsStage* elem = lut ->Elements;
1588
1589
lut ->Elements = elem -> Next;
1590
elem ->Next = NULL;
1591
Unlinked = elem;
1592
1593
}
1594
break;
1595
1596
case cmsAT_END:
1597
Anterior = Last = NULL;
1598
for (pt = lut ->Elements;
1599
pt != NULL;
1600
pt = pt -> Next) {
1601
Anterior = Last;
1602
Last = pt;
1603
}
1604
1605
Unlinked = Last; // Next already points to NULL
1606
1607
// Truncate the chain
1608
if (Anterior)
1609
Anterior ->Next = NULL;
1610
else
1611
lut ->Elements = NULL;
1612
break;
1613
default:;
1614
}
1615
1616
if (mpe)
1617
*mpe = Unlinked;
1618
else
1619
cmsStageFree(Unlinked);
1620
1621
// May fail, but we ignore it
1622
BlessLUT(lut);
1623
}
1624
1625
1626
// Concatenate two LUT into a new single one
1627
cmsBool CMSEXPORT cmsPipelineCat(cmsPipeline* l1, const cmsPipeline* l2)
1628
{
1629
cmsStage* mpe;
1630
1631
// If both LUTS does not have elements, we need to inherit
1632
// the number of channels
1633
if (l1 ->Elements == NULL && l2 ->Elements == NULL) {
1634
l1 ->InputChannels = l2 ->InputChannels;
1635
l1 ->OutputChannels = l2 ->OutputChannels;
1636
}
1637
1638
// Cat second
1639
for (mpe = l2 ->Elements;
1640
mpe != NULL;
1641
mpe = mpe ->Next) {
1642
1643
// We have to dup each element
1644
if (!cmsPipelineInsertStage(l1, cmsAT_END, cmsStageDup(mpe)))
1645
return FALSE;
1646
}
1647
1648
return BlessLUT(l1);
1649
}
1650
1651
1652
cmsBool CMSEXPORT cmsPipelineSetSaveAs8bitsFlag(cmsPipeline* lut, cmsBool On)
1653
{
1654
cmsBool Anterior = lut ->SaveAs8Bits;
1655
1656
lut ->SaveAs8Bits = On;
1657
return Anterior;
1658
}
1659
1660
1661
cmsStage* CMSEXPORT cmsPipelineGetPtrToFirstStage(const cmsPipeline* lut)
1662
{
1663
return lut ->Elements;
1664
}
1665
1666
cmsStage* CMSEXPORT cmsPipelineGetPtrToLastStage(const cmsPipeline* lut)
1667
{
1668
cmsStage *mpe, *Anterior = NULL;
1669
1670
for (mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
1671
Anterior = mpe;
1672
1673
return Anterior;
1674
}
1675
1676
cmsUInt32Number CMSEXPORT cmsPipelineStageCount(const cmsPipeline* lut)
1677
{
1678
cmsStage *mpe;
1679
cmsUInt32Number n;
1680
1681
for (n=0, mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
1682
n++;
1683
1684
return n;
1685
}
1686
1687
// This function may be used to set the optional evaluator and a block of private data. If private data is being used, an optional
1688
// duplicator and free functions should also be specified in order to duplicate the LUT construct. Use NULL to inhibit such functionality.
1689
void CMSEXPORT _cmsPipelineSetOptimizationParameters(cmsPipeline* Lut,
1690
_cmsPipelineEval16Fn Eval16,
1691
void* PrivateData,
1692
_cmsFreeUserDataFn FreePrivateDataFn,
1693
_cmsDupUserDataFn DupPrivateDataFn)
1694
{
1695
1696
Lut ->Eval16Fn = Eval16;
1697
Lut ->DupDataFn = DupPrivateDataFn;
1698
Lut ->FreeDataFn = FreePrivateDataFn;
1699
Lut ->Data = PrivateData;
1700
}
1701
1702
1703
// ----------------------------------------------------------- Reverse interpolation
1704
// Here's how it goes. The derivative Df(x) of the function f is the linear
1705
// transformation that best approximates f near the point x. It can be represented
1706
// by a matrix A whose entries are the partial derivatives of the components of f
1707
// with respect to all the coordinates. This is know as the Jacobian
1708
//
1709
// The best linear approximation to f is given by the matrix equation:
1710
//
1711
// y-y0 = A (x-x0)
1712
//
1713
// So, if x0 is a good "guess" for the zero of f, then solving for the zero of this
1714
// linear approximation will give a "better guess" for the zero of f. Thus let y=0,
1715
// and since y0=f(x0) one can solve the above equation for x. This leads to the
1716
// Newton's method formula:
1717
//
1718
// xn+1 = xn - A-1 f(xn)
1719
//
1720
// where xn+1 denotes the (n+1)-st guess, obtained from the n-th guess xn in the
1721
// fashion described above. Iterating this will give better and better approximations
1722
// if you have a "good enough" initial guess.
1723
1724
1725
#define JACOBIAN_EPSILON 0.001f
1726
#define INVERSION_MAX_ITERATIONS 30
1727
1728
// Increment with reflexion on boundary
1729
static
1730
void IncDelta(cmsFloat32Number *Val)
1731
{
1732
if (*Val < (1.0 - JACOBIAN_EPSILON))
1733
1734
*Val += JACOBIAN_EPSILON;
1735
1736
else
1737
*Val -= JACOBIAN_EPSILON;
1738
1739
}
1740
1741
1742
1743
// Euclidean distance between two vectors of n elements each one
1744
static
1745
cmsFloat32Number EuclideanDistance(cmsFloat32Number a[], cmsFloat32Number b[], int n)
1746
{
1747
cmsFloat32Number sum = 0;
1748
int i;
1749
1750
for (i=0; i < n; i++) {
1751
cmsFloat32Number dif = b[i] - a[i];
1752
sum += dif * dif;
1753
}
1754
1755
return sqrtf(sum);
1756
}
1757
1758
1759
// Evaluate a LUT in reverse direction. It only searches on 3->3 LUT. Uses Newton method
1760
//
1761
// x1 <- x - [J(x)]^-1 * f(x)
1762
//
1763
// lut: The LUT on where to do the search
1764
// Target: LabK, 3 values of Lab plus destination K which is fixed
1765
// Result: The obtained CMYK
1766
// Hint: Location where begin the search
1767
1768
cmsBool CMSEXPORT cmsPipelineEvalReverseFloat(cmsFloat32Number Target[],
1769
cmsFloat32Number Result[],
1770
cmsFloat32Number Hint[],
1771
const cmsPipeline* lut)
1772
{
1773
cmsUInt32Number i, j;
1774
cmsFloat64Number error, LastError = 1E20;
1775
cmsFloat32Number fx[4], x[4], xd[4], fxd[4];
1776
cmsVEC3 tmp, tmp2;
1777
cmsMAT3 Jacobian;
1778
1779
// Only 3->3 and 4->3 are supported
1780
if (lut ->InputChannels != 3 && lut ->InputChannels != 4) return FALSE;
1781
if (lut ->OutputChannels != 3) return FALSE;
1782
1783
// Take the hint as starting point if specified
1784
if (Hint == NULL) {
1785
1786
// Begin at any point, we choose 1/3 of CMY axis
1787
x[0] = x[1] = x[2] = 0.3f;
1788
}
1789
else {
1790
1791
// Only copy 3 channels from hint...
1792
for (j=0; j < 3; j++)
1793
x[j] = Hint[j];
1794
}
1795
1796
// If Lut is 4-dimensions, then grab target[3], which is fixed
1797
if (lut ->InputChannels == 4) {
1798
x[3] = Target[3];
1799
}
1800
else x[3] = 0; // To keep lint happy
1801
1802
1803
// Iterate
1804
for (i = 0; i < INVERSION_MAX_ITERATIONS; i++) {
1805
1806
// Get beginning fx
1807
cmsPipelineEvalFloat(x, fx, lut);
1808
1809
// Compute error
1810
error = EuclideanDistance(fx, Target, 3);
1811
1812
// If not convergent, return last safe value
1813
if (error >= LastError)
1814
break;
1815
1816
// Keep latest values
1817
LastError = error;
1818
for (j=0; j < lut ->InputChannels; j++)
1819
Result[j] = x[j];
1820
1821
// Found an exact match?
1822
if (error <= 0)
1823
break;
1824
1825
// Obtain slope (the Jacobian)
1826
for (j = 0; j < 3; j++) {
1827
1828
xd[0] = x[0];
1829
xd[1] = x[1];
1830
xd[2] = x[2];
1831
xd[3] = x[3]; // Keep fixed channel
1832
1833
IncDelta(&xd[j]);
1834
1835
cmsPipelineEvalFloat(xd, fxd, lut);
1836
1837
Jacobian.v[0].n[j] = ((fxd[0] - fx[0]) / JACOBIAN_EPSILON);
1838
Jacobian.v[1].n[j] = ((fxd[1] - fx[1]) / JACOBIAN_EPSILON);
1839
Jacobian.v[2].n[j] = ((fxd[2] - fx[2]) / JACOBIAN_EPSILON);
1840
}
1841
1842
// Solve system
1843
tmp2.n[0] = fx[0] - Target[0];
1844
tmp2.n[1] = fx[1] - Target[1];
1845
tmp2.n[2] = fx[2] - Target[2];
1846
1847
if (!_cmsMAT3solve(&tmp, &Jacobian, &tmp2))
1848
return FALSE;
1849
1850
// Move our guess
1851
x[0] -= (cmsFloat32Number) tmp.n[0];
1852
x[1] -= (cmsFloat32Number) tmp.n[1];
1853
x[2] -= (cmsFloat32Number) tmp.n[2];
1854
1855
// Some clipping....
1856
for (j=0; j < 3; j++) {
1857
if (x[j] < 0) x[j] = 0;
1858
else
1859
if (x[j] > 1.0) x[j] = 1.0;
1860
}
1861
}
1862
1863
return TRUE;
1864
}
1865
1866
1867
1868